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Abstract

The objective of this work is to recognize faces using sets
of images in visual and thermal spectra. This is chal-
lenging because the former is greatly affected by illumina-
tion changes, while the latter frequently contains occlusions
due to eye-wear and is inherently less discriminative. Our
method is based on a fusion of the two modalities. Specif-
ically: we examine (i) the effects of preprocessing of data
in each domain, (ii) the fusion of holistic and local facial
appearance, and (iii) propose an algorithm for combining
the similarity scores in visual and thermal spectra in the
presence of prescription glasses and significant pose varia-
tions, using a small number of training images (5-7). Our
system achieved a high correct identification rate of 97%
on a freely available test set of 29 individuals and extreme
illumination changes.

1 Introduction

Variations in head pose and illumination are the most chal-
lenging aspects of face recognition. In practice, the effects
of changing pose are usually less problematic and can of-
tentimes be overcome by acquiring data over a time period
e.g. by tracking a face. Consequently, image sequence or
image set matching has recently gained a lot of attention in
the literature [2] [11] [29] and is the paradigm adopted in
this paper as well. In contrast, illumination is much more
difficult to deal with: the illumination setup is in most cases
not possible to control and its physics difficult to accurately
model.

Thermal spectrumimagery is useful in this regard as it
is virtually insensitive to illumination changes, see Fig. 1.
On the other hand, it lacks much of the individual, dis-
criminating facial detail contained in visual images. In this
sense, the two modalities can be seen as complementing
each other. The key idea behind the system presented in
this paper is that robustness to extreme illumination changes
can be achieved byfusingthe two. This paradigm will fur-
ther prove useful when which we consider the difficulty of
recognition in the presence of prescription glasses.

1.1 Mono-sensor based techniques

Optical sensors. Among the most sensors used in face

Figure 1: Invariance: Illumination changes have a dramatic ef-
fects on images acquired in the visible light spectrum (top row). In
contrast, thermal imagery (bottom row) shows remarkable invari-
ance.

biometric systems is the optical imager. This is driven
by its availability and low-cost. An optical imager cap-
tures the light reflectance of the face surface in the visi-
ble spectrum. The visible spectrum provides features that
depend only on surface reflectance. Thus, it is obvious
that the face appearance changes according to the ambient
light. In order to overcome the lighting, pose and facial ex-
pression changes, a flurry of face recognition algorithms,
from the two well-known broad categories, appearance-
based and feature-based methods, has been proposed [25].
Appearance-based methods find the global properties of the
face pattern and recognize the face as a whole. In contrast,
feature-based methods [24] [21] [12] explore the statisti-
cal and geometrical properties of facial features like eyes
and mouth. The face recognition performance depends on
the accuracy of facial feature detection. Moreover, local
and global lighting changes cause existing face recognition
techniques for the visible imagery to perform poorly.

Infrared sensors. Recent studies have proved that face
recognition in the thermal spectrum offers a few distinct
advantages over the visible spectrum, including invariance
to ambient illumination changes [38] [32] [26] [31]. This
is due to the fact that a thermal infrared sensor measures
the heat energy radiation emitted by the face rather than
the light reflectance. A thermal sensor generates imaging
features that uncover thermal characteristics of the face pat-
tern. Indeed, thermal face recognition algorithms attempt
to take advantage of such anatomical information of the hu-
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man face as unique signatures.

Appearance-based face recognition algorithms applied
to thermal IR imaging consistently performed better than
when applied to visible imagery, under various lighting con-
ditions and facial expressions [22] [30] [32] [28]. Further
performance improvements were achieved using decision-
based fusion [32]. In contrast to other techniques, Srivas-
tanaet al. [33], performed face recognition in the space of
Bessel function parameters. First, they decompose each in-
frared face image using Gabor filters. Then, they represent
the face by a few parameters by modeling the marginal den-
sity of the Gabor filter coefficients using Bessel functions.
This approach has been improved by Buddharajuet al. [8].
Recently, Friedrichet al. [17] shown that IR-based recogni-
tion is less sensitive to changes in 3D head pose and facial
expression.

1.2 Multi-sensor based techniques

As the surface of the face and its temperature have noth-
ing in common, one would state that the extracted cues
from both sensors are not redundant and yet complemen-
tary. Several attempts have been made in face recognition
based on the fusion of different types of data from multiple
sensors. Face recognition algorithms based on the fusion of
visible and thermal IR images demonstrated higher perfor-
mance than individual image types [7] [27] [10] [18]. Bio-
metric systems that integrate face and speech signals [4],
the face and fingerprint information [20], and the face and
the ear images [9] improved the accuracy in personal iden-
tification.

Recently, Heoet al. [19] proposed two types of visible
and thermal fusion technique, the first fuses low-level data
while the second fuses matching outputs. Data fusion was
implemented by applying pixel-based weighted averaging
of co-registered visual and thermal images. Decision fu-
sion was implemented by combining the matching scores
of individual recognition modules. To deal with occlusions
caused by eyeglasses in thermal imagery, they used a sim-
ple ellipse fitting technique to detect the circle-like eyeglass
regions in the IR image and replaced them with an average
eye template. Using a commercial face recognition system,
FaceIt, they demonstrated improvements in recognition ac-
curacy.

2 Method Details

In the sections that follow we explain our system in detail,
the main components of which are conceptually depicted in
Fig. 2.

2.1 Matching image sets

In this paper we deal with face recognition fromsetsof im-
ages, both in the visual and thermal spectrum. We will show
how to achieve illumination invariance using a combination
of simple data preprocessing (§2.2), local features (§2.3)
and modality fusion (see§2.4). Hence, the requirements
for the basic set-matching are that of (i) some pose general-
ization and (ii) robustness to noise. We compare two image
sets by modelling the variations within a set using a linear
subspace and comparing two subspaces by finding the most
similar modes of variation within them.

The modelling step is a simple application of Principal
Component Analysis (PCA) without mean subtraction. In
other words, given a data matrixd (each column repre-
senting a rasterized image), the subspace is spanned by the
eigenvectors of the matrixC = ddT corresponding to the
largest eigenvalues; we used 5D subspaces.

The similarity of two subspacesU1 andU2 is quantified
by the cosine of the smallest angle between two vectors con-
fined to them:

ρ = cos θ = max
u∈U1

max
v∈U2

uT v. (1)

The quantityρ is also known as the first canonical corre-
lation. It is this implicit “search” over entire subspaces
that achieves linear pose interpolation and extrapolation, by
finding the most similar appearances described by the two
sets. The robustness of canonical correlations to noise is
well detailed in [6].

Further appeal of comparing two subspaces in this man-
ner is contained in its computational efficiency. IfB1 and
B2 are the corresponding orthonormal basis matrices, the
computation ofρ can be rapidly performed by finding the
largest singular value of the5× 5 matrixBT

1 B2 [6].

2.2 Data preprocessing & feature extraction

The first stage of our system involves coarse normalization
of pose and brightness. We register all faces, both in the vi-
sual and thermal domain, to have the salient facial features
aligned. Specifically, we align the eyes and the mouth due
to the ease of detection of these features (e.g. see [3] [5]
[13] [16] and [35]). The 3 point correspondences, between
the detected and the canonical features’ locations, uniquely
define an affine transformation which is applied to the orig-
inal image. Faces are then cropped to80 × 80 pixels, as
shown in Fig. 3.

Coarse brightness normalization is performed by band-
pass filtering the images. The aim is to reduce the amount of
high-frequency noise as well as extrinsic appearance varia-
tions confined to a low-frequency band containing little dis-
criminating information. Most obviously, in visual imagery,
the latter are caused by illumination changes [1].
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Visual imagery (image set) Thermal imagery (image set)

Features

Facial feature detection & registration

Modality and data fusion

Glasses detection

PreprocessingPreprocessing

Trained classifier

Figure 2: System overview:Our system consists of three main modules performing (i) data preprocessing and registration, (ii) glasses
detection and (iii) fusion of holistic and local face representations using visual and thermal modalities.

Figure 3:Registration:Shown is the original image in the visual
spectrum with detected facial features marked by yellow circles
(left), the result of affine warping the image to the canonical frame
(centre) and the final registered and cropped facial image.

We consider the following type of a band-pass filter:

IF = I ∗Gσ=W1 − I ∗Gσ=W2 , (2)

which has two parameters - the widthsW1 and W2 of
isotropic Gaussian kernels. These are estimated from a
small training corpus of individuals in different illumina-
tions. Fig. 4 shows the recognition rate across the corpus
as the values of the two parameters are varied. The optimal

values were found to be2.3 and6.2 for visual data; the op-
timal filter for thermal data was found to be alow-passfilter
with W2 = 2.8 (i.e.W1 was found to be very large). Exam-
ples are shown in Fig. 5. It is important to note from Fig. 4
that the recognition rate varied smoothly with changes in
kernel widths, showing that the method is not very sensitive
to their exact values, which is suggestive of good general-
ization to unseen data.

The result of filtering visual data is further scaled by a
smooth version of the original image:

ÎF (x, y) = IF (x, y)./(I ∗Gσ=W2), (3)

where./ represents element-wise division. The purpose of
local scaling is to equalize edge strengths in dark (weak
edges) and bright (strong edges) regions of the face; this is
similar to the Self Quotient Image of Wanget al. [37]. This
step further improves the robustness of the representation to
illumination changes, see§3.
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Figure 4:Band-pass filter:The optimal combination of the lower and upper band-pass filter thresholds is estimated from a small training
corpus. The plots show the recognition rate using a single modality, (a) visual and (b) thermal, as a function of the widthsW1 andW2 of
the two Gaussian kernels in(2). It is interesting to note that the optimal band-pass filter for the visual spectrum passes a rather narrow,
mid-frequency band, whereas the optimal filter for the thermal spectrum is in fact alow-passfilter.

(a) Visual

(b) Thermal

Figure 5: Preprocessing:The effects of the optimal band-pass
filters on registered and cropped faces in (a) visual and (b) thermal
spectra.

2.3 Single modality-based recognition

We compute the similarity of two individuals using only a
single modality (visual or thermal) by combining the holis-
tic face representation described in§2.2 and a representa-
tion based on local image patches. These have been shown
to benefit recognition in the presence of large pose changes
[29].

As before, we use the eyes and the mouth as the most dis-

Figure 6:Features: In both the visual and the thermal spectrum
our algorithm combines the similarities obtained by matching the
holistic face appearance and the appearance of three salient local
features - the eyes and the mouth.

criminative regions, by extracting rectangular patches cen-
tred at the detections, see Fig. 6. The overall similarity score
is obtained by weighted summation:

ρv/t = ωh · ρh + ωm · ρm + (1− ωh − ωm) · ρe, (4)

whereρm, ρe andρh are the scores of separately matching,
respectively, the mouth, the eyes and the entire face regions,
andωh andωm the weighting constants.

The optimal values of the weights were estimated from
the offline training corpus. For the visual spectrum we ob-
tainedωe = 0.3, while the mouth region was found not to
improve recognition (i.e.ωm = 0.0). The relative magni-
tudes of the weights were found to be different in the ther-

4



mal spectrum, both the eye and the mouth region contribut-
ing equally to the overall score:ωm = 0.1, ωh = 0.8.

2.4 Fusing modalities

Until now we have focused on deriving a similarity score
between two individuals given sets of images in either ther-
mal or visual spectrum. A combination of holistic and local
features was employed in the computation of both. How-
ever, the greatest power of our system comes from the fu-
sion of the two modalities.

Givenρv andρt, the similarity scores corresponding to
visual and thermal data, we compute the joint similarity as:

ρf = ωv(ρv) · ρv + (1− ωv(ρv)) · ρt. (5)

Notice that the weighting factors are no longer constants,
but functions. The key idea is that if the visual spectrum
match is very good (i.e.ρv is close to1.0), we can be con-
fident that illumination difference between the two images
sets compared is mild and well compensated for by the vi-
sual spectrum preprocessing of§2.2. In this case, visual
spectrum should be given relatively more weight than when
the match is bad and the illumination change is likely more
drastic.

The functionωv ≡ ωv(ρv) is estimated in three stages:
first (i) we estimatêp(ωv, ρv), the probability thatωv is the
optimal weighting given the estimated similarityρv, then
(ii) computeω(ρv) in the maximum a posteriori sense and
finally (iii) make an analytic fit to the obtained marginal
distribution. Step (i) is challenging and we describe it next.

Iterative density estimate. The principal difficulty of es-
timating p̂(ωv, ρv) is of practical nature: in order to ob-
tain an accurate estimate (i.e. a well-sampled distribution),
a prohibitively large training database is needed. Instead,
we employ a heuristic alternative. Much like before, the
estimation is performed using the offline training corpus.

Our algorithm is based on an iterative incremental up-
date of the density, initialized as uniform over the domain
ω, ρ ∈ [0, 1]. We iteratively simulate matching of an un-
known person against a set gallery individuals. In each it-
eration of the algorithm, these are randomly drawn from
the offline training database. Since the ground truth identi-
ties of all persons in the offline database is known, for each
ω = k∆ω we can compute the separation i.e. the difference
between the similarities of the test set and the set corre-
sponding to it in identity, and that between the test set and
the most similar set that doesnotcorrespond to it in identity.
Density p̂(ω, ρ) is then incremented at each(k∆ω, ρp,p)
proportionally toδ(k∆ω) after being passed through the
sigmoid function.

Input : visual datadv(person, illumination),
thermal datadt(person, illumination).

Output : density estimatêp(ω, ρv).

1: Init
p̂(ω, ρv) = 0,

2: Iteration
for all illuminationsi, j and personsp

3: Iteration
for all k = 0, . . . , 1/∆ω, ω = k∆ω

5: Separation givenω
δ(k∆ω) = minq 6=p[ωρp,p

v + (1− ω)ρp,p
t

−ωρp,q
v + (1− ω)ρp,q

t ]

6: Update density estimate
p̂(k∆ω, ρp,p

v ) = p̂(k∆ω, ρp,p
v )

+sig(C · δ(k∆ω))

7: Smooth the output
p̂(ω, µ) = p̂(ω, µ) ∗Gσ=0.05

8: Normalize to unit integral
p̂(ω, ρ) = p̂(ω, ρ)/

∫
ω

∫
ρ
p̂(ω, ρ)dρdω

Figure 7:Offline: Optimal fusion training algorithm.

Fig. 7 summarizes the proposed offline learning algo-
rithm. An analytic fit top̂(ωv) in the form(1+exp(a))/(1+
exp(a/ρv)) is shown in Fig. 8.

2.5 Dealing with glasses

The appeal of using the thermal spectrum for face recog-
nition stems mainly from its invariance to illumination
changes, in sharp contrast to visual spectrum data. The ex-
act opposite is true in the case of prescription glasses, which
appear as dark patches in thermal imagery, see Fig. 5. The
practical importance of this can be seen by noting that in the
US in 2000 roughly 96 million people, or 34% of the total
population, wore prescription glasses [36].

In our system, the otherwise undesired, gross appearance
distortion that glasses cause in thermal imagery is used to
help recognition by detecting their presence. If the sub-
ject is not wearing glasses, then both holistic and all local
patches-based face representations can be be used in recog-
nition; otherwise the eye regions in thermal images are ig-
nored.
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Figure 8:Modality fusion: The contribution of visual matching,
as a function of the similarity of visual imagery. A low similar-
ity score between image sets in the visual domain is indicative of
large illumination changes and consequently our algorithm leant
that more weight should be placed on the illumination-invariant
thermal spectrum.

Glasses detection We detect the presence of glasses by
building representations for the left eye region (due to the
symmetry of faces, a detector for only one side is needed)
with and without glasses, in the thermal spectrum. The
foundations of our classifier are laid in§2.1. Appearance
variations of the eye region with out without glasses are
represented by two 6D linear subspaces, see Fig. 9 for ex-
ample training data. Patches extracted from a set of thermal
imagery of a novel person is then compared with each sub-
space. The presence of glasses is deduced when the corre-
sponding subspace results in a higher similarity score. We
obtain close to flawless performance on our data set (also
see§3 for description), as shown in Fig. 10.

The presence of glasses severely limits what can be
achieved with thermal imagery, the occlusion heavily af-
fecting both the holistic face appearance as well as that
of the eye regions. This is the point at which our method
heavily relies on decision fusion with visual data, limiting
the contribution of the thermal spectrum to matching using
mouth appearance only i.e. settingωh = ωe = 0.0 in (4).

3 Empirical Evaluation

We evaluated the described system on the“Dataset
02: IRIS Thermal/Visible Face Database”subset of
the Object Tracking and Classification Beyond the Vis-
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Figure 11:Training sets: Shown are histograms of the number
of images per person used to train our algorithm. Depending on
the exact head poses assumed by the user we typically obtained
7-8 visual spectrum images and typically a slightly lower number
for the thermal spectrum.

ible Spectrum (OTCBVS)database1, freely available
for download athttp://www.cse.ohio-state.edu/

OTCBVS-BENCH/. Briefly, this database contains 29 indi-
viduals, 11 roughly matching poses in visual and thermal
spectra and large illumination variations (some of these are
exemplified in Fig. 1).

Our algorithm was trained using all images in a single
illumination in which all 3 salient facial features could be
detected. This typically resulted in 7-8 images in the visual
and 6-7 in the thermal spectrum, see Fig. 11.

3.1 Results

A summary of the recognition results in shown in Tab. 1.
Firstly, note the poor performance achieved using both raw
visual as well as raw thermal data. The former is sugges-
tive of challenging illumination changes present in our data
set. This is further confirmed by significant improvements
gained with both band-pass filtering and the Self-Quotient
Image (of respectively 35% and 47%). On the other hand,
the reason for low recognition rate of raw thermal imagery
is twofold: we have previously argued that the two main
limitations of this modality are the inherently low discrimi-
native power and occlusions caused by prescription glasses.
The addition of the glasses detection module of§2.5 is of
little help at this point - some benefit is gained by steer-
ing away from misleadingly good matches between any two
people wearing glasses, but it is limited in extent as a very

1IEEE OTCBVS WS Series Bench; DOE University Research
Program in Robotics under grant DOE-DE-FG02-86NE37968;
DOD/TACOM/NAC/ARC Program under grant R01-1344-18;
FAA/NSSA grant R01-1344-48/49; Office of Naval Research under
grant #N000143010022.
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Figure 9: Appearance models:Shown are examples of glasses-on (top) and glasses-off (bottom) thermal data used to construct the
corresponding appearance models for our glasses detector.
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Figure 10:Glasses detection results:.

discriminative region of the face is lost. Furthermore, the
performance improvement by optimal band-pass filtering in
thermal imagery is much more modest than with visual data
(35% vs. 8%). Finally, fusion of holistic and local appear-
ance offered a small, yet statistically significant improve-
ment. The real power of our method becomes apparent
when the two modalities are fused. In this case the role
of the glasses detection module is much more prominent,
drastically decreasing the average error rate (from 10% to
3%).

4 Conclusion

In this paper we described a system for personal identifi-
cation based on a face biometric that uses cues from vi-
sual and thermal imagery. The two modalities are shown
to complement each other, their fusion providing good illu-
mination invariance and discriminative power between in-
dividuals. Prescription glasses, a major difficulty in the
thermal spectrum, are reliably detected by our method, re-
stricting the matching to non-affected face regions. Finally,
we examined how different preprocessing methods affect
recognition in the two spectra, as well as holistic and local

Representation Rec.

Visual

Holistic raw data 0.58

Holistic, band-pass 0.78

Holistic, SQI 0.85

Mouth+eyes+holistic
0.87

data fusion, SQI

Thermal

Holistic raw data 0.74

Holistic raw w/
0.77

glasses detection

Holistic, low-pass 0.80

Mouth+eyes+holistic
0.82

data fusion, low-pass

Proposed thermal + w/o glasses detection 0.90

visual fusion w/ glasses detection 0.97

Table 1: Recognition results: Shown is the average rank-
1 recognition rate using different face representations across all
combinations of illuminations.
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feature-based face representations. The proposed method
was shown to achieve a high recognition rate (97%) using
only a small number of training images (5-7) in the presence
of large illumination changes.

Our results suggest several possible avenues for im-
provement. We intend to make further use of the thermal
spectrum, by not only detecting the glasses, but also by seg-
menting them out. This is challenging across large pose
variations, such as those contained in our test set. Another
research direction we would like to pursue is that of syn-
thetically enriching the training corpus to achieve increased
robustness to pose differences between image sets (c.f. [23]
[34]).
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