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Abstract

The aim in this paper is to track articulatedhandmotion from monocular
video. Bayesianfiltering is implemented by usinga tree-basedrepresenta-
tion of the posteriordistribution. Eachtreenode correspondsto a partition
of the statespacewith piecewise constantdensity. In a hierarchical search
regionswith low probability masscanberapidlydiscarded,while themodes
of theposteriorcanbeapproximatedto highprecision. Largesetsof training
dataarecapturedusinga dataglove,andtwo techniquesfor constructing the
treearedescribed: Onemethodis to clusterthecollecteddatapoints using
a hierarchicalclusteringalgorithm, andusetheclustercentresasnodes.Al-
ternatively, a lowerdimensionaleigenspacecanbepartitionedusingagrid at
multiple resolutions,andeachpartition centrecorrespondsto a nodein the
tree.Theeffectivenessof thesetechniquesis demonstratedby usingthemfor
tracking 3D articulated handmotionin front of a clutteredbackground.

1 Intr oduction

Tracking articulatedhand motion is a challenging problem,particularly if only a single
view is to beused.This problemis mostlyapproachedusingdifferentialtrackingmeth-
ods,wheretheobjectposein thecurrent frame is estimatedfrom thestatein theprevious
frame.Becausethereis muchambiguity in tracking articulatedobjects,it is importantto
maintainmultiple hypotheses[8, 17]. Tracking articulation is oftendone in the context
of human body tracking for which thereexists a large amount of literature.Somebody
trackersmodel the dynamics explicitly, for example usinga switching linear dynamic
system[11]. It is difficult to learnsucha modelfor handmotion,becausethereareno
obviousmotionpatternssuchaswalkingor running.

Currently, mosttrackers useparticlefiltering [7], in which it is essentialto beableto
samplefrom the prior to generatenew hypotheses.With the increasein computational
power onemayalsoconsiderhandlingambiguoussituationsby treatingtracking asob-
ject detection in eachframe. Thusif the target is lost in oneframe,this doesnot affect
the subsequent frame. Furthermoretemplatebasedmethods have yieldedgood results
for locatingdeformableobjectsin a scenewith no prior knowledge,e.g. for hands or
pedestrians [1, 3]. Thesemethods aremadeefficient by theuseof distancetransformsto
computethechamfer or Hausdorff distancebetweentemplateandimage[2, 6]. Multiple



templatescanbedealtwith efficiently by building a treeof templates[3, 10]. However,
exhaustivesearchfor theobjectis computationallyexpensiveandresultsin jerky motion.
The questionis therefore how to include dynamic information. Within this papertech-
niquesareproposedto generatetemplateswhicharederivedfrom learnedobjectintrinsic
motion: Datasetsarecapturedusingadataglove, anda three-dimensionalhandmodel is
usedto generatetemplatesby projecting it into theimage.

Thenext sectiongivesa shortreview of Bayesianfiltering andmotivatestheuseof a
tree-basedfiltering algorithm, introducedin [13]. In section3 it is shown how a motion
prior basedon handkinematics canbeusedwithin this framework. Thelikelihoodfunc-
tion is derivedin section4, andsection5 shows tracking resultson a videosequenceof
articulatedhandmotion.

2 Tree-BasedFiltering

This sectionbriefly reviews the technique of tree-basedfiltering, which is described in
moredetailin [13]. Thetrackingproblemis formulatedwithin aBayesianfiltering frame-
work: Define,at time t, the stateparametervector asθ t , andthe data(observations)as
Dt , with D1:t � 1, beingthesetof datafrom time1 to t � 1; andthedataD t areconditionally
independentat eachtime stepgiventhe θ t . In our specificapplicationθ t is thestateof
thehand (setof joint angles)andDt is the imageat time t or a setof featuresextracted
from that image. Thusat time t theposteriordistribution of thestatevectoris givenby
thefollowing recursive relation

p
�
θ t �D1:t ��� p

�
Dt � θ t � p � θ t �D1:t � 1 �

p
�
Dt �D1:t � 1 � � (1)

wheretheprior from theprevioustimestep,p
�
θ t �D1:t � 1 � , is obtained by

p
�
θ t �D1:t � 1 �	� 


p
�
θ t � θ t � 1 � p

�
θ t � 1 �D1:t � 1 � dθ t � 1 � (2)

with theinitial distribution p
�
θ 0 �D0 � assumedknown. Theevaluation of equation(2) is

alsoknown asprediction step,andequation (1) is themeasurementupdatestep.However,
theseequationsareintractable for all but certainsimpledistributions andsoapproxima-
tion methodshave to beused.MonteCarlomethodssuchasparticlefiltering [5, 7] rep-
resentoneway of evaluatingtheterms.Our suggestedapproach,which hasshown to be
effective, is basedon hierarchical partitioning of thestatespace.A treeis constructedin
which eachnode representsa partitionof thestatespace.Figure1(a)shows a schematic
example of sucha tree. Theposteriordistribution is encodedusinga piecewiseconstant
distribution over theleavesof thetree.This distribution will bemostlyzerofor many of
theleaves.Thelikelihoodis evaluatedby usingthecentreof eachpartition, i.e. thehand
model in a particularconfiguration,to generatea templatewhich canbecomparedto the
image. Kinematicinformation is incorporatedby learningstatetransitiondistributions.
Thesearchis madeefficient by only evaluating sub-treeswith high posterior probability,
but carehasto betakenwhensettingthethresholdsfor thesedecisionssoasto notdiscard
goodhypothesestooearly.
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Figure1: Tree-basedestimation of the posterior density (schematic). (a) Associated
with the nodesat each level is a partition of the statespace(here the coefficient of the
first principal componentof joint angles,seesection3). Theposteriorfor each node is
evaluatedusingthecentre of each partition, depictedby a handin a certainconfigura-
tion. Sub-treesof nodeswith low posteriorare not further evaluated. (b) Corresponding
posteriordensity(continuous)andthepiecewiseconstantapproximationusingtree-based
estimation.Themodesof thedistributionareapproximatedwith higher precisionat each
level.

Comparison to Tree-BasedDetection A common way to build a tree of templates
is to clustertemplatesusinga similarity measure[3, 10]. The ideais to group similar
templatesandrepresent themwith a singleprototypetemplatetogetherwith anestimate
of thevarianceof theerrorwithin thecluster, whichis usedtodefineamatchingthreshold.
Theprototypeis first comparedto theimage;only if theerror is below thethresholdare
thetemplates within theclustercomparedto theimage.Thisclusteringis doneatvarious
levels,resultingin a hierarchy, with the templatesat the leaf level coveringthespaceof
all possibletemplates.However, it is not straightforward to incorporatea motionprior
for the templates. For example, consider the casein figure 2, wheretwo handposes
which arefar apartin parameterspaceyield two similar templates. Thesetemplatesmay
beclusteredtogether, eventhough they have different motionpriors. Whenbuilding the
treein parameterspace,however, thetwo configurationsarevery likely to bein different
sub-trees,allowing for differentpriors.

In order to usethetree-basedfilter, somequestionsneedto beaddressed:How should
thestatespacebepartitioned?How doweobtainstatetransitionprobabilitiesp

�
θ t � θ t � 1 � ?

Finally, what is a suitablelikelihood function p
�
D t � θ t � ? The answersto the first two

questions will be basedon a model of the handkinematics,describedin the following
section.
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Figure2: Posesof the hand with large parameter distanceyet similar shape. Two
posesof anopenhand, which havelarge distancein therotationspace(180 degrees)but
projectto similar shapes. Clusteringbasedonshapesimilarity maygroupthemtogether,
whereaspartitioningof thestatespacewill not,allowingdifferentmotionpriors.

3 Modelling Hand Kinematics

Model-basedtrackerscommonly usea 3D geometric model with an underlying biome-
chanicaldeformationmodel to represent thehand[1, 12]. Eachfingercanbemodelled as
akinematicchainwith 4 degreesof freedom(DOF), andthethumb with 5 DOF. Thusar-
ticulatedhand motion lies in a21dimensionaljoint anglespace.Givena3D handmodel,
inversekinematicsmaybeusedto calculatethe joint angles[16], however this problem
is ill-posedwhenusinga singleview andit requiresexact featurelocalization, which is
particularly difficult in thecaseof self-occlusion. Handmotion is highly constrainedas
eachjoint canonly movewithin certainlimits. Furthermorethemotionof different joints
is correlated, for example, mostpeoplefind it difficult to bend thelittle fingerwhile keep-
ing thering fingerfully extendedat thesametime. Thushandarticulationis expectedto
lie in a compactregion within the21dimensional anglespace.

Previous Work In [17] Wu et al. usePCA to project the 20 dimensional joint angle
measurementsinto a 7D subspace,capturing over 95 percent of thevariation in thedata
set.ZhouandHuang[18] projectthedataintoa6Dsubspace,capturingover 99percent of
variationof a smallertrainingset. In bothcases,valid fingerconfigurationdefinea com-
pactregion within thesubspace, andthegoalis to samplefrom thisregion. Oneapproach,
adoptedby Wu et al., is to define28 basisconfigurations in thesubspace,corresponding
to eachfingerbeing eitherfully extendedor fully bent(not all 25 � 32 combinationsof
fingersextended/bentareused).It is claimedthatnatural hand articulationlies largelyon
linear1D manifolds spannedby any two suchbasisconfigurations, andsamplingis im-
plementedasarandom walk alongthese1D manifolds.Another approach[18] is to train
a linear dynamic systemon the region while decoupling the dynamics for eachfinger.
In this caseonemotionsamplecorrespondsto five random walksalong2D curves,each
random walk correspondingto themotionof oneparticularfinger. In [13] thenonlinear
manifold of valid motions is approximatedwith a piecewiselinearfunction. This is done
separatelyfor eachfinger, thusthecorrelation betweenmovementsof different fingersis
notcaptured.

In a numberof experimentswith 15 setsof joint angles(sizesof datasets:3,000to
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Figure3: Paths in the eigenspace. (a) Thefigure showsa trajectoryof projectedhand
state(joint angle) vectors ontothefirst threeprincipal components.(b) Thehandconfig-
urations corresponding to thefour endpoints in (a).

264,000)captured from threedifferentsubjectscarrying out a number of different hand
gestures,we found in all casesthat 95 percent of the variance wascapturedby the first
eightprincipal components,in 10 caseswithin thefirst seven, which confirms theresults
reportedin [17]. However, exceptfor very controlled opening andclosingof fingers,we
did not find theone-dimensional linearmanifold structurereportedin [17]. For example,
figure3 showstrajectories(projectedontothefirst threeeigenvectors)betweenasubsetof
basisconfigurations usedin [17]. Thehandmoved betweenthefour basisconfigurations
in random orderfor theduration of oneminute.It canbeseenthatevenin thiscontrolled
experimentthetrajectoriesbetweenthefour configurationsdonotseemto beadequately
representedby 1D manifolds.

TreeBuilding by Clustering In orderto build thetreedescribed in section2, thestate
spaceneedsto be partitionedat multiple resolutions. Oneway to do this is to cluster
the datausinga hierarchical k-means algorithm, using the L2 distancemeasure. This
algorithm is also known as the generalisedLloyd algorithm in the vectorquantisation
literature[4], wherethegoal is to find a number of prototypevectors which areusedto
encodevectorswith minimal distortion. Notethatif thedistancemeasureis anappearance
baseddistance,suchaschamfer distance,onewould obtaina detectiontreeasdescribed
in section2. Theclustercentresobtainedin eachlevel of thehierarchyareusedasnodes
in onelevel of thetree.A partitionof thespaceis givenby theVoronoi diagramdefined
by thesenodes,seefigure4a.

TreeBuilding by Partitioning the Eigenspace Another way to subdivide the space
is to usea regular grid. Defining partition boundariesin the original 21 dimensional
spaceis difficult though, becausethe number of partitions increasesexponentiallywith
the number of divisions alongeachaxis. Therefore the datacanfirst be projectedonto
thefirst k principal components(k � 21), andthepartitioning is donein thetransformed
parameter space. The centresof thesehyper-cubes are thenusedas nodes in the tree
on onelevel, whereonly partitions needto beconsideredwhich contain datapoints, see
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Figure4: Partitio ning the StateSpace.Thisfigure illustratestwo methods of partition-
ing thestatespace:(a) byclusteringthedatapoints in theoriginal space, and(b) byfirst
projectingthedatapointsontothefirst k principal componentsandthenusinga regular
grid to definea partition in thetransformedspace. Thefigure only showsonelevel of a
hierarchical partition, corresponding to onelevel in thetree.

figure4b. Multiple resolutions areobtainedby subdividing eachpartition.
Given the partition of the space,the statetransitiondistributions p

�
θ t � θ t � 1 � canbe

modelled asa Markov process. We model it asa first order process,andcompute the
transitionprobabilitiesby histogramming transitions in the training set. Given a large
amount of training data,higherordermodelscanbelearned.

Nonlinear DimensionalityReduction In generalthetrajectoriesin eigenspacearenon-
linear. Figure 5 shows an example of slightly more complex finger articulation, the
trajectoriesin configurationspacewhich aregenerated by spelling“BMVC” in Amer-
icansignlanguage. Thus techniquesfor nonlineardimensionality reduction, suchasthe
Isomap[14] algorithm, mayturnout to bemoresuitableto analysethedata.TheIsomap
algorithm is an extensionof multidimensionalscaling(MDS), In MDS the objective is
to maintainpairwisedistancesbetweendatapointswhile reducing the dimensionality.
Isomapusesapproximate geodesic distances(trajectories on the manifold), computed
from a locally connectedgraph, insteadof Euclideandistancesbetweendatapoints. We
haveappliedtheIsomap algorithm to anumberof datasets,but experimentsshow thatthe
resultsarevery dependenton choosingtheright local distancesto computethepairwise
distances.This is difficult, becausesomepartsof thejoint anglespacearemore densely
sampledthanothers.

4 Formulating the Lik elihood

Thelikelihoodfunction p
�
Dt � θ t � relatestheobservationsDt to theunknown stateθ t . For

handtracking, findinggood featuresis challenging,sincetherearefew featureswhichcan
bedetectedandtrackedreliably. Colourvaluesandedgescontourshavebeenusedin the
past[1, 8, 17]. Thusthedatais takento becomposedof two setsof observations,those
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Figure5: Pathsin the configuration spacefound by PCA arenonlinear. (a) Thefigure
showsthetrajectoryof projectedstatevectors ontothefirst threeprincipal components,
(b) thecorrespondingmotionis theAmericansignlanguagespellingof “BMVC”.

from edgedataDedge
t andfrom colour dataDcol

t . Thelog likelihoodfunction usedis

logp
�
Dt � θ t �	� logp

�
Dedge

t � θ t � k λ logp
�
Dcol

t � θ t �ml (3)

whereλ is a weighting parameter. The term for edgecontours p
�
D edge

t � θ t � is based
on the chamfer distancefunction [2]. Given the setof projectedmodelcontour pointsn � o

ui p n
i q 1 andthesetof Canny edgepoints r � o

v j p m
j q 1, aquadraticchamferdistance

function is given by

d2
cham

� n � r ��� 1
n

n

∑
i q 1

d2 � i � r � � (4)

whered
�
i � r � � max

�
minvj sut � � ui � v j � � � τ � is thethresholdeddistancebetweenthepoint,

ui v n
, andits closestpoint in r . Usinga threshold valueτ makesthematchingmore

robust to outliersandmissingedges.Thechamfer distancebetweentwo shapescanbe
computedefficiently usinga distancetransform, wherethetemplateedgepoints arecor-
relatedwith thedistancetransform of theimageedgemap.Toyama andBlake [15] show
how the quadratic chamfer function canbe turnedinto a likelihood which is approxi-
matelyGaussian.Edgeorientation is includedby computing thedistanceonly for edges
with similar orientation, in order to make the distancefunction morerobust [10]. We
alsoexploit the fact thatpartof anedgenormal on the interior of thecontour shouldbe
skin-coloured,andonly take thoseedgesinto account [8].

In constructing thecolour likelihood function p
�
D col

t � θ t � , we seekto explain all the
imagepixel datagiven theproposedstate.Givena state,thepixels in the image w are
partitioned into a setof objectpixels x , anda setof backgroundpixels y . Assuming
pixel-wiseindependence,thelikelihoodcanbefactoredas

p
�
Dcol

t � θ t � � ∏
o s{z

p
�
It
�
o� � θ t � ∏

b s}|
p
�
It
�
b� � θ t � � (5)

whereIt
�
k� is the intensitynormalisedrg-colourvector at pixel locationk at time t. The

objectcolour distribution is modeledasa Gaussiandistribution in thenormalisedcolour



space.Theobjectcolor distribution is modeledasa Gaussiandistribution in thenormal-
izedcolorspace,for backgroundpixels a uniformdistribution is assumed.For efficiency,
we evaluateonly theedge likelihood termwhile traversingthe tree,andincorporatethe
colour likelihood only at theleaf level.

5 Results

We demonstratethe effectivenessof the technique by tracking finger articulation in a
clutteredsceneusinga singlecamera. In thetestsequencethesubjectalternatesbetween
four differentgestures(seefigure6). For learningthetransitiondistributions,adatasetof
size7200 wascaptured while performingthefour gesturesa numberof timesin random
order. Thetwo methods describedin section3 wereusedto build thetreeoff-line.

In thefirst experimentthetreeis built by hierarchical k-meansclusteringof thewhole
training set. The treehasa depthof three,wherethe first level contains 300 templates
together with apartitioning of thetranslationspaceata20 ~ 20pixel resolution. Thesec-
ondandthird level eachcontain7200templates(i.e. thewhole dataset)anda translation
searchat5 ~ 5 and2 ~ 2 pixel resolution, respectively.

In thesecondexperimentthetreeisbuilt bypartitioningalowerdimensionaleigenspace.
Applying PCA to the datasetshows that morethan96 percent of the variance is cap-
turedwithin the first four principal components,thuswe partition the four dimensional
eigenspace. In this experiment,thefirst level of thetreecontains360templates,thesec-
ondandthird level contain9163templates.Thegrid resolutions in translationspaceare
thesameasin thefirst experiment.

In bothcasestransitionprobabilitesbetweenthestatesarelearned by histogramming
the data. After construction of the treeoff-line, it is usedto estimatethe hand configu-
rationandtranslationat eachframe: Using a breadthfirst searchof the tree,the poste-
rior (equation 1) is approximatedat eachlevel by regionsof piecewiseconstantdensity.
Higherlevelsof thetreedonotyield accurateapproximations. However, in practicelarge
regionsof theparameterspacehave a posterior closeto zero,andhypotheses,for which
the estimatedposterioris below a certainthreshold, arediscarded at higherlevels. The
leaf level approximatestheposteriorof thecurrentstate,andusingthelearned statetran-
sitions is usedasa prior (equation 2) for the next frame. Note that the handmodel is
initialisedautomaticallyby searchingthecompletetreein thefirst frameof thesequence.

Thetracking resultsonthetestsequencearequalitatively thesamefor bothtreebuild-
ing methods. In bothcasesthe typical number of likelihood evaluations (corresponding
to nodesexplored)is below 600,takingapproximatelytwo seconds perframeona1GHz
PentiumIV computer. Themethod of constructing thetreeby partitioning theeigenspace
hasanumberof advantages:Firstly, aparametric representationis obtained,whichallows
for interpolationbetweenhandstates,andfurtheroptimisationoncetheleaflevelhasbeen
reached. Secondly, for largedatasetsthecomputationalcostof PCAis significantlylower
thanthecostof clustering.

6 Summary and Conclusion

Within this papera tree-basedfiltering algorithm is usedfor trackingarticulatedhand
motion. Tree-baseddetectionhasbeenprovento beefficient,however, it is not straight-



Figure6: Tracking articulat ed hand motion in fr ont of a cluttered background. In
this sequence a number of different finger motionsare tracked. Theimagesare shown
with projectedcontours superimposed(top) andcorresponding 3D avatar models(bot-
tom),which are estimatedusingour tree-basedfilter. Thenodes in thetreeare foundby
hierarchical clusteringof trainingdatain theparameterspace, anddynamicinformation
is encodedastransitionprobabilities betweentheclusters.

forward to include prior informationwithin a treebasedon appearance similarity. This
motivatestheideaof hierarchically partitioning thestatespaceto defineatree.Thispaper
presentstwo methodsto build suchatreefrom trainingdata.Onewayto dothis is to hier-
archicallyclusterthedata,anotherway is to partitiona lowerdimensional eigenspaceus-
ing a regulargrid. Thestatetransitiondistributions canthenbemodelledusingaMarkov
processbetweenthetreenodes.

In preliminary experimentswe have testedthemethodon a videosequenceof articu-
latedhandmotioninvolving background clutter. Thetrackerperformswell in thesechal-
lengingcircumstances.In contrasttoprevioushandtrackingmethodstrackerinitialisation
is handledautomatically. Finally weobservethatwithin this framework theestimationof
global poseandfingerarticulationcanbecombined[13]. Theglobalposespacecanbe
partitionedhierarchically, asdone in this paperfor partitioning theeigenspace.
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