
Sparse and Semi-supervised Visual Mapping with the S3GP

Oliver Williams
University of Cambridge

omcw2@cam.ac.uk

Andrew Blake
Microsoft Research UK, Ltd.

Roberto Cipolla
University of Cambridge

Abstract

This paper is about mapping images to continuous out-
put spaces using powerful Bayesian learning techniques. A
sparse, semi-supervised Gaussian process regression model
(S3GP) is introduced which learns a mapping using only
partially labelled training data. We show that sparsity be-
stows efficiency on the S3GP which requires minimal CPU
utilization for real-time operation; the predictions of un-
certainty made by the S3GP are more accurate than those
of other models leading to considerable performance im-
provements when combined with a probabilistic filter; and
the ability to learn from semi-supervised data simplifies the
process of collecting training data. The S3GP uses a mix-
ture of different image features: this is also shown to im-
prove the accuracy and consistency of the mapping. A ma-
jor application of this work is its use as a gaze tracking sys-
tem in which images of a human eye are mapped to screen
coordinates: in this capacity our approach is efficient, ac-
curate and versatile.

1. Introduction

Recent research such as [12, 1, 21] demonstrates that
learning themappingfrom images to continuous model pa-
rameters is a robust and efficient approach to tracking. Ef-
ficient because search is no longer required at run-time; ro-
bust because the regression approach operates over an en-
tire image region, reducing the reliance on accurate tempo-
ral prediction and hence ensuring that the system can re-
initialize after an interruption.

Rather than attempting to model the physical processes
relating input and output, the mappings are defined with
training data, a drawback of which is the difficulty of ob-
taining such data for some applications. This paper in-
troduces thesparse, semi-supervised Gaussian process, or
S3GP, as a new approach to learning visual mappings. The
S3GP is applicable to a wider variety of problems than pre-
vious approaches because it is capable of learning map-
pings fromsemi-supervisedtraining sets. For training data
that would be difficult or costly to label exhaustively, the

Figure 1. Inferring gaze with the S3GP. This figure shows closeup
eye images (mirrored around the vertical axis), and the corre-
spondingly inferred gaze position on the screen. The ellipse indi-
cates the±2 standard deviation error bars in the prediction. This
video may be seen in the additional submitted material.

S3GP requires labels at a few key points only.
One application of the S3GP is gaze tracking (see Fig. 1)

in which images of an eye are mapped to 2D screen coor-
dinates. To obtain a supervised training set of gaze loca-
tions would require an arduous calibration process in which
a user gazes at hundreds of points on the screen. In con-
trast, a large number of unlabelled exemplar inputs is easily
collected by making the eye follow a particular on-screen
trajectory. As a result, the S3GP requires only 16 fully la-
belled points from which to learn the mapping. Sec. 4 con-
tains more demonstrations.

While Gaussian processes demonstrate excellent regres-
sion performance, particularly with respect to meaningful
predictions of uncertainty [20], their computational require-
ments scale badly with the number of training data. This
explains their absence from real-time computer vision ap-
plications. Sparse, and therefore efficient, techniques such
as the SVM [17] and RVM [15] have enjoyed far greater
popularity over recent years, yet the predictive uncertainties
of these techniques are, respectively, non-existent and inac-
curate (see Sec. 4 for a comparison of RVM and Gaussian
process prediction). A number of authors have introduced
sparsity to Gaussian processes (e.g., [8, 3, 13]) for fully-
supervised regression and classification problems; in this
paper we introduce sparsity for semi-supervised regression.

A semi-supervised training set comprisesn exemplar in-



puts, or feature vectors1, X = {x(i)}n
i=1. Of these,nl

are labelled with their associated outputsy(i) = y(x(i)).
These labels make up the setY = {y(i)}nl

i=1. The in-
dices of the exemplars that are labelled form the subset
L = {`1, . . . , `nl

}; the remainder constitute the setU =
{i|i ∈ {1 . . . n}, i /∈ L}.

In this paper, exemplars are collected from video data
and this means that there are alsotemporal metadata
τ1, . . . , τn, corresponding to video frame number, available
for every exemplar. In Sec. 2 we show how this additional
data is exploited when learning the input–output mapping.
Once the mapping is learnt, unseen test feature vectors,x∗,
may arrive at arbitrary times and therefore do not possess
temporal metadata.

In [11], Rahimi et al describe a system which tackles
similar problems to those set forth above: a regression from
images to a continuous representation is learnt from a semi-
supervised training set, supported by a temporal dynamic
model. However, because our emphasis here is on creating a
practical, real-time system, there are a number of significant
differences between the two approaches:

1. To infer the input–output mapping for unseen inputs in
real-time, we use asparseregression model.

2. Our method is fully Bayesian, meaning that output pre-
dictions are provided with a measure of uncertainty.

3. Rather than using raw pixel data, input images are
processed to obtain different types of feature, believed
to be beneficial in learning and executing the mapping.

4. During the learning phase, all unknown modelling pa-
rameters are inferred from data as part of the Bayesian
framework: we do not require known dynamicsa pri-
ori.

In Sec. 4, an experimental evaluation illustrates the benefits
associated with these characteristics.

1.1. Feature extraction

The next section explains how the mapping from inputs
to outputs is learnt. Before this, we describe how general
image data is converted into feature vectors.

Because the target object will not necessarily occupy the
entire image, the first task is to extract the appropriate sub-
image containing the target. Localization/tracking imple-
mentation is described in Sec. 3.1; for now we useI ′τ = Iτ

to denote the sub-image extracted from theτ th input image.
I ′τ is then filtered with twofeature transforms

1Sec. 1.1 explains how image data is converted into a feature vector
that can be used by the learning algorithm.

• fg(I ′τ ) extracts the greyscale intensity at each pixel2.
Histogram equalization [7] is then used to provide
some tolerance to lighting variation. Finally the re-
sult is vectorized by raster-scanning the pixels to give
a vectorxg.

• fe(I ′τ ) also obtains the intensity for each pixel first;
however this greyscale image is then processed with
steerable filters[4] to obtain theedge energyfor each
pixel. The output of this is then raster-scanned into a
vectorxe.

A complete exemplar feature vector is the concatenation of
xg, xe and the temporal metadata

x =
[
xT

g xT
e τ

]T ∈ Rr. (1)

Exactly the same procedure as this is used to obtain feature
vectors from unseen test images, except temporal metadata
is not included for these.

2. Sparse, semi-supervised Gaussian process
regression

We wish to map feature vectorsx ∈ Rr to outputsy ∈
Rd given training dataX ,Y. There are many approaches
for learning a mapping, however the technique employed
here is subject to three conditions:

1. The training data are semi-supervised. To enable use
of the large number of unlabelled exemplars, prior
knowledge must be incorporated.

2. Our intention is to create a real-time system, so a map-
ping that is efficient to execute is essential.

3. To enable further processing (e.g., in a filter), a mea-
sure of predictive uncertainty is required.

As discussed in Sec. 1, we use Gaussian process regression
because it is known to be accurate both in terms of mean
predictions and predictive uncertainty. This is a Bayesian
approach in which prior knowledge is readily incorporated,
satisfying the first of the above conditions, and a probabil-
ity distribution is maintained over all unknown quantities
thereby satisfying the last condition. To yield an efficient
mapping, we follow the work of [13] to create asparseso-
lution in which only a subset of the training data is retained
for use at runtime.

2.1. Gaussian process regression

Gaussian process learning defines a probability distrib-
ution directly onto the space of functions [20]. This is de-
scribed by a mean andcovariance functionc(x(i),x(j)). If

2How this is achieved depends on the format in which the image is
received.



c(x(i),x(j)) has a high positive value, our prior belief is that
y(x(i)) andy(x(j)) are highly correlated and any informa-
tion obtained abouty(x(i)) will be propagated toy(x(j)).
For the applications in this paper, the mean function will be
set at zero. The covariance function we use is based on the
sum of squared differences between the greyscale and edge
energy components of two exemplars:

c(x(i),x(j)) = β
{
α exp(−κg‖x(i)

g − x(j)
g ‖2)

+ (1− α) exp(−κe‖x(i)
e − x(j)

e ‖2)
}
, (2)

whereκg andκe are parameters dictating the characteristic
isotropic length-scales for comparisons between exemplars;
α mediates the influence of each feature type on the co-
variance; andβ is an overall scale. These parameters are
initially unknown and are added to the setθ, defined as
containing all suchhyper or nuisanceparameters. Values
for the unknowns inθ are established automatically by the
training procedure described in Sec. 2.6.

For reasons of clarity, the following derivation explains
one-dimensional regression only, hence we assume the set
Y = {y(i)|i ∈ L} contains scalar labels: Sec. 2.5 describes
multi-dimensional regression.ω ∈ Rnl is defined as the
vector of the scalar elements ofY.

The latent labels, z ∈ Rn, are defined as the generally
unknown labels for every exemplar; for labelled exemplars
we assume

y(i) = zi + εi (3)

wherei ∈ L andεi ∼ Normal
(
εi|0, σ2

)
. Assuming for the

time being thatz is known, a prediction for an unseen input
x∗ can be derived [20]

P (z∗|x∗,X , z, θ) = Normal
(
z∗|z̄∗, R2

)
(4a)

where

z̄∗ = c∗TC−1z; R2 = c(x∗,x∗)− c∗TC−1c∗. (4b)

Cij = c(x(i),x(j)) andc∗i = c(x(i),x∗) for i, j = 1 . . . n.
Equation (4) shows that prediction time scales asO(n) to
recover a mean andO(n2) for the variance (providedC
is inverted in advance). With any more than the smallest
training sets, Gaussian process prediction becomes compu-
tationally expensive and inappropriate for time-critical ap-
plications.

2.2. Sparsity for efficient regression

Faster prediction is possible if asparsesolution can be
found in which all but a few data points are removed from
the prediction formulae. For a given sparse solution, the
active setA = {a1, . . . , am} contains them < n indices
of the exemplars used in prediction; from this we define the

active labelsu = {zi|i ∈ A}. The sparse equivalent of
equation (4) is then

P (z∗|x∗,X ,u, θ) = Normal
(
z∗|z̄∗, R2

)
(5a)

where3

z̄∗ = c∗A
TC−1

A u; R2 = c(x∗,x∗)− c∗A
TC−1

A c∗A. (5b)

2.3. Inferring missing labels

Sec. 2.6 covers the choice ofA; for now we address the
fact thatz (and therebyu) is initially unknown by marginal-
izing out these missing labels

P (z∗|x∗,X ,ω, θ) =
∫

P (z∗|x∗,X ,u, θ)P (u|X ,ω, θ) du

(6)
where the posterior foru is factorized according to Bayes’
rule

P (u|X ,Y, θ) ∝ P (Y|X ,u, θ)P (u|X , θ). (7)

Following [13], the likelihood foru is derived from the
Gaussian process predictions at the labelled exemplars, plus
the independent noise assumed to be present on the supplied
labels (see equation (3))

P (Y|X ,u, θ) = Normal
(
Y|CLAC−1

A u,Λ
)

(8a)

whereΛ = diag(λ) and4

λi = Cii −CiAC−1
A CAi + σ2 i ∈ L. (8b)

A prior on the full latent labelsz is available through the
temporal metadata and any knowledge of the dynamics gov-
erning the training data. Givenu these are5 z̄ = C?AC−1

A u
and, if the prior covariance ofz is T , the prior overu re-
quired in equation (7) will be

P (u|X , θ) = Normal
(
u|0, CA(CT

?AT−1C?A)−1CA
)
(9)

The form ofT will vary with the nature of the metadata.
In many cases, knowledge is limited and this prior simply
states that thez varies smoothly. However, as shown in
[11], knowledge of a specific dynamical model governing
the exemplars’ trajectory is hugely beneficial to the learning
process andT can be derived from a Markov model of the
dynamics if one is known.

2.4. Executing the mapping for new inputs

Thanks to the exclusive use of Gaussian distributions, the
integration equation (6) is performed analytically giving

P (z∗|x∗,X ,ω, θ) = Normal
(
z∗|z̄∗, R2

)
(10a)

z̄∗ = c∗A
TQ−1CALΛ−1ω (10b)

R2 = c(x∗,x∗)− c∗A
T(C−1

A + Q−1)c∗A (10c)

3CA = {Cij |i, j ∈ A} ∈ Rm×m andc∗A = {c∗i |i ∈ A} ∈ Rm.
4CLA = {Cij |i ∈ L, j ∈ A} and the vectorCiA = {Cij |j ∈ A}
5C?A = {Cij |i ∈ [1, n], j ∈ A}.



whereQ = CALΛ−1CLA + CT
?AT−1C?A. All terms in

equation (10) not involvingx∗ may be pre-computed at
training time to give prediction speeds that scale asO(m)
to compute the mean andO(m2) for the variance. How-
ever, because computingc∗A is normally the most time-
consuming stage, whenm < 1000 both mean and variance
predictions roughly scale asO(m).

2.5. Multiple regression

The one-dimensional prediction equation (10) is ex-
tended to the multivariate case by settingω = ω(j) where
ω(j) = {yj |y ∈ Y} for each output dimensionj = 1 . . . d.
The independent noise variance is also assumed to vary so
σ2 = σ2

(j) thereby changingΛ andQ for each dimension.
The covariance parameters andA are identical for each di-
mension meaning that multivariate predictions require little
extra computation beyond univariate ones (i.e.,c∗A in equa-
tion (10) need only be computed once for eachx∗).

2.6. Training

In this subsection we address setting the modelling para-
meters: these are

θ = {κg, κe, α, β, σ2
(1...d),A} (11)

The training procedure may be simplified if a value for some
of these is known beforehand. For the remainder, an opti-
mal setting forθ is established by maximizing themarginal
likelihood [9]

P (Y|X , θ) =
d∏

j=1

Normal
(
ω(j)|0, S(j)

)
(12a)

where

S−1
(j) = Λ−1

(j) − Λ−1
(j)CLAQ−1

(j)C
T
LAΛ−1

(j). (12b)

The objective function is given by

θ = arg max
d∑

j=1

(
ωT

(j)S
−1
(j)ω(j) + log det S(j)

)
. (13)

which consists of two types of term: a data term measur-
ing how well our model fits the supplied labels and anOc-
cam factor[9] which penalizes complexity in the model and
thereby helps to prevent overfitting.

With the exception ofA, the parameters inθ are con-
tinuously valued and these are set by maximizing (13) by
gradient ascent [10] (the objective is differentiable) withA
containing all exemplars (i.e., the full, non-sparse setting).

Once this has converged, the problem of finding the dis-
crete setA remains. We define

A = active(X ,Y,m, θ) (14)

A = active(X ,Y, m, θ)

Require: individuals H, generations G, mutation rate pm

Randomly initialize H individuals {A(1) . . .A(H)}
for g = 1→ G do

Compute fitness (13) for each individual
Rank individuals from best to worst fitness
Store elite individual A∗ as fittest over all generations
for h = 1→ H − 1 do

Select parents A(p),A(q) biassed by rank
Produce offspring Â(h) with m random indices from
parents

end for
Clone elite individual A(H) ← A∗
Replace all individuals with offspring A(h) ← Â(h)

With probability pm, replace indices with random value
end for
Return A∗

Figure 2. Pseudo-code for selecting the active setA. Using this
simple genetic algorithm withn = 100, a setting ofH =
12, pm = 0.01, G = 300 has proved effective.

as the function returning the optimal active set given the
training data,m and the continuous parameters inθ. For
the demonstrations in this paper, active(·) is approximately
implemented by the genetic algorithm [6] shown in Fig. 2
because it was found to converge to a good solution faster
than other methods. This heuristic search method is effec-
tive (see Sec. 4.1), but a topic for further research is to un-
derstand better the structure ofA and the objective equation
(13) and thereby devise a faster and more optimal training
algorithm.

3. Implementation details

The previous section explains how the S3GP can be
trained from, and make predictions for, feature vectors ex-
cised from images. This section explains how these are ob-
tained, firstly by tracking the target region of the image and
then by conducting a calibration process in which training
data pertinent to an application are gathered.

3.1. Target localization and tracking

In some instances, the entire image will be relevant to the
mapping being learnt and there is no need to localize any
particular region of it. When localization is necessary, we
use the tracking algorithm of [21] for its versatility and run-
time efficiency. If a model of the target region’s appearance
is available beforehand (e.g., an eye or a face), an object de-
tection algorithm (e.g., [18]) may be trained to initialize the
tracker. Failing this, the tracker must be initialized manu-
ally prior to calibration.



Figure 3. Gaze calibration pattern. An animated target moves
around the screen in a spiral pattern. At 16milestones(marked
“x” in diagram) the target comes to rest for 1 second and a la-
belled exemplar is recorded. As the point moves between each
milestone, 5 further unlabelled exemplars are also recorded. See
additional material.

Figure 4. Typical training exemplars. These four images were cap-
tured during the calibration process for a gaze tracker. They were
obtained by moving an animated spot to the four corners of the
computer display (these are the first fourmilestones: see Fig. 3).

3.2. Calibration

The method of calibration will vary depending on appli-
cation. For cases where the output is low-dimensional (i.e.,
d ≤ 3) and where the input appearance is under the user’s
control, an animated visual pattern is used, each step of
which symbolizes a particular output value. The complete
pattern spans the space of possible outputs and, when dis-
played on screen, the user is expected to follow it, thereby
providing the appropriate inputs.

As an example of this, Fig. 3 shows the calibration pat-
tern used to provide training data for gaze tracking. An ani-
mated spot moves between 16milestonesarranged in a spi-
ral pattern around the computer screen. At each milestone,
the spot pauses for one second after which an exemplar is
recorded and added to the setL. A label, corresponding to
the spot’s 2D screen coordinates, is also added toY. When
the spot is moving between two milestones, five additional
exemplars are recorded; however these remain unlabelled
and are placed in the setU because the gaze direction for
these is less predictable. All exemplars have temporal meta-
data stored for them which is the frame of the calibration
pattern that was displayed when the image was recorded.

Fig. 4 shows some typical images captured during this
calibration process; clearly the quality of the training data
rests on the user’s ability to follow the spot around the
screen and the additional material contains a demonstration
of this process. For users with a disability, more appropriate
or specialized calibration schemes may need to be devised.

4. Experimental results

This section evaluates the performance of the S3GP and
examines the influence of its particular characteristics.

A prominent application of this work is gaze tracking
(see Fig. 4) and the following experiments primarily use
gaze data for evaluation. Training data is collected as de-
scribed in Sec. 3.2, and independent test data is obtained
using a similar visual pattern but with random milestone lo-
cations rather than a fixed pattern. The test data consist of
200 image/label pairs and, as with the calibration data, the
accuracy of these labels is governed by the test subjects’
ability to gaze at a single location. The trained S3GP re-
turns pixel locations, but errors are reported in degrees to
align with the gaze tracking literature [14].

4.1. Efficiency and the effects of sparsity

Fig. 5 shows how the S3GP’s predictive error varies with
sparsity. As run-time cost varies approximately linearly
with m, a setting of0.2 < m/n < 0.4 offers a considerable
speed improvement for little reduction in accuracy com-
pared to a non-sparse model. In the case of gaze tracking,
the standard calibration process givesn = 80 (nl = 16);
with m = 24, the S3GP takes 8s to train (24s including cal-
ibration) and requires 1.3ms per frame to generate predic-
tions. The training time is dominated by finding the active
set (see Fig. 2) and if sparsity is not used, training time be-
comes negligible, however each prediction then costs 3.3ms
per frame.

On a 2.4GHz Pentium IV PC, the run-time perfor-
mance (including image capture, feature extraction and re-
gion tracking) is approximately 40% CPU utilization for
640×480 pixel video at 30Hz; the proportional decrease in
this requirement means that gaze tracking at 10–15Hz con-
stitutes a “background task” leaving the majority of cycles
free for other processes.

4.2. Predictive uncertainty

The output estimates made by the S3GP (10) are
Gaussian distributions which therefore come with not only
an expected prediction (the mean) but also with a measure
of uncertainty (the variance). Fig. 6 shows with synthetic
data how the S3GP error bars (variance predictions) com-
pare to those of the RVM [15]; both make reasonable pre-
dictions of uncertainty near the training data, but away from
them the RVM becomes increasingly overconfident whereas
the S3GP error bars grow to a large prior uncertainty.

It is possible to fuse such probabilistic estimates over
time with a statistical filter, and as the statistics are Gaussian
the simple and efficient Kalman filter can be used [5]. The
filter fuses successive estimates with a motion model; for
gaze tracking this is weak, stating that the expected change
in gaze point between observations is zero, but with a stan-



−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1 error bars grow
with distance from data

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1 error bars tend to zero 
with distance from data

S3GP RVM
Figure 6. Gaussian process error bars. In this synthetic one-dimensional example, the S3GP is compared to the RVM [15]. Crosses indicate
training data points for which an appropriate dynamical prior is known and the solid lines are the mean interpolants which, for both cases,
are good. The shaded region shows the 90% confidence interval and it can be seen that the S3GP is subjectively better in that it becomes
lessconfident as distance from the training data increases.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

sparsity m/n

no
rm

al
iz

ed
 e

rr
or

(a)
(b)

Figure 5. Sparsity/error tradeoff. This graph shows how predictive
error of the S3GP varies with the sparsity: the error has been nor-
malized such that the non-sparse (m = n) solution has an error of
1. (a) Eye data. (b) Synthetic data.

Error with Error with
Algorithm raw outputs Kalman filter

S3GP 1.29◦ 0.83◦

RVM 1.57◦ 1.57◦

Figure 7. Benefits of accurate error bars. With good estimates of
predictive uncertainty, the S3GP’s accuracy is improved by incor-
porating it with a simple Kalman filter [5]. The same is not true of
the RVM [15] since its predictions are overconfident.

dard deviation of 100 pixels. Fig. 7 shows the variation in
gaze tracking performance with and without a Kalman filter
for the S3GP and RVM. The S3GP performance is improved
by filtering because outlying estimates are exposed by their
large error bars and effectively ignored by the filter; how-
ever the RVM receives absolutely no benefit from filtering
since its predictions are overconfident, particularly outliers.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

supervision n
l
 / n

no
rm

al
iz

ed
 e

rr
or

(a)
(b)

Figure 8. Semi-supervised performance. This graph shows the
variation of S3GP accuracy with supervision: the error has been
normalized such that the supervised (nl = n) solution has an er-
ror of 1. (a) S3GP performance on eye data. (b) Gaussian process
performance ignoring unlabelled exemplars.

4.3. Semi-supervised performance

The graph in Fig. 8 plots the variation in S3GP accu-
racy with the degree of supervision (i.e., how many of the
training data are labelled). Performance improves dramat-
ically with increasing supervision up tonl/n = 0.4; be-
yond this, additional supervision yields diminishing im-
provements in accuracy. The second curve shows the ac-
curacy of a Gaussian process trained using only the labelled
exemplars in a training set, ignoring unlabelled ones. There
is a consistent improvement of the S3GP over the stan-
dard Gaussian process for all degrees of supervision which
comes at no additional run-time cost.



Error
Features Gaze tracking Hand gesture
Greyscale 1.32◦ 9.25%
Edge energy 2.74◦ 12.35%
Combined 1.29◦ 7.38%

Figure 9. Feature selection improves accuracy. By using a mix-
ture of greyscale and edge energy features, the S3GP attains better
accuracy than using either alone. For gaze tracking, the benefit
is marginal as greyscale features describe the output well; when
inferring the degree to which a hand is open (see Fig. 13), the
combined feature types produce a more significant improvement.

Gaze tracker Calibration points Angular error
S3GP+filter 16 0.83◦

Baluja et al [2] 2000 1.5◦

Tan et al [14] 256 0.5◦

Tobii [16] - <0.5◦

Figure 10. Gaze tracking accuracy. This table compares the accu-
racy of the S3GP gaze tracker to the commercial Tobii [16] system
and the gaze trackers in [14, 2].

4.4. Benefits of multiple feature types

This last set of performance experiments assess the ad-
vantages afforded by using more than one type of image fea-
ture (see Sec. 1.1). The table in Fig. 9 shows how the use of
both greyscale and edge energy feature types improves gaze
tracking performance, although the benefit over greyscale
features alone is negligible. For a different application, that
of inferring the degree to which a hand is open (see Fig. 13),
there is a significant improvement through using both fea-
ture types as, in this case, edge-based appearance is more
significant to the process being modelled.

4.5. Applications

The gaze tracking application has al-
ready been discussed in detail and is demon-
strated in a video available for download from
http://mi.eng.cam.ac.uk/∼omcw2/video/s3gp.zip. Fig. 10
compares the performance of the S3GP gaze tracker
to other systems. In [14], error is computed using a
“leave-one-out” test rather than with completely new test
data. A leave-one-out test for gaze-tracking data with the
S3GP gives an error of 0.68◦. While Fig. 10 shows that
there are more accurate options than the S3GP, it is worth
reiterating that

1. S3GP gaze tracking does not require specialized hard-
ware (i.e., infrared lamps or cameras) which means
that it is not limited to particular environments (e.g.,
it is not limited to just indoor use) and costs no more
than a web-cam;

2. calibration/learning is fast and simple thanks to the
semi-supervised nature of the S3GP;

Figure 12. Inferring head pose. Exhaustively labelling images of a
human head with pitch/yaw angle is difficult without instrument-
ing the subject. As the S3GP is semi-supervised the mapping can
be learnt with only a few key images labelled.

3. at run-time only a fraction of available CPU cycles are
required due to the sparse regression model.

A movie demonstrating gaze tracking is included in the ad-
ditionally submitted material; this includes a demonstration
of text entry using the S3GP gaze tracking in conjunction
with the Dashersystem [19]. If this paper is accepted for
presentation at CVPR, text entry with S3GP gaze tracking
and Dasher will be demonstrated live.

As a demonstration of the S3GP mapping to higher di-
mensions, Fig. 11 shows a system for inferring arm artic-
ulation. The output space consists of the image locations
of the elbow joint and hand giving a total of four degrees
of freedom (the shoulder is assumed to be in a fixed posi-
tion). A training set consisting ofn = 450 exemplars was
collected, of whichnl = 100 were manually labelled. A
temporal prior was used to exploit the fact that the motion
in the training video was smooth. A sparse mapping was set
with m = 0.4n, meaning that, once trained, predictions for
unseen images took 7.5ms.

In Fig. 12, the S3GP is used to infer the pitch and yaw
of a human head. This application is a good candidate for
the semi-supervised treatment because a teacher providing
labelled exemplars may know or be able to infer the head
orientation in a few key images, but to label accurately the
pose in every image is difficult and inaccurate without in-
strumenting the subject: something that is not always prac-
tical. In this example,n = 285 andnl = 10.

Further demonstrations are shown in Fig. 13 in which
a one-dimensional signal is obtained from gestures with ei-
ther the hand or eyebrow. Text input with a one-dimensional
continuous signal is possible via the Dasher system [19] and
these simple uses for the S3GP offer a light-weight com-
munication device for people that are unable to use a con-
ventional keyboard/mouse (as is the gaze tracking demon-
strated above). In the case of the hand, the tracked position
information can be exploited to create a virtual mouse that,
due to the absence of any mechanical load, may be appro-
priate for people with repetitive strain injuries. For both
of these examples, there weren = 55 exemplars of which
nl = 10 were labelled.



Figure 11. Mapping to higher dimensions. In this example, the S3GP has learnt the mapping from images to 2D hand/elbow position,
resulting in a four-dimensional output space. Once trained, pose inference takes place in real-time, requiring 55% CPU cycles. This is
shown in the video included as additional material.

Figure 13. Hand and eyebrow control. Using hand/facial gestures
to generate a one-dimensional signal in real-time with the S3GP.

5. Discussion

The S3GP is a sparse, semi-supervised learning algo-
rithm that has been shown to be both accurate and versa-
tile. Meaningful estimates of output uncertainty means that
the S3GP’s accuracy is further improved by statistical filter-
ing. A major strength of the S3GP is the speed of run-time
execution. This is in part thanks to the exclusive use of
Gaussian distributions which make the Bayesian formulae
analytically tractable. The disadvantage is that the Gaussian
distribution is unimodal and therefore the S3GP is not ap-
plicable to situations exhibiting significant ambiguity. A
future challenge is to tackle more ambiguous situations, re-
quiring multimodal output distributions, without sacrificing
real-time efficiency.

References

[1] A. Agarwal and B. Triggs. 3D human pose from silhouettes
by relevance vector regression. InProc. Conf. Computer Vi-
sion and Pattern Recognition, 2004.

[2] S. Baluja and D. Pomerleau. Non-intrusive gaze tracking
using artificial neural networks. InAdvances in Neural In-
formation Processing Systems, volume 6, 1994.

[3] L. Csat́o and M. Opper. Sparse online Gaussian processes.
Neural Computation, 14:641–668, 2002.

[4] W. Freeman and E. Adelson. The design and use of steer-
able filters. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 13(9):891–906, 1991.

[5] A. Gelb, editor. Applied Optimal Estimation. MIT Press,
Cambridge, MA, 1974.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Kluwer, Boston, MA., 1989.

[7] A. Jain.Fundamentals of Digital Image Processing. System
Sciences. Prentice-Hall, New Jersey, 1989.

[8] N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse
Gaussian process methods: the informative vector machine.
In Advances in Neural Information Processing Systems, vol-
ume 15, 2002.

[9] D. MacKay. Information Theory, Inference and Learning
Algorithms. Cambridge University Press, September 2003.

[10] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.Nu-
merical Recipes in C++: The Art of Scientific Computing.
Cambridge University Press, 2002.

[11] A. Rahimi, B. Racht, and T. Darrell. Learning appearance
manifolds from video. InProc. Conf. Computer Vision and
Pattern Recognition, pages 868–875, 2005.

[12] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estima-
tion with parameter sensitive hashing. InProc. Int. Conf. on
Computer Vision, 2003.

[13] E. Snelson and Z. Ghahramani. Sparse parametric Gaussian
processes. InAdvances in Neural Information Processing
Systems, volume 18, 2005.

[14] K. Tan, D. Kriegman, and N. Ahuja. Appearance-based eye
gaze estimation. InWorkshop on Applications of Computer
Vision, pages 191–195, 2002.

[15] M. Tipping. Sparse Bayesian learning and the relevance vec-
tor machine.Journal of Machine Learning Research, 1:211–
244, 2001.

[16] Tobii Technologies. http://www.tobii.com, 2004.
[17] V. Vapnik. The Nature of Statistical Learning Theory.

Springer Verlag, New York, 1995.
[18] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. InProc. Conf. Computer Vision
and Pattern Recognition, 2001.

[19] D. Ward and D. MacKay. Fast hands-free writing by gaze
direction.Nature, 418:838, 2002.

[20] C. Williams and C. Rasmussen. Gaussian processes for re-
gression. InAdvances in Neural Information Processing Sys-
tems, volume 8, pages 598–604, 1996.

[21] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian
learning for efficient visual tracking.IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 27(8):1292–1304,
August 2005.


