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Abstract

We describe the prototype of a system intended to allow atoseavigate
in an urban environment using a mobile telephone equippédavcamera.
The system uses a database of views of building facades¢ardet the
pose of a query view provided by the user. Our method is basedrmvel
wide-baseline matching algorithm that can identify copesding building
facades in two views despite significant changes of viewaoid lighting.
We show that our system is capable of localising query vielahly in a
large part of Cambridge city centre.

1 Introduction

This research is motivated by a conceptual mobile telephamigation application. Us-

ing a handset with a built-in camera, the idea is that the osald transmit a photo-

graph of his surroundings to a central computer system. rGiygroximate knowledge
of the handset’s position (obtained by signal triangulatio similar), the system would

compare the query image with a database of stored imageslér tw determine pose.
Navigation information could then be transmitted back ®dilser and projected into the
image. Compared with radio signal triangulation-base@s®®, this approach gives

significantly better accuracy and determines camera @atientas well as position.

1.1 Existing Work

This is essentially similar to thglobal localisationproblem familiar from the mobile
robot navigation literaturek.g. in the system described by 8éal [11], a robot uses a
calibrated trinocular stereo rig to locatesual landmarkswhich are simply image fea-
tures with associated 3D positions. By matching visiblelfaarks with previously identi-
fied ones, the robot can determine its pose even if it is mol@dope with large changes
of viewpoint, image features are characterised in a wayishavariant with image rota-
tion and scale [9]. This izvide-baseline matching

In related work, wide-baseline matching has been used mdifgesimilar views using
corresponding image features [10, 12]. By characteridiegféatures in a way that is
invariant with affine transformations, it is possible tontiéy similar views despite sub-
stantial changes of viewpoint. For example, given a phatplgiof a building, the system

1Existing signal triangulation-based schemes (such ad/atipw.cursor-system.com) claim an accuracy of
a few 10’s of meters although performance may be reduced lity-path effects in urban environments.



described by Shaet al. [12] can identify more photographs of the same building in a
large database of photographs obtained from a wide rangiewpwints. However, their
system does not determine the pose of the query.

Elsewhere, vanishing points have been used automaticathgtermine camera ori-
entation in urban environments [2, 7, 13]. For example, Ga@ord Teller [2] describe a
system that uses vanishing points to determine the orientat dominant building fa-
cades relative to a panoramic camera. However, a combmatispecialist hardware is
used to determine camera position, including GPS and alestinsors. Here, only the
image data is required. Stamos and Allen [13] have also uariling points as part
of a pose determination algorithm. However, their systequires a detailed geometric
model obtained by laser range finding and they have onlyikezliews in the vicinity
of a single building.

1.2 Approach

By contrast to the robot localisation system described bgtsé [11], the idea here is to
determine the pose of a query view by reference to a much simpbdel comprising a
database of rectified views of building facades. Buildintpfées can be associated with a
meaningful 3D coordinate system using readily available oeta.

This is essentially an image database retrieval problemerGa query view, the first
step is to identify a nearby database view. Then the poseeofitiery view is obtained
from the plane-to-plane transformation that relates iheohuilding facade. Our approach
is based on a novel, wide-baseline matching algorithm thatidentify corresponding
building facades in two views in a way that is invariant withrsficant changes of view-
point and lighting and robust to clutter.

We describe a system that has been shown to be capable déilbgajuery views
reliably in a large part of Cambridge city centre.

1.3 Review and notation

Under perspective projectioll ~ PX, homogenous pixel coordinatésare related to
homogenous world coordinat&sby a 3x 4 projection matrix®, where~ means equality
up to scale. A projection matrix may be decomposeB asKk [R —RTt] whereR is a

3 x 3rotation matrix that describes camera orientatiagsithe Euclidean camera position,
andK is an upper triangular camera calibration matrix.

2 Wide-baseline matching

We begin by describing our wide-baseline matching algoritfsiven two views, the aim
is to identify corresponding image features despite sicgnifi changes of viewpoint and
lighting, and in a way that is robust to clutter.



2.1 Canonical views

The algorithm works by assuming that both views will contaidominant plane in the
form of a building facade By determining the orientation of the camera with respect t
this plane, views may be transformed into a canonical fraynmeétric rectification[8]
(see Figure 1c).

Camera orientation is determined using the vanishing pdietonging to the principal
horizontal and vertical directions that define the facadg.aBsuming that a significant
proportion of imaged edges are aligned with these direstitime associated vanishing
points can found automatically using the approach destiilyeKosecka and Zhang [7].
One problem is to decide which vanishing points belong téicerand horizontal direc-
tions. To identify the vertical vanishing poifit, it is assumed that the camera is held
approximately ‘right way up’. Thusj, is chosen such that the vanishing direction'¥,
is the one most nearly parallel to the vertif@l 1 0]'. A horizontal vanishing point
Vh will be associated with a perpendicular directioe, it should obey the constraint
(K~1%,) T (K~0y,) = 0. If more than one horizontal vanishing point is detectesl select
the one most strongly supported by line segments in the image

Without loss of generality, a local coordinate syst¥pYrZr may be aligned with
the building facade defined by the vertical and horizontalisking points. Hence, by
considering points at infinity corresponding to the asgediaanishing directions, it is
simple to derive the following constraint on the elementthefprojection matri¥g:
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whereA, and Ay are unknown scale factors and the subscript F denotes tjaariti the
local coordinate system. Writingr = K[Rg —REtF], this equation can be rearranged
and expressed in terms of camera calibration m#trand camera orientatidRg:
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GivenK, and by exploiting the properties of a rotation matrix, a2 can be solved
simply for scale factord, andAy, and camera orientatidRe. In our conceptual mobile
telephone navigation application, we assume for the tinmegtbat it would be possible to
retrieve an approximate camera calibration matrix for epgry view from a database of
handset models. Camera calibration can be determinediatibeatory by photographing
a suitable chessboard pattern [14].

Having determined camera orientatiBa we can rectify the view [8]. This is equiv-
alent to rotating the camera IRe~ so that image plane is aligned building facade. Pixel
coordinatedl; in the rectified view may be related to pixel coordinaleis the original
view by the following equation:

O ~ Hsl 3)

2This assumption is not too restrictive in our mobile telemhmavigation application, since the user can
easily be instructed to point the camera at a building.



whereHs is a 3x 3 homography given bif; = KtRg 1K ~1. Here K defines the origin
and scale of the coordinate system for the canonical viewhasdhe form:

a O Uof
Ki=|0 ar vor (4)
0O 0 1

whereugs ~ [Uos  Vor]T is the origin andos is the scale. Usually it will be convenient
(i) to set thea; such that the transformatid; preserves the vertical dimension of the
pixel at the centre of the original image (so the average ghar scale is minimised),
and (ii) to choosely; such that the quadrilateral boundary of the transformedafas
in a bounding rectangle with top left corn@ 0 1]'.

Between rectified views, a building facade will be relatedabgimple scale-plus-
translation transformation. Thus, pixel coordindign the first view may be related to
pixel coordinatesi; in the second by the following equation:

Ut ~ Hli (5)
whereHs is has the form:
as 0 g
Hs=|0 as Vos (6)
0O 0 1

Hereas is the scale factor anfdips  Vos] " is the translation in pixels.

Finally, let thehorizon linebe defined as the line of intersection of the horizontal
plane defined by the camera’s optical centre with the imageepi.e. the camera’s ‘eye
level'. In canonical views, the horizon line is a horizonlak that passes through the
pointK{[0 0 1]" (see Figure 1).

2.2 Featuredetection and characterisation

Because the canonical views are free from perspectivertigtoit is simple to detect and
characterise image features in a way that is invariant wiinges of viewpoint.

Firstly, interest points are located at the maxima of therid@orner response, which
is given by defC) — 0.05tracé(C) with:

La(uaa) LULV(UJU)

C(u,0,0) =G(u,0) = LuLv(u,0)  L2(u,0) 7)

whereG(u, @) is a symmetric 2D Gaussian with standard deviatgrandL, andLy
are image derivatives in theandv directions respectively [5]. Differentiation is carried
out by convolution with the differential of another symnie®D Gaussian with standard
deviationo. Here, smoothing and detection scateando are set to 1.5 and 1.0 pixels
respectively.

Next, local image regions in the vicinity of the interestmtsiare characterised by
sampling RGB pixel values in a square grid pattern centretherinterest point. Good
results have been obtained using a grid with dimensioxn8&nd a spacing of 2 pixels.
Some amount of robustness to scale variation and featuatidation error is achieved by
sampling the pixels from a version of the image that has beeothed by convolution
with a 2D Gaussian of standard deviation 2 pixels.



Figure 1: Obtaining canonical views. (a) Straight line segts are detected in left and
right views and dominant vanishing points are recoveredraatically. Line segments
associated with the horizontal and vertical vanishing fsoame shown in (b). Finally, the
images are transformed into a canonical frame correspgridia rectified view of the
dominant plane (c). In the rectified views, the horizon lisédrizontal.

To account for larger changes of scale, feature detectiogpisated at multiple im-
age scales like in [3]. Here, the detector described aboappdied to each level of a
pyramid of scaled images. The base of the pyramid is ther@i@ginage and successive
levels are obtained from their predecessors by bicubicpotation. Good results have
been obtained using a pyramid with 5 levels, with each lev2ltimes smaller than its
predecessor.

In the subsequent matching stage (Section 2.3, belowyressre compared by eval-
uating the sum of squared differences between RGB pixehdities [6]. To achieve
robustness to lighting variation, pixel intensitigg=[R G B]|' are first normalized
according to the following equation:
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lw=—= = — (8)
NZU,V“UV_”Z

wherel, is the normalised valud, is the mean, andll is the number of pixels (64 in
this case). To compare features efficiently, a coarse-todpproach is used (after Burt
and Adelson [1]). The idea is that a large proportion of cdath matches can be rejected
within comparatively few operations by correlating smallersions of the full-size tem-
plate.

2.3 Feature matching

A robust, multi-scale matching approach is used, similahéoone described by Dufour-
naudet al. [3]. The idea is to match features detected at one scaleifirt image with



features detected at another scale in the second, rep@eaditedping for a succession of
candidate scale relationships.

The complete matching algorithm is outlined below. Withtmsts of generality, the
second image is considered to be the higher resolution onzade the first image is the
higher resolution one, this sequence is repeated with steafid second images reversed:

1. Detect and characterise features in the first image atggesatales = 1. Detect
and characterise features in the second image at a rangale¢se 1.2-°, where
detection levep € {0, ...,4} (see Section 2.2).

2. Match features detected at level O in the first image widtuiees detected at a
candidate levep. in the second, wherg; € {0, ...,4}.

3. For each candidate level, use RANSAC [4] robustly to estinthe scale-plus-
translation transformatiods. Redo matching constrained by this estimate. Count
matches.

4. Finally, select the estimated transformation with thesnmoatches.

At step 3, an initial set of correspondences could be obddityaunguided matching.
However, computational efficiency can be improved by an ooflenagnitude by assum-
ing that the views have been obtained from similar heighkgs Assumption is sufficient
to fix one of the degrees of freedomldf since the horizon lines must be aligned. Thus,
for a particular candidate scale relationship, the seavcl fmatch in the second image
can be restricted to a narrow margin surrounding a 1D scan lin consequence, the
proportion of outliers is usually greatly reduced.

3 Database formulation

The basis of our global localisation system is a databasewfsvof building facades. At
present, database views are obtained by photographirdjrimslwith a hand-held digital
camerd. Because our wide-baseline matching algorithm is effeatigspite significant
changes of viewpoint, a single view of each facade is suffidie localise query views
obtained from a wide range of viewpoints.

Building facades in the database are associated with a ngfah8D coordinate sys-
tem using readily available map data. A point on the fadage Y= 0 1] may be
related to pixel coordinated; in the rectified view by a simple scale-plus-translation
transformation:

O ~Ha[Xe Y& 1]7 (9)
where
aa 0 up,
Ha: 0 aa Voa (10)
0O 0 1

Herea, is a scale factor anfdip, Voa]" is the translation. We finH 4 by identifying two
vertical lines in each rectified view and their correspogdinints on a map (see Figure

3We anticipate that this process could be automated by #irehcamera to a vehicle equipped with an
inertial car navigation system. A navigation system couddused to provide camera pose and the map to
provide the positions of building facades.



(b)

Figure 2: Building facades in the database are associatikdawneaningful coordinate
system using a map. (a) Two vertical lines are identified rafiypin each database view
(the horizon line is also shown). (b) These lines corresgomdints on the map (circles).
The pointugs is the projection of origin of the facade coordinate sys¥ivyZr.

2). Thena, =D/d and[ups Voa 1] is the projection of the origin of the facade’s
coordinate systerigYg.

4 Global localisation

Having registered a set of database views, the pose of a gierycan be determined
automatically using the homography that relates it to adingj facade in the database.

Database retrieval. The first step is to identify a nearby database view. Our gyste
works by conducting two-view matching between the queryaad each database view
in turn using the method described in Section 2. We select#tebase view with the
most robustly estimated matches in common with the queny.viBy assuming that a
nearby database view has been obtained from a similar heig¢fe query view, two-view
matching may be conducted efficiently using the scan linsizaimt described in Section
2.3. To increase the speed of the database retrieval, catitiin and feature detection is
conducted in advance for database views. In our mobilehelepnavigation application,
prior knowledge of handset positioa.{. from cell location) could be used to constrain
the database search to a few hundreds of views.

Pose determination. Having determined the scale-plus-translation transféiona s
that relates a building facade between the database angvjeerss, all that remains is to
find the pose of the query. In the local facade coordinaterysthe required projection
matrix P relates 3D pointgXe  Y¢  Zr 1]T to pixel coordinates:

O~PE[Xe Y Ze 17 (11)

Combining equations 3, 5, and 10, it is possible to write tiWing relationship be-
tween Xg, Yg coordinates in the local coordinate system and image coates in the
original query view:

O~H HH X Y 1] (12)



whereH 4 relates points in the facade coordinate system to pixelioates in the rectified
view, Hs relates the dominant plane between the query and databass,andH;~*
relates pixel coordinates in the canonical view to pixelsrdinates in the original view.
Comparing equation 12 with equation 11, we can see thatttiafines three columns
of the projection matri¥Pr (up to a single unknown scale factor). Sir€eandRg are
known, it is simple to recover the remaining column (up toghme scale factor). Finally,
the camera pose estima®e, Tr can be related from the facade’s coordinate system to
the map coordinate system by applying a coordinate systamsftirmation.

5 Evaluation

To test our global localisation system, we constructed alstege of views by photograph-
ing all the buildings in the main shopping street in Cambeidgity centre, as well as a
number of other buildings of interest from around the cityir @atabase comprises 200
views in total (one per building typically) and spans at tea&m of building facades.
The area covered by the database spans an area several tgats than the positional
uncertainty associated with existing mobile positioniggtems.

We also revisited the area at different times of day and obthguery views from a
variety of viewpoints. Compared to the database views, tleryqviews were obtained
at different distances from the dominant building facaded/@r with different camera
orientation. Usually distance differed by at least 30% aridntation by at least 30
There were 97 query views in total. Many of our query imagestaioed significant
clutter (pedestrians, traffic, etc.) representative of éxperienced in a city centre urban
environment.

Using the framework described earlier, we attempted tordete the pose of each
of 97 query views. Each query took around 10 s using a 1.4 Gldktdp PC (although
our present implementation is not especially efficient)séPdetermination results were
verified by sketching building facade outlines in the dasgb@ews and projecting them
into the query views using recovered homographies (sincecafocal length is known,
this method gives a good indication of the accuracy of theestimates). Overall, 93
out of 97 queries were registered correctly. Represeetatisults are shown in Figure
3. Because of our robust matching strategy, usually onlyasrteo matches were found
between a query view and incorrect database views. Wherysters did fail, this was
because the database contains some photographs of bsi(dingarts of buildings) that
are virtually identical to each other.

6 Conclusions

We have described the prototype of a system designed to alloaer to navigate in
an urban environment using a mobile telephone equipped avithmera. The system
facilitates efficient determination of the pose of a queswby reference to a database
of views of building facades.

One limitation is that some buildings (and parts of buildingre very similar. This
means that the system might be unable to distinguish beta@me viewpoints without
more information,e.g. extra query views. Another limitation is that conductingptw
view matching between the query view and every nearby databiaw is slow. A more



Figure 3: lllustrative database retrieval results. The fiosvs show query views. The
second and third rows show the best and second best data&bdseat results together
with the number of robustly estimated correspondences.fifdtesix images (a-f) show
correct database retrieval results. Transferred buildittines demonstrate the accuracy
of the recovered pose estimates. In (g), the correct datalias/ has been recovered
but the scale-plus-translation transformation is wrong(h), the wrong view has been
retrieved because the two buildings are identical.



efficient strategy might be to use more ‘global’ image préipsrsuch as most frequent
colours to eliminate unlikely database views in advance.

In this paper, camera intrinsic parameters have been asskmogn. In recent work,
we have extended our system to compute the focal length afficients of radial distor-
tion for the query view automatically using vanishing psinin future research, we will
explore the possibility of acquiring database views usimgmera attached to a moving
vehicle. Using an inertial car navigation system, it shdwddpossible to register views
automatically in the world coordinate system. Then OrdeagBurvey map data could be
used to provide the approximate location of dominant bngdacades.
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