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Abstract

The aim in this pager is to track articulatedhand motion from monccular
videa Bayesianfiltering is implemerted by usinga tree-tasedrepresenta-
tion of the posteriordistribution. Eachtreenode correspadsto a partition
of the statespacewith piecevise constantdensity In a hierarclical search
regionswith low probability masscanberapidly discareéd, while themodes
of theposteriorcanbe appioximatedto high precision Large setsof training
dataarecapturedisinga dataglove, andtwo techniqiesfor constrieting the
treearedescribed Onemethodis to clusterthe collecteddatapoints using
a hierachical clusteringalgorithm, andusethe clustercentresasnodes.Al-
ternatizely, alower dimersionaleigenspee canbepartitioredusingagrid at
multiple resoldions, andeachpartition centrecorrespadsto a hodein the
tree. Theeffedivenesof thesetechniqesis demorstratedoy usingthemfor
tracking 3D articulatel handmotionin front of a clutteredbackgound

1 Intr oduction

Trackirg articulatedhard motionis a challengng problem, particdarly if only a single
view is to beused.This problemis mostly apprachedusingdifferentialtrackingmeth-
ods,wherethe objectposein thecurrert frame is estimatedrom the statein the previous
frame.Becauséahereis muchambiguty in tracking articulatedobjects,it is importantto
maintainmultiple hypothese$8, 17]. Tracking articulaion is oftendore in the cortext
of human body trackirg for which thereexists a large amoun of literature.Somebody
trackers modé the dynanics explicitly, for exanple using a switching linear dynamic
system[11]. It is difficult to learnsucha modelfor handmotion, becausahereareno
ohbviousmotionpatternssuchaswalking or runring.

Currerily, mosttrackers useparticlefiltering [7], in whichit is essentiato beableto
samplefrom the prior to geneate new hypotheses.With the increasen computational
power one may also corsider handlingambigioussituationsby treatingtrackirg asob-
ject detectim in eachframe. Thusif the target is lost in oneframe,this doesnot affect
the subsegant frame. Furthemore templatebasedmethod have yielded goad results
for locating defamableobjectsin a scenewith no prior knowledge,e.g. for hards or
pedestrian[1, 3]. Thesemethod aremadeefficient by the useof distanceransfomsto
computethe chanfer or Hausdoff distancebetweertemplateandimage[2, 6]. Multiple



templatescanbe dealtwith efficiently by building a treeof template43, 10]. However,
exhaustive searcHor the objectis compuationally expensve andresultsin jerky motion.
The questionis therebre how to include dynamnic information. Within this papertech-
nigues arepropacsedto gereratetemplatesvhich arederivedfrom learnedobjectintrinsic
motion Datasetsarecaptuedusingadataglove, andathree-dinensionahandmockl is
usedto generateemplatesdy projeding it into theimage.

Thenext sectiongivesa shortreview of Bayesiarfiltering andmotivatesthe useof a
tree-baedfiltering algorithm introducedin [13]. In section3 it is shavn how a motion
prior basedn handkinemaics canbe usedwithin this framework. Thelik elihoodfunc-
tion is derivedin section4, andsection5 shavs trackirg resultson a video sequene of
articulatechandmotion.

2 Tree-Based-iltering

This sectionbriefly reviews the techniaie of tree-basediltering, which is describd in

moredetailin [13]. Thetrackingprodemis formulatedwithin a Bayesiarfiltering frame-

work: Define,attimet, the stateparanetervecta as 8;, andthe data(obsenations)as
Dy, with D, _,, beingthesetof datafrom time 1 tot—1; andthedataD arecorditionally
indeendentat eachtime stepgiventhe 6,. In our specificapplicationd, is the stateof
the hard (setof joint angles)andD; is theimageattimet or a setof featuesextracted
from thatimage. Thusattime t the posteriordistribution of the statevectoris given by
thefollowing recusive relation

(Dt|6¢)p(6¢/D14_1)

p
p(6¢|Dy;) = , (1)
( tl 1.t) p(Dt|D13t_1)
wherethe prior from the previoustime step,p(8¢|D,,_, ), is obtaine by
P(6t|D1y_1) = / P(6¢16;_1) P(6;_4|D14_1)d6;_,, (2)

with theinitial distribution p(6,|D,) assumednown. The evaludion of equation(2) is
alsoknown aspredction step,andequatio (1) is themeasuremntupdatestep.However,
theseequatims areintractalbe for all but certainsimpledistributions andso apprxima-
tion methals have to be used.Monte Carlo methals suchas particlefiltering [5, 7] rep-
resentoneway of evaluatingthe terms. Our suggestedappoach,which hasshovn to be
effective, is basedon hierardical partitionirg of the statespace A treeis constrictedin
which eachnocdk representsa partition of the statespace Figure1(a) shovs a schematic
exampe of suchatree. The posteriordistribution is encoad usinga piecavise constant
distribution over theleavesof thetree. This distribution will be mostly zerofor mary of
theleaves. Thelikelihoodis evaluatedby usingthe centreof eachpartition i.e. thehhand
modé in a particularconfiguration,to generate templatewhich canbe comparedto the
image. Kinematicinformationis incorporatedby learningstatetransitiondistributions.
Thesearchs madeefficient by only evaluatirg sub-tr@swith high posteri@ probability,
but carehasto betakenwhensettingthethreshdds for thesedecisionsoasto notdiscard
goodhypothesesoo early.
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Figurel: Tree-basedestimation of the posterior density (schematic). (a) Associated
with the nodes at eadh level is a partition of the statespace(hete the coeficient of the
first principa compamentof joint angles,seesection3). Theposteriorfor ead nock is
evaluaed usingthe cente of ead partition, depictedby a handin a certain configura-
tion. Subtreesof nodeswith low posteriorare not further evaluaed. (b) Correspondig
posteriordensity(continuous)andthepiecaviseconstanappoximationusingtree-based
estimation. Themodeof thedistribution are approximatedwith higher precisionat eac
level.

Comparison to Tree-BasedDetectin A comma way to build a tree of templats
is to clustertemplatesusinga similarity measurg3, 10]. Theideais to group similar
templatesandrepresenthemwith a singleprotaype templatetogethemwith anestimate
of thevariarceof theerrorwithin thecluster whichis usedo defineamatchingthreshdd.
The prototypeis first compredto theimage;only if theerroris belav thethresholdare
thetemplates within the clustercompaedto theimage.This clusteringis dore at various
levels, resultingin a hierarcly, with the templatesat the leaf level covering the spaceof
all possibletemplates.However, it is not straightfeward to incorporatea motion prior
for the templates. For examge, conside the casein figure 2, wheretwo handposes
which arefar apartin parametespaceyield two similar templats. Thesetemplatesnay
be clusteredogetter, eventhoud they have different motionpriors. Whenbuilding the
treein paraneterspacehowever, thetwo configuationsarevery likely to bein different
sub-tres, allowing for differentpriors.

In orderto usethetree-basefdilter, somequestionsieedto beaddessedHow should
thestatespacebepartitionel? How dowe obtainstatetransitionprobabilities p(8|6,_;)?
Finally, whatis a suitablelikelihoad function p(D;|6;)? The answersto the first two
questios will be basedon a mocel of the handkinematics,describedn the following
section.
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Figure 2: Posesof the hand with large parameter distanceyet similar shape Two
posesf anopenhard, which havelarge distancein therotation space(180 degrees)but
projectto similar shaps. Clusteringbasedon shapesimilarity maygroupthemtogether
wheleaspartitioning of the statespacewill not, allowing differentmotionpriors.

3 Modelling Hand Kinematics

Model-basedtrackerscommnonly usea 3D geometic model with anundetying biome-
chanicaldefomationmocel to represetithehand[1, 12]. Eachfingercanbemoddled as
akinematic chainwith 4 degrees of freecbm (D OF), andthethumb with 5 DOF. Thusar

ticulatedhard motion liesin a21 dimersionaljoint anglespace Givena 3D handmodel,
inversekinematicsmay be usedto calculatethe joint angleg[16], however this prodem
is ill-posedwhenusinga singleview andit requiresexactfeaturelocalization which is
particulaly difficult in the caseof self-occlusio. Handmotionis highly constraied as
eachjoint canonly move within certainlimits. Furthernorethe motionof differert joints
is correlatedfor exampe, mostpeoplefind it difficult to berd thelittle fingerwhile keep-
ing thering fingerfully extended atthe sametime. Thushandarticulationis expededto

lie in acompmctregion within the 21 dimensiomal anglespace.

Previous Work In [17] Wu etal. usePCA to projed the 20 dimensioml joint angle
measurerantsinto a 7D subspacegapturirg over 95 percenm of the vaiiation in the data
set.ZhouandHuang[18] prgectthedatainto a6D subspacezaptuing over 99 percen of
variationof a smallertrainingset. In bothcasesyalid finger configurationdefinea com-
pactregion within thesubspaceandthegoalis to samplgrom thisregion. Oneappoach,
adopted by Wu etal., is to define28 basiscorfiguratiors in the subspacegorrespondig
to eachfinger beirg eitherfully extencedor fully bent(notall 25 = 32 combinaions of
fingersextenced/bentareused).lt is claimedthatnatual hard articulationlies largely on
linear 1D manifdds spannedy ary two suchbasisconfiguratiors, andsamplingis im-
plemertedasarandan walk alongtheselD maniflds. Anothe appoach[18] is to train
a linear dynamic systemon the region while decoyling the dynanics for eachfinger
In this caseonemotionsamplecorrespadsto five randan walks along2D cunes,each
randam walk corresppndingto the motionof oneparticularfinger In [13] the nonlinear
manifdd of valid motiors is appraimatedwith a piecaviselinearfunction. Thisis done
separatelyor eachfinger, thusthe correlation betweemrmaovementof differert fingersis
notcaptued.

In a number of experimentswith 15 setsof joint angles(sizesof datasets: 3,000to
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Figure3: Pathsin the eigenspace (a) Thefigure showsa trajectoryof projectedhard
state(joint anglé vectos ontothefirstthreeprincipa compoents.(b) Thehandconfig
urations corresponghg to thefour endpoirtsin (a).

264000) captued from threedifferent subjectscarrying out a numker of different hand
gestureswe found in all caseshat 95 percen of the variarce was capturedoy the first
eightprincipal compments,in 10 caseswithin thefirst seven which confirms theresults
repotedin [17]. However, exceptfor very contrdled openirg andclosingof fingers,we

did notfind the one-dmensionalinearmanifdd structurerepotedin [17]. For examge,

figure3 shawvstrajectoies(prgectedontothefirst threeeigervectors)hetweerasubsebf

basiscorfiguratiors usedin [17]. Thehandmoved betweerthefour basisconfiguratiors

in randan orderfor the durdion of oneminute. It canbeseenthatevenin this contrdled

expeimentthetrajectoriesbetweerthefour configuationsdo not seemto beadeqately
represetedby 1D manifolds.

TreeBuilding by Clustering In orderto build thetreedescribd in section2, the state
spaceneedsto be partitioned at multiple resolutions. One way to do this is to cluster
the datausing a hierarclical k-mears algoiithm, usingthe L, distancemeasue. This
algorithm is also known asthe genealised Lloyd algorithm in the vector quartisation
literature[4], wherethe goalis to find a numter of pratotypevectos which areusedto

encoca vectaswith minimal distortion Notethatif thedistanceneasueis anappearace
basedlistance suchaschamer distancepnewould obtaina detectiontreeasdescrited

in section2. Theclustercentresobtainedn eachlevel of the hierachy areusedasnodes

in onelevel of thetree. A partitionof the spaces givenby the Vororoi diagamdefined
by thesenodesseefigure4a.

TreeBuilding by Partitioning the Eigenspace Another way to subdvide the space
is to usea regular grid. Defining partition boundariesin the original 21 dimersional
spaceis difficult thoudh, becausehe numker of partitiors increasesxponentiallywith
the numter of divisions alongeachaxis. Therefae the datacanfirst be projectedonto
thefirst k principal compaents(k < 21), andthe partitionirg is donein the transfamed
paraneter space. The centresof thesehyperculkes are thenusedasnodesin the tree
on onelevel, whereonly partitiors needto be consideed which contan datapoirts, see
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Figure4: Partitio ning the State Space.Thisfigure illustratestwo method of partition-
ing the statespace:(a) by clusteringthedatapoints in the original spaceand(b) by first
projectingthe datapointsontothefirstk principal compmentsandthenusinga regular
grid to definea partition in thetransformedspace Thefigure only showsonelevel of a
hierarchical partition, correspoulingto onelevelin thetree

figure4b. Multiple resolutiors areobtairedby subdviding eachpartition

Giventhe partition of the space the statetransitiondistributions p(68|6,_;) canbe
modedled asa Markov process. We modelit asa first order proess,and compue the
transition probabilities by histogranming transitiors in the training set. Given a large
amount of training data,higher ordermodelscanbelearned

Nonlinear Dimensionality Reduction In generathetrajectoriesn eigenspeearenort

linear Figure5 shavs an examge of slightly more comple finger articulatian, the
trajectoriesin configuration spacewhich are generged by spelling“BMVC” in Amer

icansignlanguag. Thus techniqesfor norinear dimensiomlity rediction, suchasthe

Isomap[14] algorithm, mayturn outto be moresuitableto analysethe data. Thelsomap
algorithm is an extensionof multidimensionalscaling(MDS), In MDS the objective is

to maintainpairwisedistancesbetweendatapoints while reducirg the dimersionality.

Isomapusesapprximate geodbsic distancedtrajectaies on the manifdd), compued

from alocally conrectedgraph insteadof Euclideandistancesetweerdatapoints. We

have appliedthelsoma algorithm to anumker of datasets but expeiimentsshav thatthe

resultsarevery depenénton choingtheright local distanceto compute the pairwise
distancesThis is difficult, becausesomepartsof the joint anglespacearemore densely
sampledhanothers.

4  Formulating the Lik elihood

Thelikelihood function p(D;|6;) relatesheobsenrationsD; to theunknown state6,. For
handtracking findinggoad featuress challengng, sincetherearefew featueswhichcan
bedetectechndtrackedreliably. Colourvaluesandedgescortourshave beenusedin the
past[1, 8, 17]. Thusthedatais takento be compsedof two setsof obsevations,those
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Figureb: Pathsin the configuration spacefound by PCA arenonlinear. (a) Thefigure
showsthetrajectoryof projectedstatevectos onto the first threeprincipal compomnts,
(b) thecorrespomling motionis the Americansignlanguage spellingof “BMVC”.

from edgedataD#%® andfrom colou dataD£®'. Thelog likelihoodfunction usedis
log p(D¢|6;) = log p(Df*|6;) + A log p(DF°'|6,). (3)

where A is a weighting paraméer. The term for edgecontous p(Dfdge|6t) is based
on the chamer distancefunction [2]. Giventhe setof projectedmodel contou poirts
% ={u;}_, andthesetof Canry edgepoints ¥ = {v; }|,, aquadaticchamerdistance
function is given by
12 .
dgham(%’y/) = ﬁ dz(l’dl/)a (4)

whered(i,?") = maxmin, ., ||u;— V||, 7) is thethreshtdeddistancebetweerthepoint,
J

u; € %, andits closestpointin #'. Usingathreshdd valuet makesthe matchingmore
robustto outliersandmissingedges.The chamfe distancebetweentwo shapesanbe
computedefficiently usinga distancetransfom, wherethe templateedgepoirts arecor

relatedwith thedistanceransfom of theimageedgemap. Toyama andBlake [15] shov
how the quadatic chamer function canbe turnedinto a likelihoad which is approx-

matelyGaussian.Edgeorientation is includedby compuing the distanceonly for edges
with similar orientation in order to make the distancefunction morerobust [10]. We
alsoexploit thefactthat partof anedgenomal on theinterior of the contou shouldbe
skin-cdoured,andonly take thoseedgesnto accoumn[8].

In constructig the colour likelihoad function p(D£'|6;), we seekto explain all the
imagepixd datagiven the proposedstate. Given a state,the pixelsin theimage.# are
partitiored into a setof objectpixels ¢, anda setof backgound pixels #. Assuming
pixel-wiseindepenencethelikelihood canbefactoredas

p(D'|6,) = |_|ﬁ p(lt(0)|9t)b|l p(l:(b)|6,), (5)

wherel, (k) is theintensitynomalisedrg-colourvecta at pixel locationk attimet. The
objectcolour distribution is moceledasa Gaussiardistribution in the nomalisedcolow



space.Theobjectcolor distribution is modeledasa Gaussiardistribution in the normal-
izedcolor spacefor backgoundpixds a uniform distribution is assumedFor efficiency,
we evaluateonly the edee likelihood termwhile traversingthe tree,andincorporatethe
colou likelihoad only attheleaflevel.

5 Results

We demastratethe effectivenessof the techniaie by tracking finger articulatian in a
clutteredsceneusinga singlecameraln thetestsequenc¢he subjectalternatedetween
four differentgestues(seefigure6). For learningthetransitiondistributions,a datasetof
size 720 wascapturel while performingthefour gestuesa nurmber of timesin randanm
order Thetwo method descriledin section3 wereusedto build thetreeoff-line.

In thefirst expeiimentthetreeis built by hierarchical k-mears clusteringof thewhole
training set. The tree hasa depthof three,wherethe first level contairs 300 templats
togethe with apartitioning of thetranslationrspaceata 20x 20 pixe resolution. Thesec-
ondandthird level eachcontain7200templategi.e. thewhde dataset)andatranslation
searchat5 x 5and2 x 2 pixel resolution respectiely.

In thesecondxpelimentthetreeis built by partitioring alowerdimensioml eigenspae.
Applying PCA to the datasetshows that morethan 96 percen of the variarce is cap-
turedwithin the first four principal compmnents thuswe partition the four dimersional
eigenspee. In this experiment,thefirst level of the treecontains360templatesthe sec-
ondandthird level contain9163templates.Thegrid resoldionsin translationspaceare
thesameasin thefirst expaiment.

In bothcasedransitionprobabilitesbetweerthe statesarelearnel by histogranming
the data. After constriction of the tree off-line, it is usedto estimatethe hard configu
ration andtranslationat eachframe: Using a breadthfirst searchof the tree, the poste-
rior (equatia 1) is apprximatedat eachlevel by regions of piecavise corstantdersity.
Higherlevelsof thetreedo notyield accuratepprximatiors. However, in practicelarge
regions of the paraneterspacehave a posteria closeto zero,andhypothesesfor which
the estimatedbosterioris belav a certainthreshdd, arediscardé at higherlevels. The
leaflevel apprximatesthe posteriorof the currentstate andusingthelearnea statetran-
sitionsis usedasa prior (equdion 2) for the next frame. Note thatthe handmodé is
initialisedautomaticallyby searchinghecompletetreein thefirst frameof thesequene.

Thetracking resultsonthetestsequenearequalitatively the samefor bothtreebuild-
ing method. In both caseghe typical numker of likelihoad evaluatians (correspondin
to nodesexplored)is belav 600,takingappoximatelytwo second perframeona 1GHz
PentiumlV compuer. Themethal of constrietingthetreeby partitioring theeigerspace
hasa nunberof adwantagesFirstly, aparametic representatioris obtaired,whichallows
for interpolationbetweerhandstatesandfurther optimisationona theleaflevel hasbeen
reachedSecondlyfor large datasetsthecompuationalcostof PCAis significantlylower
thanthe costof clustering.

6 Summary and Conclusion

Within this papera tree-tasedfiltering algorittm is usedfor trackingarticulatedhand
motion Treebasedletectionhasbeenprovento be efficient, however, it is not straight-



Figure6: Tracking articulated hand motion in front of a cluttered background. In
this sequene a numter of different finger motionsare tracked. Theimagesare shown
with projectedcontous superimpsed(top) and corresponéhg 3D avata models(bot-
tom), which are estimatedusingour tree-baedfilter. Thenodes in thetreeare foundby
hierarchical clusteringof training datain the parameterspace anddynamicinformatian
is enco@dastransitionprobabilities betweertheclustess.

forward to include prior informationwithin a treebasedon appearace similarity. This

motivatestheideaof hierarchically partitioring thestatespaceo defineatree. Thispaper
presentswo methalsto build suchatreefrom trainingdata.Onewayto dothisis to hier

archicallyclusterthe data,anothemway is to partitionalower dimensiofl eigenspagus-
ing aregular grid. Thestatetransitiondistributions canthenbe modelledusinga Markov

processbetweerthetreenoces.

In preliminary experimentswe have testedthe methodon a video sequene of articu-
latedhandmotioninvolving baclgrourd clutter Thetracker performswell in thesechal-
lengingcircumstancesltn cortrastto previoushandtrackingmethalstraclkerinitialisation
is handledautonatically. Finally we obsenethatwithin this framework theestimationof
globd poseandfingerarticulationcanbe combired[13]. The global posespacecanbe
partitioredhierarclically, asdore in this paperfor partitioring theeigenspace.
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