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Abstract

We present a novel, implementation friendly and occlu-
sion aware semi-supervised video segmentation algorithm
using tree structured graphical models, which delivers
pixel labels alongwith their uncertainty estimates. Our mo-
tivation to employ superivision is to tackle a task-specific
segmentation problem where the semantic objects are
pre-defined by the user. The video model we propose for
this problem is based on a tree structured approximation of
a patch based undirected mixture model, which includes a
novel time-series and a soft label Random Forest classifier
participating in a feedback mechanism. We demonstrate
the efficacy of our model in cutting out foreground objects
and multi-class segmentation problems in lengthy and
complex road scene sequences. Our results have wide
applicability, including harvesting labelled video data for
training discriminative models, shape/pose/articulation
learning and large scale statistical analysis to
develop priors for video segmentation.

1. Introduction

From a Bayesian perspective, unsupervised segmenta-
tion must either tackle the issue of model selection (de-
termining the optimal number of segments from data [3])
or marginalize over segmentation hypotheses as in non-
parametric Bayesian approaches [19]. The first approach re-
quires determination of model evidence, which for most im-
age models is difficult, and the second requires meaningful
priors over segmentations, which would need vast amounts
of training data to hypothesize [19]. We choose to avoid
semi-heuristic model selection methods [5] and instead
tackle the problem oftask-specific segmentation, where the
semantic object labels are initialised by the user (see Fig.1).
In particular, we define our problem as labelling a video into
a fixed number of semantic classes, given the labels of the
first and last frames of a video sequence [1]. The resulting
pixel soft labelscan be used for harvesting labelled data for
maximum likelihood (ML) learning of discriminative mod-

els [17], statistical analysis to develop image/video priors
[19], and object shape/pose/articulation learning [15].
A video model must capture both short range correlations
(within frame and successive frames) and long range cor-
relations (across many frames) in the video to enable oc-
clusion aware segmentation (see Fig.2). In addition, it
must provide a measure of uncertainty which is temporally
smooth and helps avoid propagation of erroneous instanta-
neous decisions. Existing video models [7, 10, 21, 9] do
not satisfy one or more of these requirements as discussed
in Sec.2. In contrast, the algorithm we propose is to the best
of our knowledge the first of its kind to address all these re-
quirements. Specifically, our contributions in this paper are:
1. A novel rectangular patch basedtree structured graphical
model for videoswhich capture both short and long range
correlations for occlusion aware segmentation.
2. Label uncertainty estimationin videos due toexact
probabilistic inference.
3. An implementation friendly algorithmwhich only re-
quires exact inference and a standard Random Forest clas-
sifier based on an entropic information gain criterion [17].
An example object cut-out obtained by our method is shown
in Fig. 1.
We present a detailed literature review in Sec.2. Our pro-
posed algorithm is elaborated in Sec.3.1. We discuss our
experimental setup and results in Sec.4. We summarise the
advantages and drawbacks of our approach in Sec.5. We
conclude in Sec.6.

2. Literature review

Video Models - Image/video models which learn long
range correlations by removing redundancy in video data
are the Epitome and Jigsaw models [7], [10]. Their ability
to recognize semantic video segments by discovering “se-
mantic clusters” in these compact representations using ad-
hoc clustering remains speculative for complex video data.
In this paper, we avoid compacting the video and instead
use a soft label Random Forest (slRF) borrowed from [9]
for patch clustering, which is fast and is able to capture long
range correlations in the video.
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Figure 1. A clean cut-out of anarticulated objectover100 frames using our method. We used a threshold of0.90 over the pixel marginal
posteriors to produce this cut-out. See supplementary video. Best viewed in colour and zoomed in.

The recently proposed unsupervised segmentation algo-
rithm of Reina et al. [21] aims to link temporally con-
sistent superpixels using a Graph-Cut optimiser. As their
segmentation istask independent, it is difficult to interpret
their over segmented results in terms of semantic object la-
bels. Further, their unsupervised approach does not con-
sider within class appearance variation which is what makes
semantic segmentation difficult. We therefore consider the
more well-defined yet non-trivial task-specific segmenta-
tion problem.
Buchanan et al. [6] store video data in a efficient manner
using K-D trees for fast semi-supervised feature point track-
ing. In contrast to theirs, and optical flow approaches [16],
we do not need pixel accurate matching. We rely on intra-
class matches in video, as in inpainting problems [7].
The hybrid label propagation (HLP) model of Budvytis et
al. [9] employs a directed graphical (DG) model to fuse
short and long range correlations for semi-supervised seg-
mentation. Their method suffers from the problem of “ex-
plaining away” in directed models [8], which affects the
ability to capture long range correlations (see supplemen-
tary report). In addition,multiple connectivityin their DG
restricts them to infer only two extreme states of uncertainty
(delta or flat distibutions). To overcome these issues, we
propose an undirected graphical (UG) model which retains
the essential “inpainting” ability of their model. Our model
is able to model the desired correlations and also permits
exact inference.
Label Uncertainty Estimation - The energy minimisation
method of Sturgess et al. [18] has shown promising re-
sults for semantic segmentation, but they require plenti-
ful labelled data for maximum likelihood (ML) parameter
learning. Further, there is no attempt to introduce tempo-
ral smoothness nor to deliver label uncertainties, both of

which are key elements of our work. Indeed, there have
been attempts to define label uncertainties through max-
marginal probabilities within CRF models [12], but their
uncertainty estimates are mis-matched to marginal posteri-
ors. Also, their global uncertainty formulation is unsuitable
to prompt temporally smooth local correction [2]. Dynamic
MRF models [11] introduce temporal smoothness by using
the MAP label estimates in one frame to efficiently drive the
MAP computation in the next. As uncertainties of the MAP
estimates are not propagated through time, this method is
prone to accumulation of errors due toinstantaneous deci-
sion making. In summary, global MAP estimation methods
compromise exact inference for a complex prior (MRF) and
do not capture long range correlations.
The desire to capture short and long range correlations in-
herently leads to a “loopy” graphical model, which does
not permit exact inference. Variational inference meth-
ods such as the popularmean-fieldapproximations [9] fail
to propagate meaningful uncertainty information in time-
series models [20]. Therefore, we avoid such approxima-
tions and instead estimate atree structured graphical model
for videos, which permits exact inference. This model in-
cludes a time-series to capture short-range correlations and
slRF as a “black-box” which subsumes the “loopy” long
range cliques (see Fig.2). We believe that this approxima-
tion is justified by the quality of the results it produces using
exact inference.
Semi-supervised Learning -The semi-supervised Random
Forests of [13] make no use of soft labels. They attempt to
spread deterministic labels to unlabelled data from labelled
ones using a slow iterative annealing scheme designed to
minimise a loss function. In contrast, the slRF seamlessly
balances the functionality of the Random Forest between
the extremes as a classifier (fully certain labels) and a clus-



tering method (“flat” distributions) at almost no extra cost
to the training speed of the Random Forest.
Others - Video object cut-out systems like [2] employ ad-
hoc fusion of colour, motion and shape cues for interactive
segmentation. Since they do not model long range corre-
lations, frequent user input is necessary to deal with occlu-
sions. SIFT-flow [14] based on the optic-flow style optimi-
sation is unsuitable for uncertainty propagation.

3. Proposed Algorithm

We begin by developing our proposed graphical model
for video sequences.

3.1. Tree Structured Graphical Model for Videos

We introduce a rectangular patch based undirected
graphical (UG) model which is a mixture model similar in
topology to the model in [9] (see Fig.2). This UG model
does not suffer from the drawbacks of “explaining away”
[8], which makes fusion of the time-series and the slRF
difficult ( see supplementary report). Our main idea is to
perform inference, train the slRF based on the inference,
and alternate between these two steps for segmentation
in this feedbacksetup. However, when we unravel the
dimensions of our UG model, it is clear that exact inference
is intractable due to its “loopy” structure (see Fig.2).
We find that training an slRF usingapproximate inference
[20] can destabilise this feedback setup. Therefore, we
approximate our mixture by a tree structured graphical
model using variational analysis and choose it as our video
model. As this model permits exact inference, the estimated
soft labels for training the slRF are reliable. We also find
through empirical studies that this simple model is very
effective for semi-supervised segmentation. We explain the
components of the UG model below.

Random Variables
1. I0:n are the observed sequence of images.

2. Zk is a latent colour imageconsisting of “overlapping
latent colour image patches”,Zk = {Zk,j}Ω

j=1, wherej is
the patch index into the set of patchesΩ. As in [7], [1] we
first assume these patches (and pixels within them) to be
mutually independent, even though they share coordinates,
but then enforce agreement in the overlapping parts during
inference by using a delta approximation in the variational
posterior. This recaptures correlations between latent image
patches, but at the cost of only a single point posterior.

3. Za
k , Ck andAk are latent labelled imagesrepresenting

the time-series, output of a soft label Random Forest
classifier (slRF), and theirfused outputrespectively. They
all consist of “overlapping latent labelled patches”. Pixeli
in patchj, denotedZa

k,j(i), Ck,j(i), Ak,j(i), aremultinomial
random variables taking one ofL mutually exclusive class

labels. Herej(i) denotes coordinatei relative to the top-left
corner of patchj. Unlike Zk, we ignore the correlations
between the overlapping parts in order to permit exact
inference. We instead average the pixel posteriors at
each coordinate ofAk to get the output coordinate-wise
distributions. This “post-inference” averaging performs
effective video labelling without burdening the inference
with intractability issues.

4. Tk = {Tk,j}Ω
j=1 is the set of “patch mapping” variables

which couple the top and bottom Markov chains. An
instance of Tk,j maps latent image patchZk,j to an
observed patchIk−1,Tk,j

of the same size inIk−1. The
same instance ofTk,j also maps latent labelled patchZa

k,j

to a patchZa
k−1,Tk,j

of the same size in the imageZk−1. In
our experiments, each variableTk,j takes on1200 instances
within a 30× 40 window at framek − 1 centered on patch
j. Tk,j(i) denotes pixeli in patchTk,j .

Cliques
Top Markov chain cliques:
The two kinds of cliques in this chain involving real-valued
images are defined below.

Ψtop,1(Zk, Ik−1,Tk
;φ) ,

Ω∏
j=1

∏
i∈j

N
(
Zk,j(i); Ik−1,Tk,j(i), φ

)
,

(1)
where, indexj runs over all the (overlapping) latent patches
Zk = {Zk,j}Ω

j=1. Zk,j(i) is pixel i inside patchj at time
k. Tk,j(i) indexes the pixelIk−1,Tk,j(i) in Ik−1. N (.) is a
normalized Gaussian distribution overZk,j(i), with mean
Ik−1,Tk,j(i) and varianceφ set to1.0.

Ψtop,2(Ik, Zk;ψ) ,
∏
v∈V

N (Ik,v;
1
Nv

Ω∑
j=1

s.t.v∈j

Zk,j(v), ψ), (2)

whereIk,v denotes the intensity ofglobal pixel coordinate
v in the image gridV . j indexes patches inZk and the sum
is over the patches which overlapv. Note thatj(v) = j(i

′
),

where i
′

is a local coordinate in patchj which overlaps
global coordinatev. ψ is the variance of the normalized
Gaussian which is set to1.0. Note that in Eqns.1 and2 the
R,G and B channels are treated independently.
Bottom Markov chain cliques:

Ψbot(Za
k , Z

a
k−1,Tk

;µzz;k) ,
Ω∏

j=1

∏
i∈j

L∏
l=1

L∏
m=1

µ
δ
�

Za
k,j(i)=l,Za

k−1,Tk,j(i)=m
�

zz;k,j(i),Tk,j(i),l,m
, (3)

where the indices on the first two products are the same as
in Eqn.1. The last term comprises the joint probability table
µzz;k,j(i),Tk,j(i) for Za

k,j(i), Z
a
k−1,Tk,j(i)

. l,m are indices
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Figure 2. Illustrates, (a) the increased burden on inference algorithms due to “loops”, if both short and long range correlations need to be
modelled; (b)the subsuming of loopy cliques into a BlackBox Classifier (in grey) in our mixture model; (c) an expanded view of the nodes
in the bottom Markov chain of the mixture and the MAPtree structured approximation to the mixturein green.A1:n−1 are theoutput
nodes, see Alg.1. See supplementary report for more details. Best viewed in colour and zoomed in.

into this table.

Black-box clique:

Ψbb(Ck, Ik; Υ) ,
ΩY

j=1

Y
i∈j

LY
l=1

πk,j(i),l

�
Ik,j(i); Υ

�δ(Ck,j(i)=l) ,

(4)
where, class probabilities obey

∑L
l=1 πk,j(i),l = 1.0. Υ

represents the internal parameters specific to the chosen
classifier, a Random Forest in our case. The tree structure
and split node functions are the internal parameters ([17]).
Notice that, this definition masks the internal “loopy”
structure of the Random Forest as a compromise for exact
inference.

Fusion cliques:

Ψfus,1(Ck, Ak;µca;k) ,
ΩY

j=1

Y
i∈j

LY
l=1

LY
m=1

µ
δ(Ck,j(i)=l,Ak,j(i)=m)
ca;k,j(i),l,m ,

(5)
where the indices on the first two products are the same as
in Eqn.1. The last term comprises the joint probability table
betweenCk,j(i), Ak,j(i) in corresponding patches.l,m are
indices into this table. Similarly,

Ψfus,2(Ak, Z
a
k ;µaz;k) ,

ΩY
j=1

Y
i∈j

LY
l=1

LY
m=1

µ
δ
�

Ak,j(i)=l,Za
k,j(i)=m

�

az;k,j(i),l,m .

(6)
Given the random variables and cliques, the
joint posterior distribution of the latent variables
H =

{
Z1:n, Z

a
1:n−1, C1:n−1, A1:n−1, T1:n

}
, given the

visible dataV = {I0:n, Za
0 , Z

a
n} and model parameter set

Ξ = {ψ, φ, µzz, µaz, µca,Υ} is as follows:

p (H|V,Ξ) ∝
n∏

k=1

Ψtop,1(Zk, Ik−1,Tk
;φ)Ψtop,2(Ik, Zk;ψ)×

Ψbot(Za
k , Z

a
k−1,Tk

;µzz;k)Ψbb(Ck, Ik; Υ)×
Ψfus,1(Ck, Ak;µca;k)Ψfus,2(Ak, Z

a
k ;µaz;k),

(7)

where the proportionality constant is computationally in-
tractable.

3.2. Inference

The log probability of the visible dataV can be lower
bounded as follows:

log p(V |Ξ) ≥
∫

H

q(H) log
p(V,H|Ξ)
q(H)

, (8)

whereq(H) is a variational posterior. We choose,

q(H) = q1(T )q2(Θ), (9)

whereΘ =
{
Z1:n, Z

a
1:n−1, C1:n−1, A1:n−1

}
, T = T1:n,

and,

q1(T ) ,
n∏

k=1

Ω∏
j=1

q1(Tk,j)

q2(Θ) ,
n∏

k=1

Ω∏
j=1

∏
i∈j

δZ∗
k,j(i)

(Zk,j(i))q̃2(Θ/Z1:n). (10)



We then apply the calculus of variations to maximise the
lower bound w.r.tq1, q2 and arrive at,

q1(Tk,j) ∝ exp

8<
:
Z

Zk,j ,Za
k,j

,Za
k−1,Tk,j

q̃2(Z
a
k,j , Z

a
k−1,Tk,j

) ×

log
h
Ψ(Z∗k,j , Ik−1,Tk,j ;φ)Ψ(Za

k,j , Z
a
k−1,Tk,j

;µzz;k)
io
, (11)

q̃2(ΘrZ1:n) = exp

Z
T
q1(T ) log p(Θ/Z1:n |V, T ; Ξ). (12)

The second of the above fixed point equations is still com-
putationally intractable as it involves marginalising over all
the mapping variables. For this reason we approximate it
as,

q̃2(ΘrZ1:n) ≈ exp
∫
T
δT ∗(T ) log p(ΘrZ1:n |V, T ; Ξ),

= p(ΘrZ1:n |V, T ∗; Ξ) (13)

whereT ∗ = argmaxT q1(T ). A second motivation for
this approximation is thatp(ΘrZ1:n |V, T ∗; Ξ) is tree struc-
tured or in other wordsT ∗ represents the best (MAP) tree
structured approximation of the mixture model from a vari-
ational inference viewpoint (see Fig.2). In consequence, it
is now straightforward to evaluate the exact marginals of the
variables inΘrZ1:n and the pairwise marginals to evaluate
q1(T ).
In practice, we start by setting thẽq2(Za

k,j , Z
a
k−1,Tk,j

) to
uniform andZ∗1:n = I1:n to evaluateq1(T ) (Eqn. 11(a)).
With this initialisation, this step is similar topatch cross-
correlation. Although simple to implement this step is com-
putationally demanding (Fig.7) and therefore, we only
evaluateq1(T ) once for each sequence to derive the cor-
responding tree structured model for that video.

3.3. Parameter updates and slRF training

The tree model parametersµzz, µaz, µca are updated in
the standard maximum likelihood (ML) style using the in-
ferred pairwise marginals [3]. Optimising the lower bound
in Eqn.8 w.r.t Υ we get the following ML update equation;

Υ̂ = argmax
Υ

n−1∑
k=1

∑
j=1:Ω

∑
i∈j

L∑
l=1

q̃2(Ck,j(i),l)×

log πk,j(i),l

(
Ik,j(i); Υ

)δ(Ck,j(i)=l)
. (14)

Updating Υ is simply equivalent to minimising the KL-
divergence between the inferred soft label (marginal poste-
rior of q̃2(Ck,j(i)) and the predicted soft label (priorπk,j(i)).
Therefore, we approximate this parameter update step as
a training of the slRF using soft-labels. In practice, we
adopt the “information gain” evaluation criterion of [17]
to train our slRF, as it is directly suited to training by tak-
ing into account the entropy of soft labels. We summarise
the discussions of this section in a psuedo-code shown in
Algorithm 1.

Algorithm 1: Semi-supervised Video Segmentation
Input : I0:n (video),Za

0 , Z
a
n (hand labelled end frames).

Output : Pixel label probabilities.
Intialisation
Set the initial values ofµzz, µaz, µca, ψ, φ to the values
given in Sec.4.
Setπk,j(i),l = 1

L
, l = 1 : L and∀k = 1 : n− 1, which is

equivalent to an untrained slRF.

Building the tree model
Compute the MAP tree structured approximation to the
mixture model by evaluating Eqn.11 (Sec.3.2) .

Segmentation
1. Infer marginals ofC1:n−1 [3].
/ * See S1 in Fig. 3.3 & Sec. 3.2 . * /

2. UpdateΥ by learning a soft label Random Forest (slRF)
using the marginals ofC1:n−1 as soft pixel labels .
/ * See S2 in Fig. 3.3 & Sec. 3.3 . * /

3. Infer marginals ofA1:n−1 using the updatedΥ.
/ * See S3 in Fig. 3.3 & Sec. 3.2 . * /

Compute probability of pixelv taking labell at framek as
1

Nv

PΩ

j=1
s.t.j⊃v

Ak,j(v),l

/ * An example of typical results at each
step is in a supplementary report to
encourage repeatability. * /

4. Experiments and Results

Our colour video sequences are320 × 240 resolu-
tions. Our test sequences are taken from the CamVid
road scene dataset [4] and Berkeley Motion Segmentation
(BMS) dataset [5]. For qualitative studies, we use the tennis
and Miss Marple sequences from BMS. We use the CamVid
dataset for a quantitative study. Each sequence in CamVid
is 750 frames in length, but we down sample to every5th

frame to have a length of150 frames. Ground-truth is avail-
able every30 frames. We study9 static classes like sky,
road, etc. and treat cars, pedestrians as outliers as they are
not permanent in a road scene. We assign a “flat” distribu-
tion to these outlier classes in the start and end frames and
examine their false positive rate to gain insight into outlier
rejection performance.
Each channel in all the images are scaled to lie between
[0.0, 1.0]. We use patches of size is set to7× 7 and patches
overlap except for1 pixel.
In our tree model, we set the entries in the joint probabil-
ity tablesµzz, µaz, µca to 0.9 along the diagonals and equal
values along the non-diagonal elements such that the sum of
all entries is unity. We choose the1st stage Random Forest
(RF) classifier, as in [17], with 16 trees, each of depth10.
Input LAB patches of21×21 are extracted around every5th

pixel on both axis. We leave out border pixels in a12 pixel
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Figure 3. (a) Miss Marple sequence from the Berkeley Dataset [5] with multiple complete occlusions. The occluding wall has similar
colour composition as the skin colour, but our method handles this difficult occlusion effectively as seen from the cut-out in row (b). We
obtained thisoptimal cut-outby thresholding the marginal posteriors with a value of0.97 (frames51−130), and0.99 (frames131−250).
This pair of thresholds could only be obtained due to the uncertainties in (e). In comparison row (c) shows a poorer cut-out using a sole
threshold of0.99. (d) are the uncertainties without including the slRF, and in which inter-class separation is clear (frame171). This clarity
is sometimes lost in row (e) after fusing the predictions of the slRF. Best viewed in colour and zoomed in. See supplementary video.

band to fit all rectangular patches. We use the same kind
and number of features as in [17]. The key difference is that
we use the inferredsoft labelsto train the slRF. We compute
the split function information gain and the leaf node distri-
butions (normalized histograms) by treating the data point
label as avectorwhose elements sum to unity.
As the tree model expands from root to leaf from instance1
to n (see Fig.2) the model is unsymmetric in time, which
can result in unnecessary biases in the labels. We rectify
this by repeating the segmentation for a time-reversed video
and perform pixel-wise averaging of the two inferences to
get our final results as suggested in [9].
Figs. 3, 4 are our results on the foreground/background
problem and the multi-class problem. For the convenience
of the reader, we have provided the highlights of these re-
sults along side the images. We report our quantitative stud-
ies in Table5 and study ROC curves for the sequence in Fig.
4, both underlined by appropriate comments to ease under-
standing. We also present the typical computational load for
our method in Fig.7.

5. Advantages and Drawbacks

The keyadvantagesof our proposed approach are:
1. Using exact inference we avoid sequential propagation
of erroneous instantaneous decisions and therefore reduce
false positives.

Avg. time/frame on 
8-core CPU, 8GB RAM

Building the 
tree model

Inference slRF training 
= 

2 classes 1.5 min 3 sec 1.4 min

9 classes 1.5 min 11 sec 3.2 min

 update

Figure 7. Typical computational load of our method with an unop-
timised C++ program for320 × 240 sized images. We have as-
sumed the arrays holding the marginals, incoming messages, and
model parameters have been loaded into RAM in order to generate
these numbers.

2. We avoid the common and unreliable demands of “gen-
eralization” from a classifier, and only use it as a method
to setup long range correlations within its training data
obtained by inference. Therefore, the classifier operates
only in the “closed-world” of a video.
3. Inference and training on our model isimplementation
friendlyand free from hacks.
4. The inferred uncertainties lead to better object cut-outs
by leading tooptimal thresholdsfor local time segments of
the video (see Fig.3).

Our approach suffers from the followingdrawbacks:
1. The uncertainty in the marginal posteriors is based on
the number of pairwise cliques a patch is part of (its neigh-
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Figure 4. Seq05VD from the CamVid dataset with ground-truth [4]. Black “outlier” labels at the ends have uniform distributions. The
labels in row (d) were obtained by thresholding the marginal posteriors at a value of0.75, selected using the ROC curves in Fig.3.3. We
encourage the reader to view the labels along with the confidence map in row (f) to see that our approach reduces false positive labelling.
Best viewed in colour and zoomed in. See video in supplementary material.
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1

60 –
810

HLP 75 26 27 0 7 93 91 97 78 79 55 53 82 77 51 57 44 87

Ours 100 77 0 0 0 94 99 94 0 90 52 53 92 78 52 69 31 86

2
2310–
3060

HLP 99 87 77 30 65 88 78 35 - 83 70 94 88 80 82 62 39 2

Ours 94 94 16 3 66 88 88 59 - 84 63 90 90 85 80 39 61 0

3
3060–
3810

HLP 98 92 16 12 37 93 85 9 - 90 55 45 92 76 44 62 38 38

Ours 100 99 0 0 6 93 93 0 - 89 49 47 90 77 46 75 25 39
For similar label density as HLP;
better LSC accuracies,
comparable density of uncertain labels for outlier classes,

lower accuracy over SSC due to low image resolution, 
reduced false positive rate by remaining uncertain,
no manual filtering of classifier output as in HLP [9].

Figure 5. Quantitative comparison on complex and lengthy (750 frames) video sequences from CamVid [4] dataset. Unlike our method,
HLP [9] uses manual classifier monitoring. We used ROC curves (Fig.3.3) to get optimal thresholds of0.75,0.12,0.77 for the three videos.

bourhood connectivity) and does include the uncertainty
with which the clique was formed in the tree model. As
part of future work, we would like include this information
in the model to improve performance.
2. We are currently restricted to segment classes which have
sizes above the patch resolution of7×7. Using higher reso-
lution images should alleviate this problem to a large extent.

6. Conclusions

We presented a novel tree structured graphical model
for videos for semi-supervised segmentation. Unlike tradi-
tional global MAP inference, our patch based video model
permits exact inference of pixel marginal posteriors within
an implementation friendly setup. Using simple patch
cross-correlation to model temporal correlations among
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Labelled points

Average accuracy (ASC)

Average accuracy (LSC)

True positives + Uncertain (SSC)

True positives + Uncertain (OC)

 S3 obtained using S2 (slRF training) is best
 slRF (S4) trained after S3 overfits. This does not 

improve performance (S5) 
 Improved accuracy going from S1 to S3

 S5 has higher average accuracy due to overfitting ,  
but has lower global accuracy.

We stop at S3 in our experiments to avoid over-
fits, obtain high global accuracy and label density.

 At threshold 0.75, used in Fig. 4, we balance label 
density, avoid false positives over small classes 
and outlier classes.

Figure 6. Stages S1 to S3 correspond to our algorithm in Alg.1. We update model parametersµzz, µaz, µca using S3 results. S4
corresponds to re-training the slRF (equivalentlyΥ update) using S3. S5 corresponds to inference using all the updated parameters and
demonstrates model overfitting. In the first plot, the curves fall short of1.0 label density as we do not count (1) outlier labels in computing
accuracies and (2) leave-out border pixels in slRF predictions. Best viewed in colour and zoomed in.

pixel labels and patch-clustering to model long range label
correlations, we have demonstrated that our video model
can produce effective soft labels for a wide variety of ap-
plications, including object cut-outs and road scene learn-
ing. Quantitative tests demonstrate the efficiency of our ap-
proach for multi-class segmentation of segmenting lengthy
and complex video sequences involving frequent occlu-
sions. Another novelty is that the uncertainty information
can be used extract better object cut-outs in complex videos.
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