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Abstract We present a method for producing dense

Active Appearance Models (AAMs), suitable for video-

realistic synthesis. To this end we estimate a joint align-

ment of all training images using a set of pairwise regis-

trations and ensure that these pairwise registrations are

only calculated between similar images. This is achieved

by defining a graph on the image set whose edge weights

correspond to registration errors and computing a bounded

diameter minimum spanning tree (BDMST). Dense op-

tical flow is used to compute pairwise registration and

a flow refinement method to align small scale texture

is introduced. Further, given the registration of train-

ing images, vertices are added to the AAM to minimise

the error between the observed flow fields and the flow

fields interpolated between the AAM mesh points. We

demonstrate a significant improvement in model com-
pactness.

Keywords Active Appearance Models · Groupwise

registration · Minimum spanning trees

1 Introduction

Active Appearance Models (AAMs) are statistical mod-

els of both shape and appearance. Since their introduc-

tion fifteen years ago [6], they have been used exten-
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sively for tracking as they allow robust and efficient

registration over a variety of different object classes [7,

25,26]. More recently, AAMs have been growing in pop-

ularity for synthesis of faces, for example in emotion

synthesis [1], expression transfer [36] and visual text-

to-speech applications [12]. In order to train an AAM,

a set of points must be consistently labelled in a collec-

tion of training images. Since this is usually carried out

by hand the number of points is small (less than 100),

leading to models such as the one in Figure 1(a). While

automatic model building methods have been proposed

previously [3,28,39], these do not produce results of

sufficient accuracy for the synthesis of high-resolution

images.

The task addressed in this paper is building dense

AAMs, such as the example shown in Figure 1(b), in or-

der to generate new video-realistic synthetic sequences.

The underlying problem that needs to be solved in

order to build such models is one of joint non-rigid

image alignment. There exists a large body of work

on this problem [8–10,14,16,20,24,32], the majority of

which registers each image to an iteratively updated

base model. In this paper we propose a method that

instead of registering all images to a base model reg-

isters images in a pairwise fashion. We find a bounded

diameter minimum spanning tree (BDMST) on a graph

containing all of the images, where each image is a node

and each edge represents a warp between the two im-

ages it connects (see Figure 1(c)). The motivation for

this approach is the fact that with current pairwise reg-

istration methods a low alignment error can only be

achieved between similar images. Given the spanning

tree all images can be registered to a common reference

frame, solving the joint alignment problem.

In this paper we use a dense optical flow algorithm

to align two images. Current methods use a coarse-to-
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Fig. 1: Overview: From a sparse, 37 point AAM (a) the proposed method creates a dense, 1000 point AAM (b) suitable for
image synthesis tasks. To achieve the dense registration required to construct the AAM we find a bounded diameter minimum
spanning tree on a graph defined on the training images (c). On the digital version it is possible to zoom in to see the individual
training images.

fine approach, which often fails to register small scale

texture. We therefore introduce an optical flow refine-

ment technique that is particularly suited to register-

ing regions containing only fine texture. Once the joint

alignment is computed we present a method for densify-

ing AAMs that applies ideas from digital terrain mod-

elling. To summarise, the contributions of this paper

are:

1. An application of BDMSTs to the joint alignment

problem.

2. A method of optical flow refinement suited to re-

gions which contain fine texture.

3. A method for densifying an AAM given dense cor-

respondences between training images.

The paper is organised as follows: §1.1 reviews prior
work and §2 describes the use of the BDMST to ob-

tain a joint alignment. BDMSTs are contrasted against

shortest path trees in the context of this problem in §3.

Details of the optical flow algorithm used are given in

§4 and densification of an AAM given a joint alignment

of all training images is presented in §5. Subsequently,

§6 shows the effect of different parameter settings, com-

pares the proposed technique with competing methods

and demonstrates the effectiveness of our approach for

the AAM synthesis task. Conclusions and directions for

future work are given in §7.

1.1 Related work

There exists a significant body of work on automating

the process of registering images for model building.

The two main approaches are (1) to iteratively refine

the model itself [3,28,38] or (2) to solve a joint align-

ment problem and simultaneously build a model from

the registered images [8,9]. We briefly review each of

these.

Model-based approaches. The work of Vetter et al. [38]

builds linear models automatically by using optical flow

to register each new training image to the closest im-

age that can be generated by the current linear model.

The same technique has been applied to 3D data to

automatically build morphable models [4].

Automatic AAM construction was formulated as an

image coding problem by Baker et al. [3]. While this

approach is theoretically appealing, it was only demon-

strated on a dataset with little non-rigid deformation.

Ramnath et al. [28] incrementally densify an AAM by

using standard AAM fitting techniques but allowing

for shape modes spanning the whole space of possible

motions. This technique produces good results but is

dependent on the initial input mesh as points are pe-

nalised for moving from their hand labelled positions.

While most techniques work on images given in an

arbitrary order, some are designed specifically for or-

dered sequences where temporal constraints can be used [31,

39]. The problem can then be treated as tracking with

an adaptive template. These approaches have the ad-

vantage of placing additional constraints on the reg-

istration problem, but they are not applicable to all

scenarios.

The method of Tong et al. [37] solves a similar prob-

lem to AAM densification in which points are hand la-

belled in a few training images and these points are

then propagated to more unlabelled images, whilst also

removing noise on the initial hand labelled data. This

can significantly reduce the amount of hand labelling

necessary to build an AAM.
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Joint alignment approaches. There are a large num-

ber of methods for pairwise image registration, for a

survey see [43]. It has been shown, however, that there

is often an advantage in registering sets of images jointly

instead of in a pairwise manner [8], taking advantage

of all the information present in the image data. Cur-

rent state-of-the-art results for automatic model build-

ing are achieved by performing joint image alignment

and warping points from a reference frame onto all im-

ages [8,9]. Cootes et al. [8] formulate joint image align-

ment as a Minimum Description Length encoding prob-

lem in which an efficient encoding of the image set

represents a good registration. This approach produces

very good results, however if features only appear in a

small subset of the images then problems arise since all

images are registered to a mean image which may not

contain these features.

Marsland et al. [24] demonstrate an iterative joint

alignment process in which all training images are com-

pared to one of the training images instead of their

mean. The choice of this reference image may change

during the joint alignment process. However, even the

optimal choice of reference image may be unsuitable for

data sets exhibiting significant variation.

Sidirov et al. [32] have demonstrated promising re-

sults by directly optimising an objective function that

minimises the difference between each image and the

mean of all other images warped into a common ref-

erence frame. This objective function is highly non-

convex and they use a stochastic technique to optimise

it which randomly selects a set of control points within

the image space at each iteration, helping to avoid lo-

cal minima. More recently the method was extended to

registering texture mapped surfaces [33].

The so-called congealing approach presents another

alignment method by optimising an allowable transfor-

mation for each image with the goal of minimising the

entropy of the set of transformed images [20]. These

allowable transformations are general in that they can

be spatial transforms such as an affine warp, bright-

ness or colour transforms, however this approach has

not been demonstrated on warps with high enough di-

mensionality to express an arbitrary dense deformation

field. A related approach is the RASL method of Peng

et al.[27] which enforces sparsity to find a low rank

representation of a set of images whilst simultaneously

aligning them. By enforcing a low rank representation

this method treats features that only appear in a few

images as outliers, making it very well suited to chal-

lenging datasets that contain gross errors but less well

suited to sets of images which have been carefully se-

lected to avoid outliers, as is the case when building a

dense AAM of a single target. While the initial work

of [27] used affine transformations to align images the

approach has been extended to allow for non-rigid de-

formation [35,42], representing deformation by a trian-

gulated mesh of control points on the face.

Related uses of trees. Some types of tree have al-

ready been used in the joint alignment problem, Cristi-

nacce and Cootes [10] use a shortest path tree over clus-

ters of images. The tree is used to determine what order

images are added to a joint alignment rather than for

concatenating deformations as we do. The most similar

approaches to the one proposed are the geodesic meth-

ods from the medical literature. Hamm et al.[14] use a

k-nearest neighbour graph to approximate a manifold

upon which valid images lie. Images are then registered

by concatenating diffeomorphisms along the shortest

path in the tree as an approximation to following the

shortest geodesic distance over this manifold. Hernan-

dez et al. [15] present an alternative method which is

not tree based but relies upon the same underlying

concept. Minimum spanning trees have also been used

for registration in the medical literature as a method

of estimating Rényi entropy [23,29] which is used as

a measure of image alignment quality. Recently tree

structures have been applied to the problem of registra-

tion over long sequences by Klaudiny and Hilton [18].

The proposed traversal tree reduces drift over long se-

quences by aligning images non-sequentially.

2 Joint alignment using a BDMST

We densify AAMs using a two-stage process; first a joint

alignment is found between all of the training images

{Ii}Ni=1, then additional mesh vertices are added au-

tomatically to one training image and propagated to

all others using the joint alignment. In order to find

the joint alignment between all training images we cal-

culate pairwise registrations between selected training

images in the form of flow fields. All images are regis-

tered to a common frame by concatenating these flow

fields.

The advantage of using pairwise registration is that

when the correct image pairs are chosen each image

is only registered with images that are similar in ap-

pearance. This is particularly important when there are

features that only appear in a few images as it ensures

that these features are well registered between the im-

ages in which they appear, whereas if these images were

registered to a mean image lacking these features then

registration is likely to fail in these regions.
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Fig. 2: Effects of changing the tree diameter. (a) A minimum spanning tree with diameter D = 10 for the ExpressiveHead
dataset. (b) Sum of edge costs for a range of minimum spanning tree diameters. (c) Individual edge costs in a minimum
spanning tree of diameter 2 (red) and diameter 4 (blue) arranged in ascending order for the ExpressiveHead dataset.

2.1 Choice of registrations to compute

Joint alignment through concatenating pairwise flows

can be viewed in a graphical form. Each node in the

graph represents an image and each edge represents a

dense mapping computed between two images. To be

able to jointly align all of the images a spanning tree

must be found so that all of the images are part of the

same connected graph.

In order to minimise registration errors we wish to

register between images that are as similar as possible.

We assign each edge a cost Cij for registering images Ii
and Ij where Cij is a measure of error between the two

images after alignment. In order to register all images

whilst minimising the sum of the pairwise registration

errors we can now find a minimum spanning tree of the

graph.

The problem with using a standard minimum span-

ning tree is that to register all images to a common im-

age it may be necessary to concatenate a large number

of flow fields along a path. This leads to error accumu-

lation and results in a poor joint alignment. In order

to limit the number of flow fields that need to be con-

catenated to reach the reference image from any other

image we place a bound on the diameter of our mini-

mum spanning tree. The diameter D is defined as the

largest number of edges in any path between any two

nodes in the spanning tree, for example the minimum

spanning tree in Figure 2(a) has a diameter of 10. For

comparison, the tree in Figure 1(c) has a diameter of

4, leading to lower accumulation of error when all of

the images are registered to a single frame. We register

all images to the image at the root of the tree, requir-

ing concatenation of at most D
2 flow fields. The task of

choosing which pairwise registrations to compute now

becomes one of choosing a diameter D and finding a

corresponding BDMST.

2.2 Finding a bounded diameter minimum spanning

tree

The theory of BDMSTs has been well studied in the

graph literature. For trees containing N nodes and with

a diameter of D, where 4 ≤ D < N − 1, finding an

optimal tree is NP-hard [13] and hence a number of

heuristic methods have been proposed [2,17,34]. For

trees with a small diameter it has been shown that

randomised approaches give better results than greedy

ones [17]. This motivates our use of the randomised

centre-based tree reconstruction algorithm proposed by

Julstrom [17]. This method repeatedly constructs BDM-

STs in a semi-randomised way and retains the tree with

the lowest sum of edge weights.

To allow a tree to be built we need a measure of how

well two images can be registered. To approximate this

cost we register two images to the same frame using

optical flow and compute the L2-norm of the image

difference. In order to make the cost symmetrical we

sum the scores achieved by warping to both image Ii
and image Ij :

Cij = |Ii −Wij (Ij)|2 + |Ij −Wji (Ii)|2 , (1)

where Wij represents the warp from image Ij to image

Ii computed by optical flow.

2.3 Choice of tree diameter

Figure 2(b) shows the total weight of all the edges in

a spanning tree calculated for different diameters using

the method above. The input comes from two differ-

ent datasets, TalkingHead and ExpressiveHead, details
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of which are given in §6. It can be seen that the de-

crease in the sum of the edge costs and hence the gain

made through registering similar images starts to drop

off rapidly after D = 4, suggesting that this is a rea-

sonable choice for the tree diameter.

Figure 2(c) shows the edge weights for one of the

datasets for a graph with a diameter of D = 2 (which

corresponds to registering all images to one base image)

and D = 4. It can be seen that the average edge cost

is lower for the case where D = 4, indicating that each

individual registration problem has a lower error in this

case.

3 Comparison with shortest path trees

The above approach is based upon the the assumption

that the best registration is achieved by minimising the

sum of the weights of all edges in the spanning tree

used for registration. Another aim could be to reduce

the average path cost from the root node of the tree to

each of the other nodes. This can be achieved by finding

the shortest path tree either in the original graph or in

a k-nearest neighbour (KNN) graph derived from the

original graph.

Here we wish to present a toy example which demon-

strates why minimising the total weight of the edges in

the graph and hence using a BDMST is more appro-

priate than minimising the average path cost to the

root node and therefore using a shortest path tree. The
graph shown in Figure 3(a) represents an example of the

common case in which there are some images which are

similar between themselves but which are dissimilar to

the rest of the graph. In this case A and B are similar to

each other but dissimilar to C and D. In such a case the

best registration will be achieved if C and D are regis-

tered to each other and A and B are registered to each

other and only one of the high cost links (which is likely

to represent an inaccurate registration) is used to join

the two pairs. The minimum spanning tree shown in

Figure 3(b) successfully achieves this, whilst the span-

ning tree found using a shortest path tree shown in Fig-

ure 3(c) does not. The root of the shortest path tree was

chosen by trying all roots and selecting the one which

gave the lowest average path cost. Assuming that a low

edge cost corresponds to an accurate registration then

when the BDMST in Figure 3(b) is used A and B will

be well registered while when the tree in Figure 3(c)

found using the shortest path approach is used A and

B will be poorly registered despite being very similar.

4 Optical flow refinement

To register images we choose dense flow fields as a trans-

formation model. While significant advances have been

made in the development of robust optical flow algo-

rithms, one of their drawbacks is that the commonly

employed coarse-to-fine approach does not allow for

the registration of structures which are displaced by

a distance greater than their own size, due to the struc-

ture being completely blurred away at the pyramid level

that would allow its matching [5]. To build an accurate,

dense AAM we need to register structures that are only

a few pixels in size but which may be displaced by sev-

eral pixels within the training images. To overcome this

limitation we therefore propose a two-stage approach.

An initial estimate of the flow is computed using a mod-

ern optical flow algorithm and is used to approximately

align two input images; we use the implementation of

Liu [21]. A refinement step is then carried out calculat-

ing flow between the two partially aligned images over

a small range of ±r pixels, where we have empirically

set r = 15.

We formulate the flow refinement problem as a Markov

Random Field (MRF) optimisation. Since we allow for

displacements of ±r pixels in both the horizontal and

vertical directions this results in (2r+1)2 possible inte-

ger displacements. Optimising simultaneously over all

displacements would result in a large number of labels

that is impractical for current standard MRF optimis-

ers. To make the problem computationally tractable, we

estimate the horizontal and vertical components of the

flow field independently, reducing the number of labels

to (2r+ 1) in each case. In the following we outline the

method for solving for horizontal flow u, the method

for calculating vertical flow being analogous.

We define an MRF with one node per pixel, con-

nected in a 4-neighbourhood with the following energy

terms. The pairwise term Pij between two connected

nodes, i and j, takes the form of a truncated quadratic,

Pij = αmin
(
|ui − uj |2 , Pmax

)
, (2)

where Pmax is the point at which the quadratic is trun-

cated and α is a weighting term. This pairwise term

encourages piecewise smoothness.

The unary term, U(a, b, u), for a displacement of u

pixels for the pixel in column a and row b is given by

U(a, b, u)= min
−r≤v≤r

a+w∑
x=a−w

b+w∑
y=b−w

D(x, y, x+ u, y + v), (3)

where

D(x0, y0, x1, y1) = |I1 (x0, y0)− I2 (x1, y1)|2 . (4)

This is the minimum sum of squared differences (SSD)

error, over a window of width 2w + 1, that can be
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Fig. 3: Toy example. An example of a graph (a) on which a BMDST (b) will provide better registration than a shortest
path tree (c) as only one costly (and hence inaccurate) edge is used.
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Fig. 4: Flow field improvement by AAM densification. (a-c) Approximated horizontal flow fields for one image using
meshes with 50, 250 and 1000 vertices respectively, (d) target horizontal flow field, (e) errors between the target flow field and
approximations using 50, 250 and 1000 vertices.

achieved for a horizontal displacement of u for any ver-

tical displacement v within the allowed range of dis-

placements ±r. This term is made robust by threshold-

ing the maximum cost at Umax. In order to efficiently

compute the SSD scores for all images we take advan-

tage of integral images. The constants were set empir-

ically and were fixed at α = 100, w = 7, Umax = 2500

and Pmax = 25 for all experiments. The tree-reweighted

message passing algorithm is used for optimisation [19].

This method optimises over a range of displacements

without using any smoothing allowing for the alignment

of fine texture. In our experience, the global nature of

the MRF avoids the local minima created by the sepa-

ration of the horizontal and vertical flow components.

5 Mesh densification

Once correspondence has been established between all

training images, additional vertices are added to the

model in order to increase its descriptive power. We aim

to add points in a way that minimises the difference be-

tween the flow fields we have calculated and those which

the mesh is able to model by using linear interpolation

of flow between vertices. We aim to minimise at each

pixel p the error function

Ep =

N∑
i=1

wp |xi − yi|2 , (5)

where yi is the linear approximation to the flow field

for training image i provided by the mesh, xi is the

calculated flow field for image i and wp is a per-pixel

weight. The weight wp is used to increase the mesh

density in regions with large variation and decrease it

in smooth regions, such as the background. It is given

by the sum of the local variation of each training image

warped into the base image’s reference frame.

In order to solve this problem we draw on ideas from

the construction of digital terrain models. Instead of

approximating a scalar height field we aim to approxi-

mate a vector field formed by pixelwise concatenation

of the 2D flow vectors of all training images. We use

the established, greedy method of DeFlorian [11] to

solve this problem: The original vertices are used as

an initial mesh and an approximation to the flow fields

is constructed using linear interpolation between these

points. Vertices are added iteratively at the point with

the greatest error Ep and the mesh approximation to

the flow fields is recalculated. Since this involves only
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Fig. 5: Sample training images. Training images from the
TalkingHead dataset (top) and the ExpressiveHead dataset
(bottom)

triangles containing the inserted point this is an effi-

cient local operation.

Figure 4 shows an example of the evolution of one

component of a single flow field as the number of ver-

tices is increased. We continue the densification until a

fixed number of points have been added.

6 Experiments

To evaluate our approach we collected two datasets of

data, both consisting of images of 800× 600 resolution

of a single subject:

1. TalkingHead - A set of 70 images. The AAMs built

for this model are used to track an hour long se-

quence and train a visual text-to-speech (VTTS)
model. The initial sparse AAM has 53 points.

2. ExpressiveHead - A sequence of 31 images demon-

strating a greater degree of expressiveness than the

TalkingHead dataset. The initial sparse AAM has

37 points.

Sample images from both datasets can be seen in Fig-

ure 5.

In order to compare the resulting models we use

the model compactness measure used in [30]. This ap-

proximates the compactness of a Gaussian distributed

model by the determinant of the model’s covariance ma-

trix, where a low value corresponds to a more compact

model. Since the shape model component of the AAM

is significantly more compact than the texture model

we only report texture model compactness. In all cases

the model compactness is scaled so that the baseline

model has a compactness score of 1.

Before any processing we first high-pass filter all in-

put images to reduce the effect of lighting variation. We
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Fig. 6: Comparison with shortest path trees. Texture
model compactness achieved when using shortest path trees
found on KNN graphs with varying values of K. The com-
pactness values have been normalised relative to the values
achieved using a BDMST of optimum diameter 4.

subsequently warp all images into approximate corre-

spondence using the initial hand-labelled sparse AAM

points, making no further use of the hand labelling after

this point.

Comparison with shortest path trees In § 3 our

rationale for using a BDMST over a shortest path tree

was given. We verify here that for the datasets used this

is indeed the correct choice. Shortest path trees can be

calculated either on an original fully connected graph or

on a KNN graph derived from the original graph. Vary-

ing the value of K when computing the KNN graph has

a similar effect to varying the diameter of a BDMST,

with a larger value of K giving a more compact tree. A

range of values were used for K on both datasets and

the results can be seen in Figure 6 where the model

compactness has been normalised against the best re-

sults achieved using a BDMST with a diameter of 4.

Other than the choice of which edges to use to construct

the tree, exactly the same process is used to build the

models as for the BDMST. It can be seen that while

for the TalkingHead dataset the difference between the

best performing shortest path tree and the best per-

forming BDMST is small, for the case of the more chal-

lenging ExpressiveHead dataset the difference is more

pronounced.

Effect of tree diameter Figure 7(a) shows the effect

of tree diameter on model compactness. There is a sharp

decrease between a diameter of D = 2, corresponding

to registering all images to the same base image, and

D = 4, demonstrating that the spanning tree allows for

more accurate registration. Note that a diameter value

of D = 4 allows clusters of similar images to form (as

seen in figure 1(c)). Beyond this diameter value there is

a slow increase in error as the paths in the tree become
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Fig. 7: Model compactness for varying parameters. Graphs showing the effect of (a) varying tree diameter and (b)
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Fig. 8: Effects of flow refinement and varying number of AAM modes. (a) Percentage of pixels for which flow was
correctly calculated to within a given error, using the flow of [21] with (green) and without (red) our refinement. (b) Errors
in reconstruction of a sequence using an AAM built using different approaches. (c) One frame of synthesis using an AAM
built using iterative registration to a mean image (top) and the proposed method (bottom).

longer, leading to error accumulation when concatenat-

ing flows.

Effect of densification method In order to demon-

strate the effectiveness of the proposed mesh densifica-

tion method presented in §5, we compare it to a simple

densification approach where at each iteration a vertex

is added at the centre of the largest triangle and then

the mesh is re-triangulated. An example of a model

densified using the proposed method can be seen in in

Figure 1(b). Note the increased mesh density in areas

which exhibit significant deformation, such as regions

around the eyes, as opposed to more rigid regions like

the nose. As can be seen from Figure 7(b) for both

datasets the proposed method results in a more com-

pact model for a given number of mesh points.

Effect of optical flow refinement To demonstrate

the value of the proposed optical flow refinement method

we compare it to the flow method of [21], which we use

for initialisation. We also compare it to the SIFT flow

approach [22] which is an existing method that deals

well with large displacements. Due to the challenge of

obtaining ground truth data for this type of non-rigid

flow problem we set up the following experiment. Each

image in the ExpressiveHead dataset is warped by a

flow field calculated between two other random images

in the data set. This procedure yields a set of warped

images with known flow fields. Gaussian noise is added

to the images and we then apply both SIFT flow and the

flow method of [21], with and without the refinement

proposed in section 4, and measure the per-pixel error

in flow fields for the face region. In the case of SIFT

flow we ran the code provided by the original authors

with its default settings. Figure 8(a) shows the resulting

errors as a cumulative percentage of pixels with errors

below a given threshold. It can be seen that flow re-

finement results in significant error reduction, e.g. the

percentage of pixels with a < 1 pixel error increased

from 73% to 87%. The proposed method also outper-

forms SIFT flow for this task. This improvement in flow

also leads to more compact models as fine texture is

better aligned. In a separate experiment we find that

flow refinement reduces the model compactness score

by 17% on the ExpressiveHead dataset and 26% on the

TalkingHead dataset.
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(a) (b) (c) (d)

Fig. 9: Building low resolution models. (a) A sample input image from which an AAM was automatically built (b). Plus
and minus two standard deviations of the first (c) and second (d) modes of variation of the AAM are shown.

Synthesis of an expressive sequence To demon-

strate the advantage of using dense AAMs for synthesis

we build an AAM of the ExpressiveHead dataset and

use it to track a 450 frame long sequence and resynthe-

sise it. We compare the original sparse model, a dense

model built using the proposed method, and a dense

model built using the popular method of jointly aligning

all images to an iteratively updated mean image (simi-

lar to [8]). The dense models were constrained to have

the same convex hull as the original model. Figure 8(b)

shows the L2-norm of the errors between the original

image sequence that was tracked and the synthesised

sequences. There is a large increase in accuracy when

using a dense AAM instead of a sparse one. Figure 8(c)

shows a close-up view of one the synthesised frames in

which the model built by registering to a mean image

(top) produces blending artefacts due to poor registra-

tion of the wrinkles that are only present in two of the

training images. The model built using the proposed

method shows no blending artefacts (bottom).

Results on lower resolution images To demonstrate

the applicability of this method to lower resolution im-

ages and to show that in this case models can be learned

completely automatically a model was built using a

publicly available interview from YouTube. To train the

model 30 images of resolution 480×320 (an example of

which can be seen in Figure 9(a)) were extracted from

the sequence and the model training approach was ap-

plied without using any initial correspondences. All of

the training images were correctly registered and the

first two modes of the resulting AAM can be seen in

Figure 9. The mesh structure seen in Figure 9(b) shows

that the approach does not waste vertices modelling the

background.

Using a dense AAM for visual text-to-speech

One application of dense AAMs is in visual text-to-

speech (VTTS) systems [40]. To demonstrate the ad-

vantage of a dense AAM we train a VTTS system us-

ing a sparse AAM and a dense AAM built using the

proposed method. Both models are used to track an

hour long training video and the AAM parameters are

used along with audio features to train a hidden Markov

model based text-to-speech (HMM-TTS) system [41].

At synthesis time the HMM-TTS system generates au-

dio and a set of new AAM parameters which are ren-

dered using the AAM. As can be seen in Figure 10

the synthetic rendering using the dense AAM is sig-

nificantly sharper than that obtained with the sparse

AAM. We also built a dense AAM without providing

an initial sparse mesh. This resulted in good results in

most regions (Figure 10(c)) but was not able to fully

handle the complex occlusions and disocclusions around

the mouth, resulting in artefacts during synthesis (Fig-

ure 10(d)). Initial labelling in this region is currently

still required in order to produce high-quality models

on high resolution imagery.

Processing time All experiments were run on a sin-

gle core of an 2.2GHz i7 processor. The total time to

(a) (b)

(c) (d)

Fig. 10: Synthesising novel speech using VTTS. The
same frame of synthesis using (a) the original sparse AAM,
(b) a dense AAM built by densifying the sparse AAM and (c)
a dense AAM built fully automatically. (d) top - the mouth
region of a target image, middle - reconstruction using den-
sified AAM, bottom - reconstruction using AAM built fully
automatically. The model built fully automatically exhibits
reconstruction artefacts.
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process the TalkingHead dataset was 3 hours and 10

minutes while the time to process the ExpressiveHead

dataset was 1 hour and 12 minutes. The flow refine-

ment step proposed in §4 dominates the running time,

taking almost two minutes to process each 800 × 600

image pair. Calculating pairwise flows between all im-

ages to estimate edge weights for the BDMST scales

with the square of the number of training images. Be-

cause of this, and since an accurate flow is not needed

at this stage, the flow refinement step was not applied

when estimating edge weights and quarter resolution

images were processed. The time required for the other

stages of the algorithm scales linearly with the number

of images in the dataset.

7 Conclusions and future work

We have shown that concatenation of pairwise registra-

tions can give good results on the joint image alignment

problem when the correct registrations are chosen. We

have demonstrated the use of a BDMST as a method

for choosing these registrations. An MRF-based opti-

cal flow refinement technique and a method for mesh

densification were demonstrated to improve the results

in terms of model compactness. As a target application

we have shown synthesis results of person specific active

appearance models.

In the future we would like to investigate using graph

structures other than trees to solve this problem, mak-

ing use of more of the information made available when

calculating pairwise registrations. We feel that the first

step towards this would be to develop an improved error

metric for measuring the accuracy of the pairwise reg-

istrations. We are also interested in allowing different

regions within each image to be registered to different

neighbours, allowing for each individual region to be

aligned to more closely matching regions in the other

images.
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