KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER 1

Making a Shallow Network Deep: Growing a
Tree from Decision Regions of a Boosting
Classifier

Tae-Kyun Kim* Department of Engineering
http://mi.eng.cam.ac.uk/~tkk22 University of Cambridge

Ignas Budvytis* Trumpington Street, Cambridge
ib255@cam.ac.uk CB2 1PZ, UK

Roberto Cipolla indicates equal contribution.

cipolla@cam.ac.uk

Abstract

This paper presents a novel way to speed up the classification time of a boosting clas-
sifier. We make the shallow (flat) network deep (hierarchical) by growing a tree from the
decision regions of a given boosting classifier. This provides many short paths for speed-
ing up and preserves the reasonably smooth decision regions of the boosting classifier
for good generalisation. We express the conversion as a Boolean optimisation problem,
which has been previously studied for circuit design but limited to a small number of
binary variables. In this work, a novel optimisation method is proposed for several tens
of variables, i.e. weak-learners of a boosting classifier. The method is then used in a
two stage cascade allowing the speed-up of a boosting classifier with any larger number
of weak-learners. Experiments on the synthetic and face image data sets show that the
obtained tree significantly speeds up both a standard boosting classifier and Fast-exit, a
prior-art for fast boosting classification, at the same accuracy. The proposed method as
a general meta-algorithm is also shown useful for a boosting cascade, since it speeds up
individual stage classifiers by different gains. The proposed method is further demon-
strated for rapid object tracking and segmentation problems.

1 Introduction

Boosting is a popular method in object detection [1], tracking [2] and segmentation [3] prob-
lems, which typically demand very fast classification. Boosting makes a decision by ag-
gregating simple weak-learners e.g. Haar-like features, which are computed very fast on an
integral image. Despite its efficiency, it is often required to further reduce the classifica-
tion time. A cascade of boosting classifiers, which could be seen as a degenerate tree (see
Figure 1(a)), effectively improves the classification speed: by filtering out majority of neg-
ative class samples in its early stages [1]. Designing a cascade, however, involves manual
efforts for setting a number of parameters: the number of classifier stages, the number of
weak-learners and the threshold per stage.

In this work, we propose a novel way to reduce down the classification time of a boost-
ing classifier up to an order of magnitude without sacrificing its accuracy, not relying on a

© 2010. The copyright of this document resides with its authors. BMVC 2010 doi:10.5244/C.24.57
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

2 KiMet al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER

X
4

H1(x): a boosting
classifier

Ha(x)

cOct

Figure 1: Boosting as a tree. (a) A boosting cascade is seen as an imbalanced tree, where each node
is a boosting classifier. (b) A boosting classifier has a very shallow and flat network where each node
is a decision-stump i.e. weak-learner.

design of cascade. The chance for improvement comes from the fact that a standard boosting
classifier can be seen as a very shallow network, see Figure 1(b), where each weak-learner
is a decision-stump and all weak-learners are used to make a decision. The flat structure
ensures reasonably smooth decision regions for generalisation, however it is not optimal in
classification time. The proposed method converts a shallow network (a boosting classifier
as input) to a deep hierarchical structure (a decision tree as output). The obtained tree speeds
up a boosting classifier by having many short paths: easy data points are classified by a small
number of weak-learners. Since it preserves the same decision regions of the boosting clas-
sifier, the method alleviates a highly-overfit behaviour of conventional decision trees. We
introduce a novel Boolean optimisation formulation and method. A boosting classifier splits
a data space into 2" primitive regions by n binary weak-learners. The decision regions of
the boosting classifier are encoded by the boolean codes and class labels of the primitive
regions. A decision tree is then grown using the region information gain. Further details are
about a better way of packing the region information (Section 5.1) and the two stage cascade
allowing the conversion with any number of weak-learners (Section 5.2). Without designing
a many-stage cascade our method offers a convenient way of speeding up, while the method
incorporated in such a cascade could provide a further speed-up.

The paper is organised as follows: Section 2 reviews related work. Overview of the pro-
posed method is given in Section 3 and the formulation as Boolean optimisation in Section 4.
Section 5 presents the proposed solution. Experimental results are shown in Section 6 and
the conclusion is drawn in Section 7.

2 Related work

For speeding up the classification of a boosting classifier, the shortest set of weak-learners
for a given error rate has been obtained by the sequential probability ratio test in the work
of Sochman et al. [9]. It takes an early exit when the boosting sum reaches a certain value
whose sign cannot be altered by the remaining weak-learners. Similarly, Zhou has proposed
Fast exit method [11] (see Section 5.2 for details). This line of methods utilises so called a
single path of varying length, while our tree method multiple paths of different lengths. The
proposed method yields a more optimal speed (see Section 6).

The closest work to ours is Zhou’s [11]. He has introduced representation of a boost-
ing classifier by a Boolean table and implemented a binary decision tree [11]. His solu-
tion, however, is a brute force search for all possible tree configurations, which is highly

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER 3

Super tree

Boosting classifier

APL: 20

85 weaklearners

(a) (b)

Figure 2: Converting a boosting classifier into a tree for speeding up. (a) The decision regions
of a boosting classifier (top) are smooth compared to a conventional decision tree (bottom). (b) The
proposed conversion preserves the Boosting decision regions and has many short paths speeding up 5
times.

computationally-costly. It therefore affords to only about 5 and 10 weak-learners. The speed
gain reported was not significant over a standard boosting classifier and Fast exit method.

Tree-structured multiple boosting classifiers have been proposed for multi-pose or multi-
category detection problems. The common structure is a tree hierarchy each path of which is
a strong boosting classifier. Torralba et al. have proposed sharing weak-learners among mul-
tiple boosting classifiers [5] for accelerating classification speed. While Torralba’s method
requires pre-defined sub-category labels, the methods in [6, 7, 8] automatically learn the
sub-category labels for multiple boosting classifiers in a tree. Whereas all these methods are
useful for multiple boosting classifiers, our work focuses on a single boosting classifier. A
further conceptual difference lies in that the previous studies [6, 7, 8, 12] present a novel way
of learning boosting classifiers and ours takes a boosting classifier learnt in a standard way
as input. We do not alter the decision regions of an input classifier but speed it up.

Boolean expression minimisation is to minimize the number of terms and binary vari-
ables in the Boolean expression. Algorithms for the minimisation have mainly been studied
in the circuit design [15]. Since circuits have strictly predefined specifications, exact mini-
mization was the goal of most studies. The complexity of a logic expression rises exponen-
tionally when the number of binary variables increases. Therefore, conventional minimisa-
tion methods are limited to a small number of binary variables, typically from a few to about
15 variables [15]. Boolean minimisation has been also applied to size down a redundant
decision tree, represented by a Boolean table [16].

3 Conversion of a boosting classifier into a tree

Both a boosting classifier and a decision tree are composed of weak-learners (or called
decision-stumps/split-nodes). Whereas a boosting classifier places decision stumps in a flat
structure, a decision tree has a deep and hierarchical structure (see Figure 1(b) and 2(b)).
The different structures lead to different behaviours: Boosting has a better generalisation
via reasonably smooth decision regions. See Figure 2(a) for the decision regions of the two
methods. Here a part of negative (blue) data points are scattered in the middle of positive
(red) samples. Whereas a conventional decision tree forms complex decision regions trying

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

4 KIMetal.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER

classification of all training points, a boosting classifier exhibits a reasonable smoothness
in decision regions. We propose a method to grow a tree from the decision regions of a
boosting classifier. As shown in Figure 2(b), the tree obtained, called super tree, preserves
the Boosting decision regions: it places a leaf node on every region that is important to
form the identical decision boundary (i.e. accuracy). In the mean time, Super tree has many
short paths that reduce the average number of weak-learners to use when classifying a data
point. In the example, super tree on average needs 3.8 weak-learners to perform classification
whereas the boosting classifier needs 20: all 20 weak-learners are used for every point.

4 Boolean optimisation formulation

A standard boosting classifier is typically represented by the weighted sum of binary weak-
learners as

H(x) = Y ahi(x), (1)
i=1

where o; is the weight and h; the i-th binary weak-learner in {—1, 1}. The boosting classifier
splits a data space into 2™ primitive regions by m binary weak-learners. Regions R;,i =
1,...,2" are expressed as boolean codes (i.e. each weak-learner h; corresponds to a binary
variable w;). See Figure 3 for an example, where the boolean table is comprised of 23
regions. The region class label c is determined by Equation 1. Region Rg in the example
does not occupy the 2D input space and thus receives the don’t care label marked “x” being
ignored when representing decision regions. The region prior p(R;) is introduced for data
distribution as p(R;) = M;/M where M; and M are the number of data points in the i-th region
and in total. The decision regions of the boosting classifier are encoded by a set of regions
represented as

B(R;) : boolean expression

¢(R;) : region class label)

p(R;) : region prior

With the region coding, an optimally short tree is defined in terms of average expected path
length of data points as

T = minTZE(lT(R[))p(R,-), 3)

where T denotes all possible configurations of a decision tree. E(IT(R;)) is the expected
path length of the i-th region in T. The path length is simply the number of weak-learners
(or split-nodes) on the path to the i-th region. The decision tree should closely duplicate the
decision regions of the boosting classifier as an optimisation constraint: the regions that do
not share the same class label ¢(R;) must not be put in the same leaf-node of the tree. Any
regions of don’t care labels are allowed to be merged with other regions for the shortest path
possible.

4.1 Discussion on boolean expression minimisation

The boolean expression for the table in Figure 3 can be minimised by optimally joining the
regions that share the same class label or don’t care label as

WIWoW3 VWIWoW3 VWiWows Vwiwaw3s
— W1 VW WrW3

“

KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER 5

1 ,W1 R1 0 0 0 0
R6 o R 0 0 1 0
RZ 0 1 0 o0
R5 - » R&E 0 1 1 1 *
R 1 0o o 1
R1 0 e
e 1 RE 1 0 1 1
R R3 R 1 1 0 1
o\! R8 1 1 1 X

WiW2W3 v W1W2W3 v WiW2W3 v WIWZW3 —> Wiy WiW2W3

Figure 3: Boolean expression minimisation for an optimally short tree. (a) A boosting classifier
splits a space by binary weak learners (left). The regions are represented by the boolean table and the
boolean expression is minimised (middle). An optimal short tree is built on the minimum expression
(right).

where V denotes OR operator. The minimised expression has a smaller number of terms.
Only the two terms, w| and W;w,w3 are remained representing the joint regions Rs — Rg and
R4 respectively. A short tree is then built from the minimised boolean expression by placing
more frequent variables at the top of the tree (see Figure 3(right)). The method for Boolean
expression minimisation is close, but not suited to our problem that involves a large number
of variables i.e. weak-learners. Furthermore, all regions are treated with equal importance in
the kind of methods, while an optimally short tree is learnt by considering data distribution
i.e. region prior in Equation 3.

5 Growing a super tree

We propose a novel boolean optimisation method for obtaining a reasonably short tree for
a large number of weak-learners of a boosting classifier. The classifier information is ef-
ficiently packed by using the region coding and a tree is grown by maximising the region
information gain. First, a base algorithm is explained, then its limitations and an improved
method are presented. We use the notations in Section 4 to describe the algorithm.

Regions of data points. The number of primitive regions 2™ is intractable when m is large.
Regions R; that are occupied by any training data points are only taken as input s.t. p(R;) > 0.
The number of input regions is thus smaller than the number of data points. Regions with no
data points are labeled don’t care.

Tree growing by the region information gain. Huffman coding [17] is related to our op-
timisation. It minimises the weighted (by region prior in our problem) path length of code
(region). The technique works by creating a binary tree of nodes by maximising the entropy-
based information gain. We similarly grow a tree based on the region information gain for an
optimally short tree. For a certain weak-learner w;, j = 1,...,m, the regions in the left split
and the right split w.r.t. the weak-learner are readily given from the boolean expressions as

R; = {Ri|B(R) AWy - W -~ Wy,) = 0})
R, =R,\R

where R,, is the set of regions arriving at the node n and A is AND operator. At each node, it

Citation
Citation
{}

6 KIMetal.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER

is found the weak-learner that maximises

_ ZR, p
YR, P

YR, P
YR, P

Al = E(R) - =X E(R,) ©)
where p is the region prior and E is the entropy function of the region class distribution,
which is

0(c*) =Y p, where R} = {Ri|c(R;) = c*}. @)
R

The node splitting is continued until all regions in a node have the coherent region label.
The key idea in the method has two-folds: 1) growing a tree from the decision regions and
2) using the region prior (data distribution). Compared to conventional decision trees built
on data points, the proposed tree is grown upon smooth decision regions guaranteeing good
generalisation. Using the region prior helps getting an optimally short tree in the sense of
average path length of data points.

5.1 Extended regions

The base algorithm in the previous section is useful in a low dimensional input space. Only
encoding the regions of data points, however, does not reproduce the exactly same decision
regions of a boosting classifier. Regions of no data points may be assigned different class la-
bels from the original ones, since they are don’t cares in the tree learning. When a test point
falls into those regions, the boosting classifier and the tree would make different decisions.
This degrades classification accuracy when data has a high dimension for a given number
of training data. Regions along the decision boundary are important although they do not
have an actual data point when training. Covering as much of the regions as possible ensures
good performance. Adding up the primitive regions, however, becomes soon computation-
ally prohibitive.

Extended regions. The region transformation is proposed to cover the regions in a fairly
sufficient and yet computationally tractable manner. It takes each primitive region of data
point (R;) multiple times (see Figure 8(left)) and pushes it closer into the decision boundary
by randomly flipping 1’s to 0’s (if the region class is positive) or 0’s to 1’s (if negative) until
the boosting sum gets close to 0. See Figure 4 for an example. The extended region ER;
is then obtained by replacing all 0’s in the boolean code of the pushed region with don'’t
care variables s.t. B(ER;) = wixw3xx. Each extended region thus contains many primitive
regions of the same class label including the ones near to the decision boundary. Since the
region space is big enough, it is unlikely to get identical extended regions or many regions
with significant overlaps by the random drawing. The extended regions maintain the region
class label ¢(R;) and prior p(R;).

Modified region information gain. When splitting nodes (Equation 5) an extended region
can be placed in both left and right splits due to the existence of don’t care variables. The
repetition of same extended regions at different nodes does not hinder from duplicating the
decision regions but increases the average tree length. To compensate the repetition, the
information gain is modified as

R+ R\’
AJ—(' I|1—:|| >AI ®)

KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER 17

W1 w2 W3 w4 W5 Sum C
Weight 1.0 0.8 0.7 0.5 0.2 3.2
Region 1 0 1 1 0 1.2 1
Boundaryregion 1 0 1 0) 0 0.2 1
Extendedregion 1 X 1 X X 0.2-3.2 1

Figure 4: Extended region coding.

Algorithm: Growing a super tree

Input: a set of data point regions R or extended regions ER, encoded by {B,c, p}
Output: a decision tree

1.Start with a root node n = 1 containing the list of all regions R,,.
2.Fori=l1,....m

3. Spit the node: (R;,R;) = split(R,, w;) (by (5)).

4. Compute the gain: Al = gain(R;,R;) (by (6) or (8) for the extended region).
5.Find w} that maximises the information gain.

6.1If the gain is sufficient, save it as a split node. Else, save it as a leaf node.
7.Go to a child of split node and recurse the steps 2-6 setting R, = R; or R,..

Figure 5: Pseudocode of the algorithm

where Al is the information gain in Equation 6, which takes a value in [—oo, 0]. The first term
equals to one for the primitive regions but is in the range of [1,2] for the extended regions.
The modified gain penalises weak-learners that place many extended regions in both splits.
The weight factor 7 is set empirically (see Figure 8). See Figure 5 for the pseudo-code.

5.2 Two stage cascade

The proposed method well scales up to several tens of weak-learners on a standard PC. For
allowing any larger number of weak-learners of a boosting classifier, a two stage cascade is
exploited. It places the super tree at the first stage and the fast-exit method at the second
stage. Fast-exit yields exactly the same accuracy regardless of the number of weak-learners
used, so the two stage cascade does. Fast-exit speeds up a boosting classifier by applying
weak-learners in the order of weights ¢ and exiting as soon as the boosting sum (Equation 1)
reaches to the value whose sign cannot be altered by the remaining weak-learners. The
proposed cascade significantly speeds up a cascade of the fast-exit at both stages as well as a
standard two stage boosting cascade (see Section 6.2). The use of super tree is of course not
limited to a two stage cascade. It guarantees a speed up over a multi-stage boosting cascade
by replacing each stage of a boosting classifier with a Super Tree. Please refer to the speed
gains obtained for different number of weak-learners of a single stage boosting classifier in
Figure 7.

6 Experiments

6.1 Classification of synthetic 2D data

We have made twelve 2D synthetic data sets. Data points of two classes were generated from
Gaussian mixtures as exemplified in Figure 6. The six test sets were created by randomly

8 KIMetal.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER

40

== Boosting error rate
Super tree error rate

=—8— Boosting path length
Super tree path length

Error rate
3
Average path length

% o et 00- j%s
v o e

4 04 0

ety S 0 5 10 15 20 25 30 35 40
AN 3 number of weaklearners

Figure 6: Experimental results on the synthetic data. Examples of 2D synthetic data sets (left).
Super tree obtains the same accuracy as the booting classifier significantly shortening the average
path length (right).

MPEG-7 facedata Caltech bg dataset MIT+CMU face test set
No.of Boosting Fast exit (cascade) Supertree (cascade) = @) ;

weak [pose False | Average False False | Averagepath | False False | Average
learners

o’ -
positives | negatives | pathlengh | positives | negatives length | positives | negatives | path length 4
20 501 120 20 501 120 11.70 476 122 7.51 a@ {i,
= =) =

40 | 264 126 40 264 126 23.26 231 127 12.23

60 | 222 143 60 222 143 37.24 212 142 14.38 e L= m‘
100 | 148 146 100 | 148(144) | 146 (149) | 69.28(37.4) | (145) | (152) | (15.1) T

200 | 120 143 200 | 120(146) | 143 (148) [146.19(38.1) | (128) | (146) | (15.8) m face set

Figure 7: Experimental results on the face images. Example face images are shown in right.

perturbing the train sets. We have compared the two methods here: a boosting classifier
(AnyBoost implementation [10]) and the proposed tree using the data point regions. Vertical
and horizontal lines are weak-learners of boosting. Figure 6(right) shows the results. The left
and right y-axis in the graph show the classification error rate and the average path length i.e.
number of weak-learners used per point respectively. Note first that the both methods do drop
the error rate when the number of weak-learners is increased indicating good generalisation.
The proposed method exhibited the same accuracy as the boosting classifier for all number
of weak-learners. While the boosting classifier linearly increased the average path length for
the number of weak-learners, the proposed method quickly converged significantly reducing
down the average path length. At 40 weak-learners, the super tree speeds up the boosting
classifier by 16 times.

6.2 Object detection

For training, we used the MPEG-7 face data set that has 11,845 face images. BANCA face
set (520 faces) and Caltech background image sets (900 images) were exploited for boot-
strapping. The total number of negative images for training, which were either bootstrapped
or randomly drawn, is 50,128. We used 21,780 Haar-like features on integral images as
weak-learners. We have tested on the MIT+CMU frontal face test set which consists of
130 images with 507 labeled frontal faces. 507 face and 57000 random image patches were
cropped and resized into 24x24 images. Example images are shown in Figure 7. The meth-
ods compared include a standard boosting classifier, Fast exit, Fast exit (two-stage cascade),
Super tree and Super tree (two-stage cascade). For the super tree, we used the extended re-
gions. The conversion time for the Super Tree for e.g. 40 weak-learners took about an hour.

Citation
Citation
{}

KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER 9

No. weak-leamers 10 20 30 40 50 60 Power 0.5 1 3 5 10
No. per region 1 1 2 10 40 50

Avg path length 16.4 12.3 11.9 14.5 15.8
Falsetes/ super tree 593/157 367/146 292/136 262129 203/142 224/129

False-es Boosting 588157 3781143 201137 2641126 2021142 2221143 False +es/False-es | 246/121 247/123 237/124 235/120 251/132

Figure 8: Performance of super tree for the different numbers of extended regions per region (left)
and for varying power in the information gain (right).

Fixing the accuracy at 0 threshold, we have compared the average path lengths of the meth-
ods in Figure 7. The super tree speeds up the boosting classifier by 3-4.3 times and even the
fast exit by 1.6-2.6 times. The two-stage cascade solution of 60 weak-learner super tree and
200 weak-learner fast exit outperformed the standard boosting by 6.6-12.7 times and even
the two-stage cascade of 60 and 200 weak-learner fast exits by 2.5 times. Note that the super
tree exploits various combinations of weak-learners (i.e. paths) for an optimal classification
speed, whereas the fast exit takes the combinations always in the order of the weak-learner
weights.

Figure 8 shows performance of the super tree for the two internal parameters: the number
of extended regions per primitive region and the power in the information gain (Equation 8).
To obtain the close accuracy to the boosting classifier, the required number of extended re-
gions per region grew as the number of weak-learners of Boosting increased. For about the
given number of training samples, using 200 extended regions and 100 weak-learners would
start hitting theoretical memory boundaries. As shown in right, the performance is not very
sensitive to different power values in the range. The number of weak-learners and extended
regions was set as 40. Power 1-5 gave the best performance. The values smaller than 0.5
increased the average path length and the values larger than 10 increased the error rate.

Super tree vs a conventional decision tree. Single conventional decision trees of all possi-
ble pruning [14] were very poor. The best accuracy of the conventional tree (false positives:
1995/false negatives: 120) is by far worse than that of the super tree of 20 weak-learners
(false positives: 476/false negatives: 122). The super tree was even shorter than the decision
tree: the depth of the super tree and conventional tree was about 7.5 and 9 respectively.

Tracking and Segmentation. We have demonstrated the usefulness of super tree for rapid
object tracking and image semantic segmentation problems. The super tree exhibited better
tracking performance than a boosting classifier by the benefits in the execution time of the
tracker. It also showed a significant speed-up at the same accuracy over a boosting classifier
for the segmentation by pixel classification. Refer to [19] for more details.

7 Conclusion

We have proposed a novel way to speed up a boosting classifier. The problem is formularised
as boolean optimisation and a new optimisation method is proposed for a large number of
weak-learners. The tree grown from the decision regions of a boosting classifier, called
Super tree, provides many short paths and preserves the Boosting decision regions. The
single super tree delivers the close accuracy to a boosting classifier with a great speed-up for
up to several tens of weak-learners. The proposed two stage cascade allows any number of
weak-learners. Experiments have shown that the tree obtained is reasonably short in terms of
average path length outperforming a standard boosting classifier, fast exit, their cascade. The

Citation
Citation
{}

Citation
Citation
{}

10 KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER

method has been also demonstrated for rapid object tracking and segmentation problems.

References

[1] P. Viola and M. Jones, Robust real-time object detection, Int’l J. Computer Vision,
57(2):137-154, 2002.

[2] H. Grabner and H. Bischof, On-line boosting and vision, Proc. IEEE Conf. CVPR, pages
260-267, 2006.

[3] S. Avidan, SpatialBoost: Adding Spatial Reasoning to AdaBoost, Proc. ECCV, Graz,
Austria, 2006.

[4] S.Z.Liand Z. Zhang, Floatboost learning and statistical face detection, IEEE Trans. on
PAMI, 26(9):1112-1123, 2004.

[5] A. Torralba, K. P. Murphy and W. T. Freeman, Sharing visual features for multiclass and
multiview object detection, IEEE Trans. on PAMI, 29(5):854-869, 2007.

[6] B. Wu and R. Nevatia, Cluster Boosted Tree Classifier for Multi-View, Multi-Pose
Object Detection, Proc. ICCV, 2007.

[7] C. Huang, H. Ai, Y. Li, and S. Lao, Vector Boosting for Rotation Invariant Multi-View
Face Detection. Proc. ICCV, 2005.

[8] Z. Tu, Probabilistic Boosting-Tree: Learning Discriminative Models for Classification,
Recognition, and Clustering, Proc. ICCV, 2005.

[9] J. Sochman and J. Matas, WaldBoost Learning for Time Constrained Sequential Detec-
tion, Proc. CVPR, San Diego, USA, 2005.

[10] L. Mason, J. Baxter, P. Bartlett and M. Frean, Boosting algorithms as gradient descent,
Proc. Advances in Neural Information Processing Systems, pages 512-518, 2000.

[11] S. Zhou, A binary decision tree implementation of a boosted strong classifier, /IEEE
Workshop on Analysis and Modeling of Faces and Gestures, pages 198-212, 2005.

[12] E. Grossmann, AdaTree: boosting a weak classifier into a decision tree, IEEE Work-
shop on Learning in Computer Vision and Pattern Recognition, pages 105-105, 2004.

[13] L. Breiman, Random forests, Machine Learning, 45:5-32, 2001.

[14] J. Quinlan, Bagging, boosting, and c4.5, Proc. National. Conf. on Artificial Intelli-
gence, pages 725-730, 1996.

[15] H. Schwender, Minimization of Boolean Expressions Using Matrix Algebra, Technical
report, Collaborative Research Center SFB 475, University of Dortmund, 2007.

[16] J. Chen, Application of Boolean expression minimization to learning via hierarchical
generalization, Proc. ACM symposium on Applied computing, pages 303-307, 1994.

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT
Press and McGraw-Hill, 2001.

KIM et al.: GROWING A TREE FROM DECISION REGIONS OF A BOOSTING CLASSIFIER 11

[18] G. Brostow, J. Shotton, J. Fauqueur and R. Cipolla, Segmentation and Recognition
using Structure from Motion Point Clouds, Proc. ECCV, Marseilles, 2008.

[19] T-K. Kim, I. Budvytis, R. Cipolla, Making a Shallow Network Deep: Growing
a Tree from Decision Regions of a Boosting Classifier, Techincal report, CUED/F-
INFENG/TR633, Dept. of Engineering, Univ. of Cambridge, June 2009.

