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Abstract 

In this paper we address the problem of recover- 
ing 3D models from uncalibrated images of ar- 
chitectural scenes. 

We propose a simple, geometrically intu- 
itive method which exploits strong rigidity con- 
straints such as parallelism and orthogonal- 
ity present in indoor and outdoor architectural 
scences. We show how these simple constraints 
can be used to calibrate the cameras and to re- 
cover the 3 x 4 projection matrices for each view- 

In this paper we propose a much simpler ap- 
proach to construct a 3D model and generate 
new viewpoint images by exploiting strong con- 
straints present in the scenes to be modelled. In 
the context of architectural environments, the 
constraints which can be used are parallelism 
and orthogonality. These constraints lead to  
very simple and geometrically intuitive meth- 
ods to calibrate the cameras and to recover Eu- 
clidean models of the scene from only two images 
from arbitrary positions. 

point. The projection matrices are used to  re- 
cover partial 3D models of the scene and these 2 Outline of the algorithm 
can be used to visualise new viewpoints. A 3D model can be recovered from two or more 

Our approach does not need any a priori in- uncalibrated images. Our algorithm consists of 
formation about the cameras being used. A the four following stages (see figure 
working system has been designed and imple- 
mented to  allow the user to  interactively build 1. We first define a set of primitives - segments 
a 3D model from a pair of uncalibrated images and cuboids - for which parallelism and or- 
from arbitrary viewpoints. thogonality constraints are derived. These 

primitives are precisely localised in the im- 
age using the image gradient information. 

1 Introduction 

Considerable efforts have been made to  recover 
photorealistic models of the real world. The 
most common geometric approach is to attempt 
to recover 3D models from calibrated stereo im- 
ages [16] or uncalibrated extended image se- 
quences [21, 1, 171 by triangulation and exploit- 
ing epipolar [15] and trilinear constraints [lo, 
201. An alternative approach consists of visuali- 
sation from image-based representations of a 3D 
scene. This is the preferred method when try- 
ing to  generate an intermediate viewpoint im- 
age given two nearby viewpoints since it does 

2. The next step concerns the camera calibra- 
tion: the intrinsic parameters of the cam- 
era are determined for each image. This is 
done by determining the vanishing points 
associated with parallel lines in the world. 
Three mutually orthogonal directions are 
exploited [2]. 

3. The motion (a  rotation and a translation) 
between the viewpoints is then computed. 
The motion combined with the knowledge 
of the camera parameters allows the recov- 
ery of the perspective projection matrices 
for each viewpoint. 

not need to make explicit a 3D model of the 
scene [22, 19, 7, 12, 61. 4. The last step consists in using these projec- 

Facade [4] - one of the most successful sys- tion matrices to  find more correspondences 

tems for modelling and rendering architectural between the images and then to compute 3D 

buildings from photographs - consists of a hy- textured triangles that represent a model of 

brid geometric and image-based approach. Un- the scene. 
- 

fortunately it involves considerable time and ef- 
fort from the user in decomposing the scene into 
prismatic blocks, followed by the estimation of 
the pose of these primitives. 



1. Original uncalibrated photographs 

2. Primitive definition and localisation 

3. Finding vanishing points and camera calibration 

4. Computation of projection matrices and camera motion 

5. Triangulation, 3D reconstruction and texture mapping 

Figure 1: Outline of the algorithm. 



3 Geometric Framework vanish~ng /- pint :. 

For a pin-hole camera, perspective projection 
from Euclidean 3-space to  an image can be con- 
veniently represented in homogeneous coordi- 
nates by a 3 x 4 camera projection matrix, P :  , 

van~sh~ng polnt 

p l l  P 1 2  P 1 3  P 1 4  
____._.__._....-.-.-.--- [ " I  = [ p 2 1  P 2 2  P 2 3  P 2 4  

wi P 3 1  P 3 2  P 3 3  P 3 4  
2; 

(1) 

The projection matrix has 11 degrees of freedom Figure 2: A cuboid and its projection which is 
and can be decomposed into the orientation and defined by five image points and an image di- 
position of the camera relative to a the world rection. The cuboid image edges define three 
co-ordinate system (a 3 x 3 rotation matrix R vanishing points in the image plane. 
and a 3 x 1 translation vector T :  

(2) 4 Primitives 

and a 3 x 3 camera calibration matrix, C ,  cor- The first step of the method consists in defin- 
responding to  the following transformation: ing image segments and cuboids by means of 

which the parallelism and orthogonality con- 
a, s 210 straints can be derived. These constraints are 

(3) then used to recover the intrinsic and extrin- 
sic cameras parameters and hence the projection 

where a,, cr, are scale factors; s is a skew pa- 
rameter; and u o ,  vo are the pixel coordinates of 
the principal point (the intersection of the opti- 
cal axis with the image plane [5]). 

In general, the parameters of the projection 
matrix can be computed from the measured im- 
age positions of at least six known points in the 
world. This matrix can then be decomposed by 
QR decomposition into camera and rotation ma- 
trices [5]. 

In our approach the vanishing points corre- 
sponding to  three mutually orthogonal direc- 
tions can be used to  determine: 

1. the camera calibration matrix, C under the 
assumption of zero skew and known aspect 
ratio [2]. 

2. the rotation matrix R. 

3. the direction of translation, T. 

We show that the 8 degrees of freedom of the 
projection matrix for this special case can be 
determined from three vanishing points corre- 
sponding to  the projections of 3 points a t  infinity 
and a reference point. The projection matrix can 
thus be recovered from the projection of a t  least 
one arbitrary cuboid. Applying the algorithm to  
two views allows the Euclidean reconstruction of 
all visible points up to  an arbitrary scale. 

matrices for each view. 
First, interest points are extracted in the ref- 

erence views. This can be done by means of 
a Harris corner detector [8] and also interac- 
tively by hand since results from a corner de- 
tector may not be sufficient (see figure 3). Such 
points are then used to define the image projec- 
tions of primitives: segments and cuboids, which 
are present in the observed scene. 

The definition of a segment projection in an 
image is straightforward and requires two im- 
age points. The image of a cuboid is completely 
specified by six or more vertices. The inter- 
est points, extracted corners and user defined 
corners which are used to  define segments and 
cuboids, are not necessarily well localised in the 
image plane. An optimisation is therefore per- 
formed t o  improve their localisations. This op- 
timisation takes into account image gradient in- 
formation and modifies image point coordinates 
in order to  position primitive edges along image 
edges. 

5 Finding Vanishing Points 

Once an initial set of primitives has been de- 
fined, parallelism and orthogonality constraints 
are used through the vanishing points to  con- 
strain the intrinsic parameters. 



Figure 3: Example of primitive definitions and 
localisations. Two cuboids and one segment 
have been interactively defined using extracted 
corners. 

A vanishing point corresponds to  the projec- 
tion of the intersection of parallel lines a t  in- 
finity. A number of approaches have been pro- 
posed to  localise precisely this intersection, from 
the simple calculation of a weighted mean of 
pairwise intersections [2] to  more elaborate ap- 
proaches involving noise assumption and non- 
linear criteria [14] (see also [ll] for line intersec- 
tion estimation). However, all these approaches 
are based on criteria which take into account 
image distances. Though trying to  minimise the 
distance from the vanishing point to the image 
lines is geometrically correct, it appears to  be 
numerically unstable in the presence of noise. In 
contrast, our approach is based on a linear crite- 
rion which optimises a three dimensional direc- 
tion, the dual of a vanishing point in 3D space. 

Let 11, .., I, be a set of image lines correspond- 
ing to  parallel space lines and let v be the vanish- 
ing point defined by these lines. Then if we sup- 
pose that li and v are expressed in homogeneous 
form in the image coordinate system ( u , v , w ) ,  
we have the following relation: 

and the null vector of the 3 x n matrix [ll, ..,I,] 
gives a solution 3 for the vanishing point 
position. However, the minimised criterion 
does not necessarily have a physical meaning. 

By choosing an appropriate normalisation for 
(Il, ..,I,), the solution 3 can minimise the sum 
of the Euclidean distances from 3 to  [I1, .., I,]. 
As said before, this solution will not be com- 
pletely satisfactory in the presence of noise due 
to poor conditioning of the matrix [I1, .., I,]. 

Figure 4: Vanishing point determination. The 
idea is to  find the viewing direction V of the 
vanishing point u. This direction should belong 
to  all the planes P,. 

Now suppose that the intrinsic parameters of 
the camera are known. Then image lines and 
points can be expressed using nomalased im- 
age coordinates, that is to  say in the coordinate 
system (x, y) associated with the camera retinal 
plane (see figure 4). Let (L1, .., L,) and V be 
the homogeneous representations of (11, .., l,), u 
in the retinal plane. Since V belongs to all the 
image lines, we still have the relation: 

However, this relation has also an interpretation 
in the three dimensional coordinate system 
( x ,  y,z) associated with the camera (see figure 
4). Indeed, L, is a vector orthogonal to  the 
plane Pi spanned by the camera projection 
centre 0 and the image line l i ,  and V is a 
three dimensional vector. This gives a physical 
meaning to  the null vector of [L1, .., LnIT 
which is the space direction closest to  all planes 



(PI ,  . . ,  Pn). which gives a linear constraint on the parameters 
of c - ~ c - ~ .  It is easy to  show both algebraically 

Finally, we compute the space direction V as and geometrically that the following degenerate 
the null vector of the matrix [L1, .., L,IT, where cases exist: 
lLil = 1. This is done using a singular value 
decomposition of [L1, .., L , ] ~  -[18]. ~ x ~ e r i m e n t s  

1. if both directions Vi, 5 are parallel to the show that estimating a space direction is more 
image plane then their projections give in- robust to noise perturbations than estimating an 
formation on the angle 8 between image 

image point. We use this method in the calibra- 
plane axes u and v only1. tion routine described in the next section. 

In the case where the camera's intrinsic pa- 
rameters are not known, an intermediate solu- 2. if one of the directions &, 5 is orthogonal 
tion consists of using (4) with prenormalized im- to the image plane, then their projections 
age point coordinates [9] in order to  improve the determin uo and vo but do not constrain 
condition number of the matrix [11, .., l,]. the other parameters. 

6 Camera Calibration The faces of a cuboid define three orthogo- 
nal space directions, thus its projection leads to 

Having found the vanishing points we now show three constraints on the intrinsic parameters al- 

how they are used to  derive constraints on the lowing the computation of three of them. As 

intrinsic parameters and the latter estimated in noticed before, degenerate cases exist. In par- 

practice. ticular, information on the parameters a,  and 
a,  can not be derived from a cuboid which has 

6.1 Constraints 
a face parallel to  the image plance as shown in 
figure 5. 

A set of parallel line projections define a van- 
zshzng poznt v in the image plane which is the 
projection of the intersection parallel lines a t  in- 
finity. Let V be the space direction of these par- 
allel lines (a unit vector). The vanishing point 
v depends only on the direction of the line in 
space and not its position. The relationship be- 
tween vanishing point in homogeneous coordi- 
nates, and the corresponding space direction in 
the camera coordinate system is given by: 

v = c v  (6) 

Now suppose that we have different vanish- Figure 5: The degenerate case when the cuboid's 
ing points vi, vj corresponding to  distinct space projection does not provide any constraint on 
directions K 1 b  separated by a known angle 0. the intrinsic parameters a,  and a,. One of the 
Then: cuboid directions is perpendicular to the image 

plane. 
K ~ Q  = cos /3 

and from (6): 

vTC-T C-lvj - 
(7) 

6.2 Recovering intrinsic parame- - ------ - cos p 
IvTC-~I  IC-lvj( ters 

which provides a constraint on the matrix Now suppose that the skew parameter s is zero, 
c-~c-' and thus on the intrinsic parameters. then, for two vanishing points v,, vj associated 
A particularly interesting case is when the space with two orthogonal space directions, (8) be- 
directions are orthogonal [23]. Then: 

'8 is linked to the skew parameter by the relation 
v , T ~ - T ~ - l  v .  - 0 3 - (8) s = - cot e/av [51 



comes: 

and if (u,, vi, wi) are the homogeneous image co- 
ordinates of v, then: 

0 14 --7---------- --- - -  v - 
wiwj = 0. (10) 

0 1 2 -  

The expression above is linear in $, 5 and 
therefore leads to linear estimation of these pa- 0 1 -  

rameters if (uo, vo) are known. Degenerate cases o o 8 -  

appears when space directions associated with 
t 

vanishing points belong to the image plane. - z 0 0 6 -  

A cuboid defines three orthogonal directions, d 

thus its projection allows, in general, the com- 
putation of three of the intrinsic parameters. In 
our current implementation, we determine the 
scale parameters from orthogonal directions us- o 10 20 30 40 50 EO 70 80 90 

ing this method and under the assumption that dlstance error In pr~nc~pal polnt (p~xels) 

the princzpal point, is known (assumed to  be in 
the image centre). The vanishing points can, of Figure 6: The 512 x 512 test image and the graph 
course, be used to find the principal point [2] of the relative error in the estimation of a, and 
but the following method was found to  be more as a function of the error in the principal 
reliable. point position. 

Algorithm Evaluation 

The global procedure to evaluate the scale pa- We have tested this algorithm on synthetic data 
rameters is as follows: in order to evaluate the sensitivity of the esti- 

mated parameters t o  errors in the assumed po- 
1. Extract lines { l i )  of image primitives sition of the principal point (uo,vo). Figurk 6 

(cuboid and segment projections). shows an example test image. Different images - - 

were generated with principal points at  differ- 
2. Set ( ~ 0 ,  v0) to the image centre ent distances from the assumed image centre 

Set (a,, a,) initially to (1,l).  (256,256). The graph of figure 6 shows relative 
errors on the estimation of a, and a,. The max- 3. Estimate the positions of vanishing points 
imum relative error is of 12.5% when the prin- using intrinsic parameters and {li) as ex- 
cipal point is 85 pixels from the image centre. plained in section 5. 
Large errors in the principal point can therefore 

4. Estimate scale parameters (a,, a,) using be tolerated. Note also the difference between 

(10)- 
relative errors on a, and a,. This is due to 
the fact that the overall error on these parame- 

5. Iterate steps 3 and 4 until the estimated ters is divided according to the relative proxim- 

values for the scale parameters converge. ity of vanishing points to one or the other image 
axes (i.e. according to the orientation of the 
cuboid's space directions in the camera coordi- 



nate frame). which gives a linear constraint on the translation 
parameters. Let yi be the unit vector orthogonal 
to the epipolar plane associated with matched 

7 Projection Matrices point (xi,  xi):  

In the previous sections we have explained how 
(RC;'~;) A (C;'X;) to estimate intrinsic parameters using the van- Y; = 

ishing points. Once the intrinsic parameters are II(~cyl~f A (c,'xb)ll 

known, it is possible to estimate the relative po- and let be the matrix defined by: 
sition and orientation of the cameras, that is the 
rigid motion between views. This is used to com- 
pute consistent projection matrices for all views. 

Two different approaches can be used. The 
conventional approach is to use many pairs of 
matched points to estimate a fundamental ma- 
trix and then to decompose this matrix into a ro- 
tation and translation once the intrinsic param- 
eters are known [15, 91. Note that this method 
can not be used if the points lie on a cube - a 
critical surface [15]. 

An alternative method presented below is to 
use the vanishing points directly to estimate the 
rotation (since these are independent of camera 
translation) and then the translation from pairs 
of corresponding points using the epipolar con- 
straint. 

Rotation 

Let y and v2 be two vanishing points in image 
1 and 2 respectively, corresponding to the same 
space direction. Let Vl = ~ , ~ v l / l l c , ~ v ~ l l  and 
V2 = c ; ~ w ~ / I J c ; ~ Y ~ ( ~  be the 3D unit vectors 
representing this space direction in the camera 
coordinate frames 1 and 2 respectively. Since 
vanishing points correspond to a space direc- 
tion, they do not change their coordinates under 
viewer translation [2] but only by rotation of the 
viewpoint. F'rom this observation, we derive: 

and for n vanishing points: 

for n pairs of matched points. The eigenvector 
of the matrix ITT corresponding to the smallest 
eigenvalue gives a solution for the direction of 
translation - the direction which is closest to 
all the epipolar plane in the least-squares sense. 
The translation is estimated up to a scalar and 
the ambiguity on its sign is resolved during the 
reconstruction stage. 

8 3D reconstruction 

From the previous step, we have computed mo- 
tions between the different views, up to scale fac- 
tors. These motions combined with the intrin- 
sic parameters allow us to compute projection 
matrices for the different views involved. From 
these projection matrices, we can determine the 
epipolar geometry to help find more point cor- 
respondences and then the 3D point positions. 
These points are then used in association with 
an image point triangulation to obtain 3D struc- 
ture. This structure is rendered afterwards using 
a texture mapping procedure and the final model 
is stored in standard VRML format. In this sec- 
tion, we summarise the different steps involve to 
produce such a model. 

8.1 Reconstruction 

(v,', .., V;) = R ( v ~ ,  .., Vln). Let PI and P2 be the projection matrices for 
view 1 and 2 respectively. If we now take the 

The rotation matrix can be estimated from at  coordinate system of the first camera as the 3D 
least three vanishing points in both images by space coordinate system then: 
SVD decomposition [ll]. 

PI = C 1 [ I  0 1  (11) 
Translation P2 = C 2 [ R  T ]  (12) 

Let (xl,  x2) be the projections of a space point 
X in the two images. By the epipolar constraints 
the vectors RC;'X~, cz1x2  and the direction of 
translation between the two views, T, are copla- 
nar. Thus: 

where R and T now represent the rigid motion 
between view 1 to view 2. There is an ambigu- 
ity in the sign of T. To solve this ambiguity, 
3D points must be reconstructed and the sign 
of the translation is chosen to make sure that 

[ ( R C F ~ X I )  A (C,'x2)] . T = 0, the depths are not negative. The estimation of 
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the 3D coordinates of a point X is straightfor- These results are extremely promising in scene 
ward and can be obtained by the least-squares modelling applications. 
solution from at  least two image points. 

Since no metric information about the scene 
are available, reconstruction is performed up to 10 Con~lll~ions 
a scale factor. 

8.2 Triangulation and texture 
mapping 

The projection matrices are used to reconstruct 
points individually. New primitives can be 
added to  the original set of primitives, either au- 
tomatically [l] or interactively. To compute a 3D 
structure, image points are then triangulated in 
one view. In order to preserve the information 
given by primitives segments, the triangulation 
performed is a constrained triangulation. More 
precisely, it is a constrained Delaunay triangu- 
lation 151 which preserve edges. The 2D trian- 
gulation leads to  triangular 3D structure that 
represent the scene. 

To render the reconstructed structure, we use 
a texture mapping algorithm in which a texture 
map is constructed for each triangular patch in 
the 3D model. Each element in the map is ob- 
tained by projecting the corresponding triangle 
point onto the image plane and by determining 
the intensity value by bilinear interpolation. 

9 Experimental results 

Experiments on synthetic and real data have 
been conducted. Figures 7 - 9 show some pre- 
liminary results for real images of the Downing 
College library in the University of Cambridge. 
These images were obtained by an Olympus digi- 
tal camera. The calibration for these images was 
performed using two cuboids. Figure 8 shows 
these cuboids and the corresponding directions 
which determine the vanishing points. The ge- 

The techniques presented have been success- 
fully used to  interactively build models of archi- 
tectural scenes from pairs of uncalibrated pho- 
tographs. The simple but powerful constraints 
of parallelism and orthogonality in architectural 
scenes can be used to recover very precise pro- 
jection matrices with only a few point and line 
correspondences. 

We plan to use these initial estimates of the 
projection matrices (and hence the epipolar ge- 
ometry) to automatically match additional fea- 
tures and then to optimise the parameters of the 
camera motion and 3D structure by standard 
ray-bundle adjustment. Preliminary results are 
extremely promising. 
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Figure 7: The original images from uncalibrated cameras. 

Figure 8: The two cuboids used for the calibration and the lines used to estimate the vanishing 
points. 

Figure 9: The 3D textured model. 
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