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Abstract

A nowvel scheme is proposed for achieving motion seg-
mentation in low-frame rate videos, with application
to temporal super resolution. Probabilistic generative
models are commonly used to perform unsupervised mo-
tion segmentation in videos. While they provide a gen-
eral and elegant framework, they are hampered by se-
vere local minima problems and often converge to in-
accurate solutions, when there are more than one fore-
ground object in videos. This paper proposes a scheme,
where discriminative global constraints are enforced
i combination with generative learning, to overcome
the local minima problems. We demonstrate the effec-
tiveness of the proposed scheme by learning the appear-
ances and motions of multiple objects from a low frame
rate video with a small number of frames.

1. Introduction

This paper describes a scheme for achieving temporal
super resolution in monocular videos. The term tempo-
ral super resolution in this context implies the synthesis
of a number of intermediate frames such that the frame
rate of the video is increased, i.e. from 5Hz video to
30Hz. It is impossible to achieve high spatial and tem-
poral resolutions simultaneously in videos due to the
physical limitations of cameras. Recently there have
been a considerable research interest [1, 4, 5] in ob-
taining videos with high-temporal-resolution algorith-
mically, from low-frame-rate, high-spatial-resolution
videos.

One way to achieve temporal super resolution is to
identify moving objects in the low-frame-rate video,
learn their motions, shapes and appearances, as well
as occlusions. Once these parameters are learned, they
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can be used to render the intermediate frames. Learn-
ing needs to be done in an unsupervised manner, as
we do not have prior knowledge about the contents of
the video. Discriminative learning techniques usually
need training data and cannot be used in the conven-
tional way for our purpose. Generative models, on the
other hand, explain how a video is constructed given
the constituent parts of a video such as background,
foreground objects and their motion models. Unsu-
pervised learning in generative models perform the in-
verse process i.e. learning the constituents parts from
the video data. Figure 1(a) illustrates this idea. It is
usually assumed that the number of foreground objects
and their motions types are known apriori, to construct
the generative model.

A commonly used generative model of videos is the
layer-based representation [6], where the 3D scene is
decomposed into a number of 2D segments in layers.
Recently Pawan Kumar et al. [3] have shown that
they are able to learn and segment simple articulated
motion such as fronto-parallel walking using the layer-
based representation. The problem is formulated as
that of labeling each pixel in the video to one of the
rigidly moving objects. First they approximate the ap-
pearances and the shapes of objects by grouping pix-
els which have moved rigidly from frame to frame. A
multi-way graph-cut is used to refine the appearances
further. However, the initial grouping of pixels de-
pend on a large number of manually set parameters,
non-reversible hard decisions and a sequence of ad-hoc
clustering techniques. While they have produced im-
pressive results on a number of video sequences, it will
be difficult to generalize the method, as they do not
take into consideration the uncertainty in the interme-
diate decisions of the algorithm.



Jojic and Frey [2] introduced Bayesian probabilis-
tic framework for the layer-based generative model. In
this setup both hidden variables and model parame-
ters are assigned probability distributions to capture
the uncertainty in a principled manner. They used
this framework to segment fronto-parallel translation
in videos. Winn and Blake [7] extended this frame-
work to segment a single affine motion in front of a
static background in video sequences. Both methods
formulate the problem as that of learning an approx-
imate posterior distribution of the unknown variables
and use variational Bayes [8] to learn it.

Probabilistic methods are attractive in an unsuper-
vised learning scenario, since they estimate all model
parameters from the data, taking into consideration the
uncertainty associated with the model. However, they
often assume simple likelihood models to maintain the
computational tractability of the problem. These sim-
ple likelihoods models may not be enough to capture
the complexity of the video data in some problems and
leads to local minima solutions. Our implementations
of Winn and Blake’s method[7] often failed to converge,
when there are more than one foreground object in the
video. In this paper, we propose a scheme where ad-
ditional image constraints are introduced within the
generative model to reduce the chance of the solution
falling into a local minima. The parameters of this
additional constraints are learned discriminatively in
contrast to the learning of the other variables in the
model.

2 Proposed Framework

This section details the existing [6, 2, 7]layered gener-
ative model of the videos and our proposed extension.
The method is motivated using a video example from
[2] where two foreground objects are undergoing image
plane translation in front of a stationary background.
However, the framework is general and can be extended
to handle videos with any number of foreground objects
undergoing more complex motions.

2.1 Generative model of the video

The figure 1(a) illustrates the generative model for a
video with two foreground objects. The variables in-
side the rectangle are repeated for each of the N frames
in the video. The canonical foreground appearances f1,
fy, background appearance b, the mask priors 71 and
79 are common to all the frames. Translations T; and
Ty moves the canonical appearances of the foreground
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objects and the mask priors to the correct locations in
the frame. Mask m indicates the object the pixel be-
longs to, and has a prior given by transformed 7r; and
my. The difference between the generated image and
the observed image x is modeled by the noise variable
8. Let ¢ = {f1,f2, 71,72, b, T1, T2, 8}. Posterior dis-
tribution is formulated as

p(m, ¢|x) o< p(x|m, ¢)p(m|@)p(¢),

where the likelihood is modeled as

(1)

N(x|b,3) if m=0
p(zim, @) = { N(|Tif1,8) if m=1 (2)
N(X|T2f27ﬂ) if m=2

Here m = 0, 1, 2 indicates the pixel belonging to the
background, foreground object 1 and foreground object
2, respectively. Occlusion of the pixels is modeled as

(17T17T1)(17T27T2) if m=0
p(m|@) = { (1 — Tom2)(Tim1) if m=1 (3)
(T27r2) lf m=2

which simply describes the fact that the object 2(
the foremost layer to the camera) is always visible and
the object 1 can be occluded by object 2 and the back-
ground can be occluded by both object 1 and object
2. The non-informative prior distribution over the un-
known variables is given by p(¢). Exact inference of
p(m, ¢|x) is intractable and it needs to be learned us-
ing approximate methods. Stochastic techniques such
as MCMC methods are commonly used to find an non-
parametric approximation of the posterior distribution
(e.g. particle filters). These methods rely on various
sampling techniques and have slow convergence rates
in high-dimensional search spaces. In this paper we use
variational methods [8], which approximate p(m, ¢|x)
by a tractable parametric distribution Q(m, ¢) and is
deterministic in nature. We use the following factor-
ized distribution as the approximation for p(m, ¢|x)

Q(m, ¢) = Q(m)Q(¢)
= Qm)Q(f1)Q(f2)Q(b)Q(T1)Q(T2)  (4)
Q(m1)Q(72)Q(B)
Here Q(f1),Q(f2),Q(b) are gaussian,

Q(m),Q(T1),Q(T2) are discrete, Q(m),Q(mws) are

beta distributions and Q(f) is a gamma distribution.
A optimal set of parameters of Q(m, ¢) is obtained
by minimizing the Kullback-Leibler (KL) divergence
between Q(m, ¢) and p(m, ¢|x). The KL-Divergence
between these two distributions is defined as,



Figure 1: (a) Generative model and Discriminative constraints. The figure illustrates the generative model
for a video with two foreground objects. The variables inside the rectangle are repeated for each of the N frames
in the video. The canonical foreground appearances f1, fo2, background appearance b,and the mask priors w1 and
o are common to all the frames. Translations T and To moves the canonical appearances of the foreground
objects to the correct locations in the frame. Mask m indicates the object the pizel belongs to, and has a prior
given by transformed w1 and wo. The difference between the generated image and the observed image x is modeled
by the noise variable 3. The proposed new nodes and edges are shown in red. The feature vector W(x) provides a
representation of color at every image pizel. The weights wy and wo model the global color constraints of object 1
and object 2. (b) Learning results: with and without global color constraints The first row shows three
frames from the video. Corresponding masks in the second row are learned using only the generative model without
the proposed global color constraints. The third row shows the mask variables learned with both the generative model
and the global color constraints.

introduced additional constraints to the above model

by setting up a discriminative prior on the mask vari-
Z/ Q(m)Q(¢) log(p(m, ¢[x))de able m based on the RGB color variation of pixels, in
(5) the following form.

- 7 if m=0
m|¥(x),wi, wWe) = 4 exp(—w; ¥(x if m=1
The above expression is minimized sequentially with p(m|¥(x), w1, wo) ; eXI};EfW;\IlEx;; $ om—2

respect to each of the parameters of Q(m, ¢) and the
procedure is iterated until convergence. Further details
of variational approximation scheme are omitted due to

lack of space. Interested readers are referred to [8]. Ze =14 exp(—w1¥(x)) 4 exp(—wo ¥ (x)). (7)

(6)

where,

The feature vector ¥(x) is obtained at every pixel

2.2 Discriminative Global Constraints and consists of kernelized distances from the pixel’s

Our experiments showed that the variational approx- RGB value to a number of centers in the RGB color
imation, as described in the previous section, did not space. The centers are obtained by clustering RGB
converge to the correct solution due to local minima values of a number of sample pixels from the input
problems (figure 1(b),row 2). The simple likelihood frames. For the video example in this paper, we used
model (equation 2) is not sufficient to capture the com- 50 such centers to represent the color variation. The
plex appearances of multiple objects in the video. We weights wi and wo model the distribution of the color
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in the first and second objects in the video. These
news constraints are shown in red color in the graphical
model in figure 1(a). The modified overall posterior
distribution is now given by

p(m7 ¢7 Wi, W2|X7 ‘IJ(X)) X p(x|m7 ¢)p(m|¢)p(¢)
p(m|P(x), w1, w2)p(w1)p(wz)

(8)

where, the prior distributions p(w1) and p(ws) can
be either uniform or broad gaussian distributions. Us-
ing the KL divergence minimization outlined above it
can be shown that at each variational iteration, opti-
mum values of w; and wy can be obtained by

a T(Wl,WQ) =0

0
T(W17W2) =0 8w
2

8w1

9)
where

Y(wi,w2) = Y Q(m)log {p(m|¥(x), w1, w2)p(w1)p(w2)}
B (10)
Equations(9,10) and the form of p(m|¥(x), w1, wa),
as described in equation (6), leads to logistic regression
learning of w; and wso, with the probabilities Q(m)
acting as a training signal. The weights parameters
are learned using information from all the frames and
can prevent the mask variable falling into local min-
ima in individual frames as shown in figure 1. Note
that the learning and enforcement of the discrimina-
tive constraints are done in a completely unsupervised
manner and fits well within the variational framework
as shown by the above derivation. The method is not
sensitive to the feature vector ¥(x). Different feature
vectors that can capture color variability can be also
used with equal success. Figure 1(b) and figure 2 il-
lustrates the advantages of introducing the discrimina-
tive global color constraints to the standard generative
model.

2.3 Frame Synthesis and Temporal Su-
per resolution

Once the canonical appearances, shapes and motions
for each frame are learned, intermediate frames are
synthesized by first interpolating the motion between
frames using a motion model. Let 77" and T3 be the
interpolated motions for an intermediate frame, whose
pixels values x* are then obtained by
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X'=(1-T] <wl>)(T; <m>)(<b>)
+(1-T5 <me>)(T] <m >)(T] <f1>)
+ (T3 < mg >)(T5 < f2>)
(11)
Here operator < . > is the expected value of the vari-

able. For example, the expected value of the first ob-
ject’s appearance is given by < f; >= ffl £f1Q(f1)df;.

3 Experiments

The method was tested on 40 frames of a real 15 Hz
video (resolution 160x120), where two people cross in
front of a stationary background. Variational optimiza-
tion using the generative model alone is not sufficient
to learn the appearances and motions of the objects in
the video as shown in figure 2(b) second row, even when
all 40 frames were used. Including the discriminative
global color constraints on the mask variable improves
the quality of the learning, figure 2(b) third row. The
learned canonical appearances shown in figure 1(a) are
obtained with global color constraints. We also sub-
sampled the original video and created lower frame
rate videos (3.75 Hz, 11 frames). We then learned the
model parameters (with global color constrains) and
used them to synthesize intermediate frames in order
to achieve temporal super resolution. It can be seen
from figure 2(c) that introducing the color constraints
allows us to avoid the local minima even with a small
number of input frames.

4 Conclusion

This paper introduced a scheme where discriminative
global constraints were used to avoid local minima solu-
tions during unsupervised learning of generative mod-
els of videos. The scheme was demonstrated by per-
forming four times higher temporal super resolution
from a low-frame-rate video with a small number of
frames. It should be noted that the scheme is not lim-
ited to color constraints only. We can also easily intro-
duce other types of constraints (such as smoothness,
object locality and edges) within this framework. In
future we intend to demonstrate the system in video
with more complex transformation such as affine using
additional discriminative constraints.
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Figure 2: Frame synthesis and Temporal Super Resolution. (a) shows real frames from a 40 frame video
sequence. (b) Synthesized frames created after learning the appearances and the motions of the objects in the video
using the generative model shown in figure 1 (a), but without enforcing the global color constraints. The full video
(with 40 frames) was used for learning. (c) Synthesized frames created after learning the appearances and the
motions using the generative model with global color constraints. A sub-sampled version of the full video (with only
11 frames) was used for learning. From these 11 frames we were able to synthesize 30 intermediate frames giving
a temporal super resolution from 3.75Hz to 15Hz.
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