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ABSTRACT

The last few years have seen considerable progress in pedes-
trian detection. Recent work has established a combination
of oriented gradients and optic flow as effective features al-
though the detection rates are still unsatisfactory for practical
use. This paper introduces a new type of motion feature, the
co-occurrence flow (CoF). The advance is to capture relative
movements of different parts of the entire body, unlike exist-
ing motion features which extract internal motion in a local
fashion. Through evaluations on the TUD-Brussels pedes-
trian dataset, we show that our motion feature based on co-
occurrence flow contributes to boost the performance of ex-
isting methods.
Index Terms — HOG, motion feature, flow, pedestrian

1. INTRODUCTION

Pedestrian detection is a highly active research area of com-
puter vision, involving various techniques to improve fea-
ture design, classification as well as non-maximal suppres-
sion. The applications range from surveillance to image in-
dexing and notably automotive safety [14, 8, 11, 6, 9] which
this paper is also concerned with. A recent benchmark [5],
using a large dataset recorded from a moving vehicle, pro-
vides an overview of state-of-the-art performance of a num-
ber of detection algorithms [2, 16, 4, 7, 12, 20]. It reported
that histograms of gradients (HOG) [2] remains competitive,
while the detection rates of the best methods still require large
improvements for practical applications. One of the com-
mon challenges in most of these vision systems is to deal
with varying appearance of pedestrians under different walk-
ing phases as well as viewing directions by using static image
features. An exception is [16], which first employed motion
features, although a static camera was assumed.

Motion is an important cue, especially for a monocular
system, which enables us to see what is not noticeable in a
single image. Although there have been few works which
incorporate motion in pedestrian detection [16, 3, 21, 13], it
was recently shown that additional use of motion features to
HOG can enhance the performance for on-board sequences,
in particular for pedestrians with side views which are of high
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importance in automotive safety applications [21]. The added
motion feature, originally introduced in [3] as histograms of
flow (HOF) feature, was computed for example by applying
wavelet-like operators on a 3x3 local cell grid of HOG.

In this paper, motivated by the previous work [21] which
justified the use of motion, we introduce a novel motion fea-
ture, the co-occurrence flow (CoF). The idea of co-occurrence
flow is to capture possible coherence in movements of differ-
ent body parts into a motion feature. It is also inspired by
the co-occurrence histograms of oriented gradient [18], which
are obtained by pairwise voting of edge orientations. In our
case, in order to encode the unique motion of walking into
our feature, we design the CoF feature through pairwise com-
parisons of histograms of optic flow for the entire body, i.e.
across exhaustive combinations of cells defined typically by a
4x8 grid of squares, forming a rectangular region. See Fig. |
for the sketch of the CoF feature.

We compute probabilities of being pedestrian for candi-
date regions in terms of a combination of CoF feature and a
multi-level version of the HOG descriptor [2]. As the classi-
fier we choose to employ the linear SVM and HIKSVM, sup-
port vector machines with histogram intersection kernel [12],
because of the performance and the popularity.

In the remainder of the paper, Section 2 describes CoF,
the new motion feature, together with our implementation of
HOG. Section 3 explains the setting of our pedestrian detec-
tion and shows the performance of our detector in experi-
ments in comparison with that of HOF feature combined with
HOG. Section 5 is the conclusion.

2. CO-OCCURRENCE FLOW

Our motion feature is motivated by the fact that strong corre-
lations exist in the movements of different body parts when
a pedestrian is walking. They include correlations between
the motion of two legs, those between two parts of an arm,
or those between a leg and an arm. The correlations provide
useful cues to identify the walking motion unique to pedestri-
ans [13]. Itis at least the case for human vision, as shown for
example by a well known experiment of Johansson [10].

In our system, we aim to capture this discriminative power
in optic flow correlations which we call co-occurrence flow
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Fig. 1. An example of our motion feature, co-occurrence flow (CoF) feature vector, computed for a sub-window consisting of 4 x 8 cells.
We first compute the oriented edge energy responses and store them in discretised channels. (In this case we consider six orientations and
therefore use six integral images accordingly.) We then compute a local histogram of signed flow amplitude for each cell, and make pairwise
comparisons of histograms across exhaustive combinations. See text in Section 2 for details.

(CoF). Namely, when certain flow is observed on one body
part, simultaneous flows on other parts are likely to be related
to it in specific ways, either coherent or dissimilar with some
characteristic differences depending on the offsets of the body
parts. We encode this notion in the CoF feature (see Fig. 1).
We design it to be suitable for window search so that it can
be utilised jointly with a HOG feature, which is also the case
with our detector. This section introduces the design details
of the CoF feature, preceded by the description of our HOG
implementation.

2.1. Multiscale HOG

Our approach to extract HOG features starts with computa-
tions of the oriented edge energy responses by convolving the
input image, Z, with oriented odd Gabor filters in d (= 8)
different orientations, which is reported to improve results
[12]. As we use integral images [1] to efficiently compute
our features in windows of various size, this filtering is first
performed for the entire image, Z, rather than separately for
each overlapping detection window. We denote the outputs of
Gabor filtering in the j-th direction as G(j) for j = 1, ..., d.

Given a candidate rectangular region, R, of an arbitrary
size and with the aspect ratio of 1:2 for finding pedestrians, we
define cells, subregions of R, in each of which we compute
elements of HOG feature. The cells are gridwise generated in
a multi-level fashion so that we have 2! x2-2! (1 = 0, ..., ;a2
cells in each level. We choose [,,,, = 3 as a reasonable
number for the finest level. To give a rough idea, this indicates
that each cell in the bottom level consists of 8 x 8 pixels for
an R with size 64 x 128 pixels.

For a cell at a level [, which we refer to as w;(m, n) for
m=1,...,2", n =1,..., 2", we construct a set of feature el-
ements, f;(m,n) € R?, by computing the sum of the outputs
of Gabor filtering, {G(j)}, at each orientation channel within
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the corresponding subregion. That is,
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where (u,v) are local coordinates in R. We then nor-
malise fi(m,n) by using filter outputs over all directions.
Thus, our normalised feature, f;(m,n), consists of entries
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Now, we incorporate outputs at coarser scales which are
generally known to be useful (see e.g. [15]) and form an Ng-
dimensional HOG descriptor, v, by concatenating the fea-
tures of different levels by vg = [f'g £ f'o} where Ng =
A kmae ol 91 N = 1360 when d = 8 and lpa, = 3.

2.2. CoF feature

Co-occurrence flow (CoF), uses pairwise comparisons be-
tween local histograms of optic flow as its building blocks.
Given a rectangular region, R, we generate a (= m X n) cells
in the same way as the second finest level in computing HOG;
[ = 2so that a = 4 x 8 (see Fig. 1). In each cell, wy(m,n)
form = 1,..,2% n = 1,...,2F &k = 2, we compute a
local histogram of optic flow, H(m,n), by voting the pixels
according to the orientations of flows into b (= 6) bins while
using their flow magnitudes as weighting factors.

We use the technique of [19] for computing a regularised
flow field for the entire image, Z. For the sake of computa-
tional efficiency, the flow field is stored in separate channels
F(i) for: = 1,...,b (one per discretised orientation). Each
F(i) is represented using integral images. Thus, each bin of
the local histogram, H (m, n), can be effectively produced by
accessing the subregion of {F'(¢)} which corresponds to the
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cell of interest, wy(m,n). That is, the i-th element of the
histogram is computed as
h(m,n;i) = / F(u,v;i)dudv , i =1,...,b.(4)
wy (m,n)

Given an on-board camera, the computed flow field is nat-
urally influenced by possible camera motion. Our strategy to
cope with the influence of camera motion is to subtract the
dominant background flow from the original flow before gen-
erating the local histogram. This is in contrast to the previous
approach of using derivatives of differential flow such as in
Internal Motion Histogram descriptors [3, 21]. In practice,
we compute the dominant flow by averaging the flow glob-
ally observed in R. We can compute the i-th element of the
histogram considering this subtraction simply by

R (m,n;i) = h(m,n;i) — / F(u,v;i)dudv . (5)
R

We then make the pairwise comparison of H'(m,n) for
all possible Ng(= ,C5) combinations inside R. We have
Np = 496 for a = 4 x 8. Using the L1 norm as the measure!,
each comparison outputs a scalar, Sap = |H'(A) — H'(B)|,
where A and B are indices to arbitrary cells, and thereby we
obtain an Np-dimensional vector, vip = {S4p}, which en-
codes our CoF feature.

3. EXPERIMENTS

Our pedestrian detection is based on a window search. As
explained earlier, we take computational efficiency into con-
sideration in several aspects of our detector; we compute CoF
and HOG features using integral images in order to reduce
the cost of window search. By facilitating the access to sub-
windows at arbitrary positions in varying scales, our CoF and
HOG features computation is done in a GPU implementation.
We search for pedestrians by extracting bounding-boxes at
every 4 pixels along both horizontal and vertical directions
across the input image. We examine 17 different scales rang-
ing from 0.4 to 2.0, corresponding to 50 and 256 pixels of the
height. Each detection is counted as correct if it overlaps with
an annotation by more than 50% using the intersection-over-
union measure.

Once we run a search and detect numerous regions of in-
terest (ROIs) that are classified as pedestrians, we apply a non
maximal suppression (NMS) algorithm to merge the detec-
tions. The approach we take is to smooth the 3D map of
output detection scores across 2D coordinates and scale, and
then to find their local peaks which we select as positive out-
puts. The dimensions of the feature vectors, v and v, are,
Ng = 1360 and Np = 496, respectively, given a = 4 X 8.
Our feature, v = [vg V], therefore has the total of 1856 di-
mensions.

'We found the performance better than the case of using histogram inter-
sections.
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Fig. 2. The ROC curves generated for TUD-Brussels dataset using:
(i) CoF+HOG features (in dashed), (ii) multiscale HOG features (in
solid), and (iii)) HOF+HOG features (in dotted). Overall, CoF+HOG
features perform the best among the three.

3.1. Training scheme

We use the TUD-MotionPairs database [21] for the purpose
of training as the images are provided as sets of consecu-
tive frames so that training based on motion features is possi-
ble. The positive dataset taken in a busy pedestrian zone con-
sists of 1092 pairs of images, containing 1776 annotations of
pedestrians. The negative dataset consists of 192 images con-
taining no pedestrians. We take a few approaches to increase
the number of training samples; we extract several samples
per annotation by wobbling the region which we access for
computing the features while considering mirroring as well.
We then train the classifier: support vector machines with lin-
ear or histogram intersection kernel.

After training with those initial samples and therewith
running the classification using the same training data set, we
acquire numerous examples of false positive (hard negative)
as well as true negative. We then proceed the bootstrapping
training by using those additional samples.

3.2. Evaluations

For evaluations we use the TUD-Brussels database [21] that
is recorded from a car driving at varying speed. It consists of
508 pairs of images containing 1326 annotated pedestrians.
In order to evaluate the entire scheme, we study the perfor-
mance in plots in terms of recall and precision by a simulation
using positive (annotated) pedestrian regions and randomly
selected negative rectangular regions (note that the resulting
recall rates appear relatively higher in terms of ROC curves
than the cases of using actual detections). We then compare
the results of using (i) CoF+HOG features with those from (ii)
HOG features only. We also compare the CoF+HOG features
with (iii) a HOF+HOG features, a state-of-the-art motion fea-
ture IMHA2 [17], which is a recent modification of HOF. The
dimension of this motion feature alone is 2520 per rectangular
region, which is reduced from the original HOF feature [3].
In Fig. 2, we show the ROC curves obtained with those
three types of features. Linear support vector machines are
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Fig. 3. Examples of pedestrian detections by HOG+CoF features. Detected bounding boxes are shown in green. The second picture shows

colour coded optic flow map for the frame shown in the left.

used for this analysis. The performance increase by our de-
tector using CoF+HOG features is significant over the case
of using only HOG features. The difference in the obtained
recall is by 14.9% at a false positive rate of 90%. CoF+HOG
features also outperforms HOF+HOG features by 5.8% at the
same error rate although the recall rate deteriorates at false
positive rates lower than 2%. It should be noted that CoF fea-
tures achieve the performance with the dimension that is five
times smaller (half in total including HOG) than that of the
alternative HOF feature.

Fig. 3 shows examples of pedestrian detection by HOG +
CoF features with HIKSVM (detected bounding boxes over-
laid). The optic flow map is also provided for the leftmost
example. It appears evident in the flow map that motion can
serve as a strong cue, however it is also observed that issues
may arise due to occlusions; in this example one of the targets,
the third from the right, was not detected when HOG+HOF
features were used instead although it is with our HOG+CoF
features as can be seen. Overall these examples illustrate that
CoF features efficiently capture the motion of pedestrians.

4. CONCLUSION

We have introduced a new motion feature, the co-occurrence
Sflow (CoF), which improves the performance of pedestrian de-
tection in combination with the HOG descriptor. The idea
is to globally capture relative movements of different body
parts. We evaluated the performance of CoF feature through
experiments, and showed that our detector using the CoF fea-
ture boosted the performance by combining it with a standard
HOG feature even though a limited amount of data has been
analysed so far.

Future work will be first directed to a more thorough
evaluations with a larger dataset. It will be also interesting
to investigate how the two complementary features can be
unified in other efficient ways. Finally, the concept of co-
occurrence flow can have broader applications to recognition
of motion such as those of human actions in video processing.
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