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Abstract

We describe the prototype of a system intended to allow a userto navigate
in an urban environment using a mobile telephone equipped with a camera.
The system uses a database of views of building facades to determine the
pose of a query view provided by the user. Our method is based on a novel
wide-baseline matching algorithm that can identify corresponding building
facades in two views despite significant changes of viewpoint and lighting.
We show that our system is capable of localising query views reliably in a
large part of Cambridge city centre.

1 Introduction

This research is motivated by a conceptual mobile telephonenavigation application. Us-
ing a handset with a built-in camera, the idea is that the usercould transmit a photo-
graph of his surroundings to a central computer system. Given approximate knowledge
of the handset’s position (obtained by signal triangulation or similar), the system would
compare the query image with a database of stored images in order to determine pose.
Navigation information could then be transmitted back to the user and projected into the
image. Compared with radio signal triangulation-based schemes1, this approach gives
significantly better accuracy and determines camera orientation as well as position.

1.1 Existing Work

This is essentially similar to theglobal localisationproblem familiar from the mobile
robot navigation literature.E.g. in the system described by Seet al. [11], a robot uses a
calibrated trinocular stereo rig to locatevisual landmarks, which are simply image fea-
tures with associated 3D positions. By matching visible landmarks with previously identi-
fied ones, the robot can determine its pose even if it is moved.To cope with large changes
of viewpoint, image features are characterised in a way thatis invariant with image rota-
tion and scale [9]. This iswide-baseline matching.

In related work, wide-baseline matching has been used to identify similar views using
corresponding image features [10, 12]. By characterising the features in a way that is
invariant with affine transformations, it is possible to identify similar views despite sub-
stantial changes of viewpoint. For example, given a photograph of a building, the system

1Existing signal triangulation-based schemes (such as http://www.cursor-system.com) claim an accuracy of
a few 10’s of meters although performance may be reduced by multi-path effects in urban environments.



described by Shaoet al. [12] can identify more photographs of the same building in a
large database of photographs obtained from a wide range of viewpoints. However, their
system does not determine the pose of the query.

Elsewhere, vanishing points have been used automatically to determine camera ori-
entation in urban environments [2, 7, 13]. For example, Coorg and Teller [2] describe a
system that uses vanishing points to determine the orientation of dominant building fa-
cades relative to a panoramic camera. However, a combination of specialist hardware is
used to determine camera position, including GPS and inertial sensors. Here, only the
image data is required. Stamos and Allen [13] have also used vanishing points as part
of a pose determination algorithm. However, their system requires a detailed geometric
model obtained by laser range finding and they have only localised views in the vicinity
of a single building.

1.2 Approach

By contrast to the robot localisation system described by Seet al. [11], the idea here is to
determine the pose of a query view by reference to a much simpler model comprising a
database of rectified views of building facades. Building facades can be associated with a
meaningful 3D coordinate system using readily available map data.

This is essentially an image database retrieval problem. Given a query view, the first
step is to identify a nearby database view. Then the pose of the query view is obtained
from the plane-to-plane transformation that relates it to the building facade. Our approach
is based on a novel, wide-baseline matching algorithm that can identify corresponding
building facades in two views in a way that is invariant with significant changes of view-
point and lighting and robust to clutter.

We describe a system that has been shown to be capable of localising query views
reliably in a large part of Cambridge city centre.

1.3 Review and notation

Under perspective projectioñu � PX̃, homogenous pixel coordinatesũ are related to
homogenous world coordinatesX̃ by a 3�4 projection matrixP, where� means equality
up to scale. A projection matrix may be decomposed asP � K �R �R� t � whereR is a
3 �3 rotation matrix that describes camera orientation,t is the Euclidean camera position,
andK is an upper triangular camera calibration matrix.

2 Wide-baseline matching

We begin by describing our wide-baseline matching algorithm. Given two views, the aim
is to identify corresponding image features despite significant changes of viewpoint and
lighting, and in a way that is robust to clutter.



2.1 Canonical views

The algorithm works by assuming that both views will containa dominant plane in the
form of a building facade2. By determining the orientation of the camera with respect to
this plane, views may be transformed into a canonical frame by metric rectification[8]
(see Figure 1c).

Camera orientation is determined using the vanishing points belonging to the principal
horizontal and vertical directions that define the facade. By assuming that a significant
proportion of imaged edges are aligned with these directions, the associated vanishing
points can found automatically using the approach described by Kosecka and Zhang [7].
One problem is to decide which vanishing points belong to vertical and horizontal direc-
tions. To identify the vertical vanishing pointṽv, it is assumed that the camera is held
approximately ‘right way up’. Thus,̃vv is chosen such that the vanishing directionK�1ṽv

is the one most nearly parallel to the vertical�0 1 0�� . A horizontal vanishing point
ṽh will be associated with a perpendicular direction,i.e. it should obey the constraint�
K�1ṽv�� �K�1ṽh� � 0. If more than one horizontal vanishing point is detected, we select

the one most strongly supported by line segments in the image.
Without loss of generality, a local coordinate systemXFYFZF may be aligned with

the building facade defined by the vertical and horizontal vanishing points. Hence, by
considering points at infinity corresponding to the associated vanishing directions, it is
simple to derive the following constraint on the elements ofthe projection matrixPF:

�λvṽv λhṽh � � PF

�� 1 0
0 1
0 0
0 0

!"# (1)

whereλv andλh are unknown scale factors and the subscript F denotes quantities in the
local coordinate system. WritingPF � K �RF $R�F tF �, this equation can be rearranged
and expressed in terms of camera calibration matrixK and camera orientationRF:

K�1 �λvṽv λhṽh � � RF

� 1 0
0 1
0 0

!# (2)

GivenK, and by exploiting the properties of a rotation matrix, equation 2 can be solved
simply for scale factorsλv andλh, and camera orientationRF. In our conceptual mobile
telephone navigation application, we assume for the time being that it would be possible to
retrieve an approximate camera calibration matrix for eachquery view from a database of
handset models. Camera calibration can be determined in thelaboratory by photographing
a suitable chessboard pattern [14].

Having determined camera orientationRF we can rectify the view [8]. This is equiv-
alent to rotating the camera byRF�1 so that image plane is aligned building facade. Pixel
coordinates̃uf in the rectified view may be related to pixel coordinatesũ in the original
view by the following equation:

ũf % Hf ũ (3)

2This assumption is not too restrictive in our mobile telephone navigation application, since the user can
easily be instructed to point the camera at a building.



whereHf is a 3&3 homography given byHf ' KfRF(1K(1. Here,Kf defines the origin
and scale of the coordinate system for the canonical view andhas the form:

Kf ' )*αf 0 u0f
0 αf v0f
0 0 1

+, (4)

whereu0f - .u0f v0f /0 is the origin andαf is the scale. Usually it will be convenient
(i) to set theαf such that the transformationHf preserves the vertical dimension of the
pixel at the centre of the original image (so the average change of scale is minimised),
and (ii) to chooseu0f such that the quadrilateral boundary of the transformed image fits
in a bounding rectangle with top left corner.0 0 1/0 .

Between rectified views, a building facade will be related bya simple scale-plus-
translation transformation. Thus, pixel coordinatesũ1f in the first view may be related to
pixel coordinates̃uf in the second by the following equation:

ũ1f - Hsũf (5)

whereHs is has the form:

Hs ' )*αs 0 u0s
0 αs v0s
0 0 1

+, (6)

Hereαs is the scale factor and.u0s v0s /0 is the translation in pixels.
Finally, let thehorizon linebe defined as the line of intersection of the horizontal

plane defined by the camera’s optical centre with the image plane,i.e. the camera’s ‘eye
level’. In canonical views, the horizon line is a horizontalline that passes through the
pointKf .0 0 1/0 (see Figure 1).

2.2 Feature detection and characterisation

Because the canonical views are free from perspective distortion, it is simple to detect and
characterise image features in a way that is invariant with changes of viewpoint.

Firstly, interest points are located at the maxima of the Harris corner response, which
is given by det2C3 4 0505trace2 2C3 with:

C2u 6σ 6σ 3 ' G2u 6σ 3 7 8 L2
u 2u 6σ 3 LuLv 2u 6σ 3

LuLv 2u 6σ 3 L2
v 2u 6σ 3 9 (7)

whereG2u 6σ 3 is a symmetric 2D Gaussian with standard deviationσ , andLu andLv

are image derivatives in theu andv directions respectively [5]. Differentiation is carried
out by convolution with the differential of another symmetric 2D Gaussian with standard
deviationσ . Here, smoothing and detection scalesσ andσ are set to 1.5 and 1.0 pixels
respectively.

Next, local image regions in the vicinity of the interest points are characterised by
sampling RGB pixel values in a square grid pattern centred onthe interest point. Good
results have been obtained using a grid with dimensions 8&8 and a spacing of 2 pixels.
Some amount of robustness to scale variation and feature localisation error is achieved by
sampling the pixels from a version of the image that has been smoothed by convolution
with a 2D Gaussian of standard deviation 2 pixels.



(a) (b) (c)

Figure 1: Obtaining canonical views. (a) Straight line segments are detected in left and
right views and dominant vanishing points are recovered automatically. Line segments
associated with the horizontal and vertical vanishing points are shown in (b). Finally, the
images are transformed into a canonical frame corresponding to a rectified view of the
dominant plane (c). In the rectified views, the horizon line is horizontal.

To account for larger changes of scale, feature detection isrepeated at multiple im-
age scales like in [3]. Here, the detector described above isapplied to each level of a
pyramid of scaled images. The base of the pyramid is the original image and successive
levels are obtained from their predecessors by bicubic interpolation. Good results have
been obtained using a pyramid with 5 levels, with each level 1:2 times smaller than its
predecessor.

In the subsequent matching stage (Section 2.3, below), features are compared by eval-
uating the sum of squared differences between RGB pixel intensities [6]. To achieve
robustness to lighting variation, pixel intensitiesIuv ; <R G B=> are first normalized
according to the following equation:

Îuv ; Iuv ? Ī@
1
N ∑uAv BIuv ? Ī B2 (8)

whereÎuv is the normalised value,̄I is the mean, andN is the number of pixels (64 in
this case). To compare features efficiently, a coarse-to-fine approach is used (after Burt
and Adelson [1]). The idea is that a large proportion of candidate matches can be rejected
within comparatively few operations by correlating smaller versions of the full-size tem-
plate.

2.3 Feature matching

A robust, multi-scale matching approach is used, similar tothe one described by Dufour-
naudet al. [3]. The idea is to match features detected at one scale in the first image with



features detected at another scale in the second, repeatingmatching for a succession of
candidate scale relationships.

The complete matching algorithm is outlined below. Withoutloss of generality, the
second image is considered to be the higher resolution one. In case the first image is the
higher resolution one, this sequence is repeated with the first and second images reversed:

1. Detect and characterise features in the first image at a single scales C 1. Detect
and characterise features in the second image at a range of scalessC 1D2Eρ , where
detection levelρ F G0H DDDH4I (see Section 2.2).

2. Match features detected at level 0 in the first image with features detected at a
candidate levelρc in the second, whereρc F G0H DDDH4I.

3. For each candidate level, use RANSAC [4] robustly to estimate the scale-plus-
translation transformationHs. Redo matching constrained by this estimate. Count
matches.

4. Finally, select the estimated transformation with the most matches.

At step 3, an initial set of correspondences could be obtained by unguided matching.
However, computational efficiency can be improved by an order of magnitude by assum-
ing that the views have been obtained from similar heights. This assumption is sufficient
to fix one of the degrees of freedom ofHs since the horizon lines must be aligned. Thus,
for a particular candidate scale relationship, the search for a match in the second image
can be restricted to a narrow margin surrounding a 1D scan line. In consequence, the
proportion of outliers is usually greatly reduced.

3 Database formulation

The basis of our global localisation system is a database of views of building facades. At
present, database views are obtained by photographing buildings with a hand-held digital
camera3. Because our wide-baseline matching algorithm is effective despite significant
changes of viewpoint, a single view of each facade is sufficient to localise query views
obtained from a wide range of viewpoints.

Building facades in the database are associated with a meaningful 3D coordinate sys-
tem using readily available map data. A point on the facadeJXF YF 0 1KL may be
related to pixel coordinates̃uf in the rectified view by a simple scale-plus-translation
transformation:

ũf M HaJXF YF 1 KL (9)

where

Ha C NOαa 0 u0a
0 αa v0a
0 0 1

PQ (10)

Hereαa is a scale factor andJu0a v0a KL is the translation. We findHa by identifying two
vertical lines in each rectified view and their corresponding points on a map (see Figure

3We anticipate that this process could be automated by attaching a camera to a vehicle equipped with an
inertial car navigation system. A navigation system could be used to provide camera pose and the map to
provide the positions of building facades.
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Figure 2: Building facades in the database are associated with a meaningful coordinate
system using a map. (a) Two vertical lines are identified manually in each database view
(the horizon line is also shown). (b) These lines correspondto points on the map (circles).
The pointu0f is the projection of origin of the facade coordinate systemXFYFZF.

2). Thenαa ] D^d and _u0a v0a 1`a is the projection of the origin of the facade’s
coordinate systemXFYF.

4 Global localisation

Having registered a set of database views, the pose of a queryview can be determined
automatically using the homography that relates it to a building facade in the database.

Database retrieval. The first step is to identify a nearby database view. Our system
works by conducting two-view matching between the query view and each database view
in turn using the method described in Section 2. We select thedatabase view with the
most robustly estimated matches in common with the query view. By assuming that a
nearby database view has been obtained from a similar heightto the query view, two-view
matching may be conducted efficiently using the scan line constraint described in Section
2.3. To increase the speed of the database retrieval, rectification and feature detection is
conducted in advance for database views. In our mobile telephone navigation application,
prior knowledge of handset position (e.g. from cell location) could be used to constrain
the database search to a few hundreds of views.

Pose determination. Having determined the scale-plus-translation transformation Hs

that relates a building facade between the database and query views, all that remains is to
find the pose of the query. In the local facade coordinate system, the required projection
matrix PF relates 3D points_XF YF ZF 1`a to pixel coordinates̃u:

ũ b PF _XF YF ZF 1`a (11)

Combining equations 3, 5, and 10, it is possible to write the following relationship be-
tweenXF cYF coordinates in the local coordinate system and image coordinates in the
original query view:

ũ b Hfd1HsHa_XF YF 1 `a (12)



whereHa relates points in the facade coordinate system to pixel coordinates in the rectified
view, Hs relates the dominant plane between the query and database views, andHfe1

relates pixel coordinates in the canonical view to pixels coordinates in the original view.
Comparing equation 12 with equation 11, we can see that that it defines three columns

of the projection matrixPF (up to a single unknown scale factor). SinceK andRF are
known, it is simple to recover the remaining column (up to thesame scale factor). Finally,
the camera pose estimateRF, TF can be related from the facade’s coordinate system to
the map coordinate system by applying a coordinate system transformation.

5 Evaluation

To test our global localisation system, we constructed a database of views by photograph-
ing all the buildings in the main shopping street in Cambridge’s city centre, as well as a
number of other buildings of interest from around the city. Our database comprises 200
views in total (one per building typically) and spans at least 2 km of building facades.
The area covered by the database spans an area several times greater than the positional
uncertainty associated with existing mobile positioning systems.

We also revisited the area at different times of day and obtained query views from a
variety of viewpoints. Compared to the database views, the query views were obtained
at different distances from the dominant building facades and/or with different camera
orientation. Usually distance differed by at least 30% and orientation by at least 30f.
There were 97 query views in total. Many of our query images contained significant
clutter (pedestrians, traffic, etc.) representative of that experienced in a city centre urban
environment.

Using the framework described earlier, we attempted to determine the pose of each
of 97 query views. Each query took around 10 s using a 1.4 GHz desktop PC (although
our present implementation is not especially efficient). Pose determination results were
verified by sketching building facade outlines in the database views and projecting them
into the query views using recovered homographies (since camera focal length is known,
this method gives a good indication of the accuracy of the pose estimates). Overall, 93
out of 97 queries were registered correctly. Representative results are shown in Figure
3. Because of our robust matching strategy, usually only oneor two matches were found
between a query view and incorrect database views. When the system did fail, this was
because the database contains some photographs of buildings (or parts of buildings) that
are virtually identical to each other.

6 Conclusions

We have described the prototype of a system designed to allowa user to navigate in
an urban environment using a mobile telephone equipped witha camera. The system
facilitates efficient determination of the pose of a query view by reference to a database
of views of building facades.

One limitation is that some buildings (and parts of buildings) are very similar. This
means that the system might be unable to distinguish betweensome viewpoints without
more information,e.g. extra query views. Another limitation is that conducting two-
view matching between the query view and every nearby database view is slow. A more
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Figure 3: Illustrative database retrieval results. The first rows show query views. The
second and third rows show the best and second best database retrieval results together
with the number of robustly estimated correspondences. Thefirst six images (a-f) show
correct database retrieval results. Transferred buildingoutlines demonstrate the accuracy
of the recovered pose estimates. In (g), the correct database view has been recovered
but the scale-plus-translation transformation is wrong. In (h), the wrong view has been
retrieved because the two buildings are identical.



efficient strategy might be to use more ‘global’ image properties such as most frequent
colours to eliminate unlikely database views in advance.

In this paper, camera intrinsic parameters have been assumed known. In recent work,
we have extended our system to compute the focal length and coefficients of radial distor-
tion for the query view automatically using vanishing points. In future research, we will
explore the possibility of acquiring database views using acamera attached to a moving
vehicle. Using an inertial car navigation system, it shouldbe possible to register views
automatically in the world coordinate system. Then Ordnance Survey map data could be
used to provide the approximate location of dominant building facades.
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