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Abstract

We present a multispectral photometric stereo method
for capturing geometry of deforming surfaces. A novel pho-
tometric calibration technique allows calibration of scenes
containing multiple piecewise constant chromaticities. This
method estimates per-pixel photometric properties, then
uses a RANSAC-based approach to estimate the dominant
chromaticities in the scene. A likelihood term is devel-
oped linking surface normal, image intensity and photo-
metric properties, which allows estimating the number of
chromaticities present in a scene to be framed as a model
estimation problem. The Bayesian Information Criterion is
applied to automatically estimate the number of chromatic-
ities present during calibration. A two-camera stereo sys-
tem provides low resolution geometry, allowing the likeli-
hood term to be used in segmenting new images into re-
gions of constant chromaticity. This segmentation is car-
ried out in a Markov Random Field framework and allows
the correct photometric properties to be used at each pixel
to estimate a dense normal map. Results are shown on
several challenging real-world sequences, demonstrating
state-of-the-art results using only two cameras and three
light sources. Quantitative evaluation is provided against
synthetic ground truth data.

1. Introduction
Capture of deforming surfaces is becoming increasingly

important for a variety of applications in graphics, medical
imaging, and analysis of deployable structures. Practical
methods of acquiring high resolution geometry in both the
spatial and the temporal domains are required. In this paper
we propose a system that is capable of this and has only
modest equipment and computational requirements.

The proposed approach is based upon color (or multi-
spectral) photometric stereo which uses three different col-
ored lights to capture three lighting directions in a single
RGB image. This allows photometric stereo to be carried
out on each frame of a video sequence, generating high res-
olution geometry at the same frame rate as the input video.

One major weakness of standard multispectral photometric
stereo is its assumption that the observed scene is of con-
stant chromaticity. Generalization to scenes with varying
chromaticity has only been dealt with before by either re-
sorting to time multiplexing [7, 16], to regularization of the
normal field [14] or to the use of a depth camera to provide
extra information [3]. In this paper we propose a similar ap-
proach to that of [3] but using a more principled framework
and without the need of a depth camera.

1.1. Prior work

Multispectral photometric stereo was first demonstrated
over 15 years ago by several groups [8, 19, 26]. More re-
cently it has been used in a variety of applications [6, 11,
15, 17]. Johnson and Adelson [15] simplify calibration by
imaging an indenter with known reflective properties but
this is not applicable to general scene capture. Calibration is
carried out by Klaudiny et al. [17] first by estimating light-
ing directions using a specular sphere and then cycling one
of the light sources through each of the three colors to es-
timate an average calibration for the whole scene. A more
robust approach is proposed by Hernandez and Vogiatzis
in [11] in which a sequence of rigid body motions of the tar-
get object allows approximate geometry to be reconstructed
using structure from motion. This provides a set of image
normal pairs which allow for estimation of lighting direc-
tions and surface reflectance.

The assumption of constant chromaticity made by multi-
spectral photometric stereo can be relaxed by the addition of
time multiplexing, as shown by DeDecker et al. [7] and Kim
et al. [16]. These systems allow for reconstruction of scenes
with varying chromaticities but at the expense of requiring
at least two frames of input to produce one frame of geom-
etry, halving the temporal resolution of their results. Janko
et al. [14] avoid the need for time multiplexing by track-
ing texture on the surface and optimizing both surface chro-
maticity and normal direction over a complete sequence. To
make this tractable, regularization is required on the normal
field which can smooth over the fine detail that photomet-
ric stereo is otherwise capable of capturing. Current state-
of-the-art photometric reconstructions are achieved through
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Figure 1. Reconstruction overview. (a) Input image. (b) Low-resolution geometry recovered from two-view stereo. (c) The normal map
estimated using a constant chromaticity assumption contains large errors. (d) The normal map estimated using the proposed approach
removes these errors. (e) Final high quality geometry obtained by combining stereo reconstruction with normal map.

purely time multiplexing. Ma et al. [21] use a combination
of structured light and time-multiplexed spherical illumina-
tion patterns to achieve high quality results at the expense
of a complex equipment setup.

Other methods for dynamic geometry capture produce
results with very different characteristics. Multiview stereo
is a well studied field with current systems, such as Fu-
rukawa and Ponce’s PMVS software [10], capable of recon-
structing a wide variety of scenes. Faces and other objects
which exhibit little texture have traditionally been challeng-
ing to reconstruct using multiview stereo, but recently both
Bradley et al. [5] and Beeler et al. [4] have demonstrated ac-
curate results. Reconstruction can be facilitated by adding
texture to the target surface by either projecting light pat-
terns, [27], or by applying makeup, [9]. Phase shift struc-
tured light gives similar quality results as demonstrated by
Weise et al. [25].

Whilst multiview stereo and structured light systems are
capable of providing accurate global geometry they are gen-
erally limited in the resolution of features they are able to re-
construct. The idea of using other cues which contain high
frequency information to augment the output from multi-
view stereo is not new, for example Ikeuchi [13] demon-
strated the fusion of multiview and photometric stereo in
1987. More recently Beeler et al. [4] used a qualitative
method based on shading to improve their reconstructions.
Several systems [1, 2, 17, 21] have demonstrated the ef-
fectiveness of using photometric stereo to provide accurate
high frequency information with which to complement a
low frequency reconstruction obtained by stereo or struc-
tured light. One recent example is the work of Vlasic et
al. [24], showing detailed capture of high resolution , water-
tight models of human bodies. The light sphere setup, con-
sisting of several hundred controllable LEDs, used in this
work is however prohibitively complex for some applica-
tions, and the time-multiplexed photometric stereo requires
at least three input frames for each reconstruction.

1.2. Contributions

The theoretical contributions of this paper are firstly to
present a novel calibration technique for multispectral pho-
tometric stereo that can be applied to objects with multi-
ple piecewise constant chromaticities. Secondly we demon-
strate how to automatically estimate the number of chro-
maticities present during this calibration. Furthermore we
show how given an approximate normal map we can esti-
mate the correct photometric properties to use at each pixel
of a new image allowing for dense normal map extraction.

The practical contribution of this paper is to demonstrate
that state-of-the-art results can be achieved with a modest
hardware setup consisting of two cameras and three passive
light sources. Time multiplexing is avoided and no markers
are added to the target. Qualitative results are demonstrated
on challenging real world sequences and a quantitative anal-
ysis is carried out on synthetic data.

2. System overview
The proposed system uses two complementary ap-

proaches to capture the geometry of deforming surfaces.
Two cameras allow multiview stereo to reconstruct a low-
resolution depth map. This is then augmented using nor-
mals obtained from multispectral photometric stereo.

The stereo reconstruction uses the algorithm of Beeler et
al. [4]. The combination of low frequency depth informa-
tion and high frequency normal information is carried out
using the technique of Nehab et al. [22]. The novelty of the
system lies in the photometric reconstruction as detailed in
the following sections.

3. Photometric reconstruction
3.1. Multiple chromaticities

Given an image of a surface of constant chromaticity, il-
luminated by three spectrally and spatially separated light
sources, it is well known that it is possible to estimate a sur-
face normal at each pixel [8]. Given a surface with N > 1
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Figure 2. Evaluating segmentation hypotheses. Given a normal
map (blue) and a hypothesized segmentation (magenta) an image
estimate can be formed (red). The segmentation producing the
estimate that best matches the input image (black) is chosen.

regions of different chromaticity this is no longer possible
as a change in pixel color could be caused by either a change
in surface normal or a change in surface chromaticity. To re-
solve this ambiguity an input image can be segmented into
regions of constant chromaticity before normal estimation is
carried out. To perform this segmentation we use the low-
resolution stereo depth map to compute a smoothed normal
direction at each pixel. For each of the N chromaticities in
the scene the smoothed normal at any pixel will predict a
different color as shown in figure 2 for the simple case of
N = 2. A good segmentation can be found by ensuring that
an image generated from the smoothed normals matches the
observed image as closely as possible. In carrying out a seg-
mentation we wish to enforce two constraints:

1. The likelihood of generating the observed image from
the smoothed normal map is maximized.

2. Chromaticity is locally constant.

In section 3.2 we develop an expression for the likeli-
hood term necessary to enforce the first constraint and in
section 3.3 we show how a Markov Random Field (MRF)
can be used to carry out the segmentation whilst enforcing
the second constraint.

3.2. Likelihood term

We assume a Lambertian reflectance model and ensure
that there is no ambient lighting. Under these conditions,
given three distant point light sources illuminating a surface
with unit normal n and albedo α, it has been shown, [8],
that the observed intensity of the surface is given by

c = αVLn =
[
v0 v1 v2

] [
l0 l1 l2

]>
αn, (1)

where c, li and vi are all column vectors of length three. c
denotes the RGB image intensity, li defines the direction of

light i and vi is the combined response of surface and sensor
to light i. The matrix V models the combination of the
surface’s chromaticity, the lights’ spectral distributions and
the camera sensors’ spectral sensitivities. It is this matrix
that varies for regions of different chromaticity. The albedo
of the surface α is a value between zero and one which is
equal to the proportion of incoming light reflected by the
surface.

We assume that each channel of the image is corrupted
by additive white Gaussian noise with variance σ2 at each
pixel independently, making c normally distributed with

p (c|n,V, α) = N
(
c|αVLn, σ2I

)
. (2)

Given an observed image value c and an estimate of V and
L the maximum likelihood estimate of n is then given by

n =
(VL)

−1
c∣∣∣(VL)

−1
c
∣∣∣ . (3)

The likelihood of observing an image and normal pair (c,n)
given a chromaticity defined by the matrix V can be found
using Bayes’ rule as

p (c,n|V) = p (c|n,V) p (n|V) . (4)

A uniform prior is assumed for the surface normals p (n|V).
We cannot express p (c|n,V) without taking the surface’s
albedo α into account. Since this is unknown we marginal-
ize it out, giving

p (c|n,V) =

∫
p (c|n,V, α) p (α|n,V) dα. (5)

We set the prior p (α|n,V) to be uniform in the range
zero to one. Using (2) this gives

p (c|n,V) =

1∫
0

N
(
c|αVLn, σ2I

)
dα. (6)

By choosing a coordinate system such that the first axis of
this new coordinate system is parallel to the line VLn this
can be written as

p (c|n,V) =

1∫
0

N

cr|

 |αVLn|
0
0

 , σ2I

 dα, (7)

where cr =
[
cr0 cr1 cr2

]>
is c in the new rotated co-

ordinate system. Removing all terms that do not depend on
α from the integral and using b = |VLn| for compactness
this can be integrated to give

N
(
d|0, σ2

)
2b

(
Erf
(
cr0

σ
√
2

)
− Erf

(
cr0 − b
σ
√
2

))
, (8)



where
d2 = c2r0 + c2r1 (9)

and Erf() is the error function. In the original coordinate
system cr0 and d are given by

cr0 =
cᵀVLn

|VLn|
(10)

and
d = |c− cr0VLn| . (11)

Intuitively cr0 corresponds to the distance along the line
VLn and d to the displacement perpendicular to this line
due to noise. The term containing the two error functions
is approximately constant between 0 and |VLn| due to our
uniform prior upon α and as such, for practical purposes,
can be treated as a constant.

3.3. Segmentation

To perform the segmentation of a new scene into dif-
ferent chromaticities we construct a Markov Random Field
(MRF) in which each node corresponds to a pixel in the
input image and is connected to the node of each of the
pixel’s neighbors in a 4-neighborhood. Each node will be
assigned a label a ∈ 1, . . . , N corresponding to one of the
N chromaticities in the scene. The constraint that chro-
maticity should be locally constant is enforced using the
Potts model for the pairwise terms in which no cost is as-
signed to neighboring pixels sharing a label and a cost γ is
assigned for differing labels. The unary terms are given by
the likelihood derived in the previous section. Given a set
of N matrices, Va∈1,...,N , the unary term for a pixel taking
label a is given by P (c|n,Va) where the n is taken from
the smoothed normal map estimated from the stereo depth
map and c is an image intensity taken from a smoothed ver-
sion of the input image. Smoothing is necessary to remove
high frequency variation due to fine geometric detail which
the stereo algorithm cannot recover.

To ensure that the segmentation boundaries follow re-
gion boundaries closely, an edge map of the image is com-
puted and Potts costs for edges in the graph that cross an
edge in the edge map are set to γ

100 .
Once the MRF has been built, it is solved using the tree

reweighted message passing algorithm of Kolmogorov [18]
and normals are estimated independently at each pixel using
(3) with the relevant Va. This dense normal map is then
combined with the low-resolution stereo depth map using
the method of Nehab et al. [22].

4. Calibration
This section describes the calibration procedure used to

estimate the parameters required for reconstruction. These
can be split into two groups, the photometric parameters, N

Algorithm 1 Complete calibration procedure
Require: Ir, Ig, Ib, L, σ, stereo depth map

1: Estimate per pixel V as in section 4.1.
2: for N = 1 : Nmax do
3: for τ = τmin : τmax do
4: Estimate Va∈1,...,N using RANSAC (section 4.2)
5: Segment image as in section 3.3
6: Calculate BIC using (13) and this segmentation
7: end for
8: end for
9: return N , Va∈1,...,N

and Va∈1,...,N , which need to be estimated for each scene
individually and the lighting direction matrix L, the image
noise σ and the camera intrinsic and extrinsic parameters,
which only need to be estimated once. In order for the pho-
tometric parameters to be estimated the scene must be held
still for long enough to acquire three images under different
lighting. We did not find this to be a problem in practice.

Estimation of the intrinsic and extrinsic camera param-
eters is carried out using the standard technique of rotat-
ing and translating a checkerboard pattern in the field of
view [28]. Estimation of L is also carried out using a stan-
dard method; rotating the same checkerboard pattern with
only one light on at a time provides a set of (c,n) pairs from
which L can be estimated using least squares, as in [12].
To estimate σ several images of a static scene under con-
stant lighting are acquired and σ2 is estimated as the aver-
age variance of the pixels across the images. The procedure
for estimating N and Va∈1,...,N can be broken down into
three parts detailed in the following sections:

1. Estimation of V at each pixel individually.

2. Estimation of the N dominant chromaticities,
Va∈1,...,N , where N is given.

3. Selection of N as a model order selection problem.

The complete procedure is outlined in Algorithm 1.

4.1. Per pixel calibration

To estimate V at every pixel we propose the following
method. Three images are acquired, Ir, Ig and Ib, with
each light being switched on in one of the images. It is
assumed that scene geometry is constant across the three
images. A stereo reconstruction is also performed to give a
low-resolution normal map. Given this normal map and the
previously computed lighting directions, each of the three
images allows for an estimate of one column of the V ma-
trix to be made at each pixel. For example, using Ir when
only the first (red) light is on (1) reduces to

c = α
[
v0 v1 v2

] [
l0 0 0

]>
n = αv0l0

>n. (12)



Since c, n and l0 are known, this allows all elements of v0

to be calculated up to the scaling factor α, which is con-
stant across all columns in V. To account for the fact that
the stereo normal map does not recover high frequency ge-
ometry, each of the three images are smoothed before this
process is carried out.

This procedure actually recovers αV at each pixel, not
V. As can be seen from (3) the scale of V is unimportant
during reconstruction, so we scale each V matrix so that
the largest c value it can predict given a valid normal has a
value not greater than 255. We ensure that saturation does
not occur in practice by adjusting the camera’s exposure and
gain settings.

4.2. Calibrating for multiple chromaticities

Once an individual calibration matrix has been estimated
for each pixel, we wish to find both N , the number of chro-
maticities present in the scene, and Va∈1,...,N which are the
photometric properties of the N dominant chromaticities in
the scene. Initially assuming that N is known, we wish to
choose Va∈1,...,N to explain the scene as well as possible.
To do this we use a RANSAC-based approach similar to that
of [11]. One of the calculated V matrices is chosen at ran-
dom as a hypothesis and the number of pixels in the calibra-
tion scene that support it is observed. To measure support
for a hypothesis an image under full multispectral lighting
Irgb is synthesized according to Irgb = Ir + Ig + Ib. Using
the pixel intensities c from this synthesized image and the
previously computed normals, the likelihood of this (c,n)
pair given the hypothesized V matrix can be calculated us-
ing (8). If the likelihood is above a threshold value τ the
pixel supports the hypothesized matrix, otherwise it does
not.

This is repeated a fixed number of times retaining the hy-
pothesis with the most support each time. The final calibra-
tion matrix is then found by averaging V over all the pixels
that supported the final hypothesis. Once the first calibra-
tion matrix has been chosen, all pixels that supported it are
removed and the process is repeated to find the next most
dominant chromaticity in the scene. This is repeated until
N calibration matrices have been recovered.

4.3. Estimation of the number of chromaticities N

The above procedure assumes that N is already known,
however this is not the case. Selection of N can be viewed
as a model selection problem in which the increase in the
model’s ability to explain the input image by increasing N
is traded off against the added complexity of the model.
We wish to use an information theoretic model selection
method, and to reduce the chance of overfitting we use
the Bayesian Information Criterion (BIC) [23]. Once the
RANSAC stage has been carried out to estimate Va∈1,...,N ,
an MRF can be solved as it would be during reconstruction

so that the correct Va can be used at each pixel in the im-
age. Assuming pixel-wise independence the likelihood of
the complete image is the product of the pixel likelihoods
and hence the BIC score can be calculated using

BIC = −2
n∑
i=1

lnP (ci,ni|Vai) +mN lnn, (13)

where n is the number of pixels in the image, and m is the
number of additional model parameters when increasing N
by one, nine in this case. The value of N that produces
the lowest BIC score is chosen. In practice this process is
repeated for five values of the threshold τ for each N and
the lowest BIC score over all N and τ is used.

5. Experiments
5.1. Constant chromaticity calibration

While focusing on multichromatic scenes, the proposed
calibration method is applicable to scenes of uniform chro-
maticity. To demonstrate this we reconstructed three differ-
ent faces using both our method and that of [11]. Recovered
results were very similar with an average difference in nor-
mal of 0.54◦ . An example reconstruction is given in the top
row of figure 4.

5.2. Multichromatic scenes

To demonstrate our approach on a multichromatic scene
a challenging sequence involving a green and white cush-
ion was processed. Calibration was performed and resulted
in N = 3 being selected (two chromaticities on the cushion
and another for the hands holding it). If only one chromatic-
ity is assumed for the entire scene, the hand is recovered in-
correctly, see figure 3(a), whilst using the proposed method
the normals and therefore geometry are correctly estimated,
see figure 3(b).

Throughout the 300 frame sequence segmentation is suf-
ficiently accurate to give qualitatively good results. For
some frames such as that in figure 3(c) segmentation fails
due to strong shadowing, here failing to segment the fingers
correctly. The resulting geometry produced, see figure 3(e),
exhibits artifacts, but this failure is a rare occurrence.

The resulting reconstructions are best viewed dynami-
cally in the supporting video, but several stills have been
provided in figure 4 for illustration.

The stereo results shown in the second column contain
little detail but give correct overall geometry. The sec-
ond and third columns show results comparable to those
achieved by purely photometric systems such as [11] which
look convincing when viewed from close to the original
viewing direction, but contain low frequency deformations
that become apparent when rendered from novel view-
points. Our combined results in the final two columns
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Figure 3. Reconstruction detail: Reconstruction assuming (a) a single chromaticity, and (b) assuming 3 chromaticities. Note the
improvement of the reconstructed hand shape. Failure case: (c) Input image, (d) failed segmentation, (e) resulting reconstruction.

demonstrate that this low frequency deformation has been
removed while retaining high frequency detail.

The image size for these sequences is 1600 × 1200 and
the mean running time of the complete algorithm is 16 sec-
onds per frame, the two most time consuming parts being
the stereo reconstruction in CUDA (4 seconds) and the nor-
mal field integration (9 seconds) in single-threaded C++.
The mean segmentation time is approximately 2 seconds.

5.3. Quantitative analysis

In order to demonstrate the accuracy of our approach
against ground truth data, a set of experiments on synthetic
images was carried out. A publicly available high resolu-
tion model captured in [20] was rendered in OpenGL. The
diffuse albedo recorded by [20] was applied to half of the
model and the other half was rendered using three different
solid colors. A uniform white specular albedo was present
over the entire model. An example input image is shown in
figure 5(a).

Initially no noise was added to the images and recon-
struction was carried out. The errors between ground truth
normals and recovered normals are shown in figure 5(c). In
areas of uniform chromaticity errors are due to specular re-
flections or region boundaries while in the unmodified half
there is a varying level of error introduced by the varying
chromaticity.

Calibration was also carried out using the method of [11]
with resulting normal errors shown in figure 5(b). This ap-
proach estimates the correct calibration for the unmodified
portion of the model, producing similar results to the pro-
posed method in this region, but it cannot deal with the mul-
tiple chromaticities in the scene.

If the recovered normal field is integrated then there is
a large discrepancy between recovered depth and ground
truth values as shown in figure 5(e) due to a slight bias in
the normal estimation. Combining the depth map estimated
using stereo with the normal maps greatly reduces this error
as shown in figure 5(f).

To simulate image noise we added Gaussian noise with a
standard deviation of 6 independently to each color channel
of each pixel and repeated the above experiments. Numeri-
cal results for depth and normal errors are given in table 1.
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Figure 6. Model selection. Plots of negative log likelihood and
resulting BIC value as N , the number of colors in the scene, is in-
creased. (Blue) for synthetic face data with four major chromatic-
ities (red) for real cushion data for which there are three major
chromaticities. In both cases the plots are the average values from
100 runs and dashed lines show negative log likelihood while solid
lines show the BIC value.

5.4. Estimation of the number of chromaticities N

In all of the above experiments N was estimated using
model selection with the BIC criterion. Here we present re-
sults demonstrating the stability of our approach to estimat-
ing N . Figure 6 shows plots of the negative log likelihoods
used in (13) and the corresponding BIC values for the syn-
thetic face (figure 5), which has four major chromaticities,
and the real cushion (figure 3) which has three major chro-
maticities. It can be seen that in each case the correct N
is chosen. Also in both cases the rates of reduction of log
likelihood decreases rapidly beyond the correct N value.

5.5. Current limitations

The proposed approach makes two major assumptions
about the scene, firstly that it contains a small number of
distinct chromaticities and secondly that it is well approxi-
mated by a Lambertian reflectance model. Reconstructions
of scenes which break these assumptions will contain arti-
facts. Also reconstruction of dark surfaces is noisy due to
the low amount of reflected light.



Figure 4. Reconstructions of real sequences. From left to right in each row: Input image, stereo reconstruction, integrated normal field,
novel view of integrated normal field, final result once stereo information included, same novel view of final result. While integrating the
normal field gives reasonable results when viewed frontally, low frequency deformations are visible when viewed from novel angles. These
deformations are removed in the final result using low frequency information from stereo. The top row usesN = 1, the middle rowN = 2
and the final row N = 3 chromaticities in the scene, which are found automatically using model selection.

Stereo only Normals only Normals only Stereo + normals
Calibration by [11] New calibration New calibration

No Normal error (◦). Mean (std dev) 11.8 (10.3) 22.6 (23.2) 3.97 (5.23) 3.26 (4.07)
noise Depth error (mm). Mean (std dev) 0.39 (1.18) 10.3 (10.9) 6.83 (5.49) 0.37 (1.23)
Noise Normal error (◦). Mean (std dev) 11.9 (10.4) 25.2 (24.1) 9.06 (6.06) 8.37 (5.62)
σ = 6 Depth error (mm). Mean (std dev) 0.40 (1.21) 10.3 (10.9) 6.86 (5.51) 0.38 (1.27)

Table 1. Errors on ground truth data. Assuming constant chromaticity as in [11] leads to large errors. Whilst the stereo data provides
accurate depths, the geometry is over-smoothed, making normal estimation inaccurate. The proposed reconstruction method accurately
estimates normal directions, but the addition of the stereo data is still necessary to remove low frequency bias in depth results.

6. Conclusions

We have presented a system for applying multispectral
photometric stereo to scenes containing multiple chromatic-
ities by making use of multiview stereo reconstruction. A
novel calibration technique was demonstrated that allows
photometric properties to be estimated at each pixel in a
calibration scene. It was shown that automatic estimation
of the number of chromaticities in such a scene can be car-
ried out using a model selection approach. Given such a
calibration we are able to segment new images into regions
of constant chromaticity and produce dense normal maps.
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