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Abstract

We describe a system for the detection of changes in multiple views of a tunnel sur-
face. From data gathered by a robotic inspection rig, we use a structure-from-motion
pipeline to build panoramas of the surface and register images from different time in-
stances. Reliably detecting changes such as hairline cracks, water ingress and other
surface damage between the registered images is a challenging problem: achieving the
best possible performance for a given set of data requires sub-pixel precision and careful
modelling of the noise sources. The task is further complicated by factors such as un-
avoidable registration error and changes in image sensors, capture settings and lighting.

Our contribution is a novel approach to change detection using a two-channel con-
volutional neural network. The network accepts pairs of approximately registered image
patches taken at different times and classifies them to detect anomalous changes. To
train the network, we take advantage of synthetically generated training examples and
the homogeneity of the tunnel surfaces to eliminate most of the manual labelling effort.
We evaluate our method on field data gathered from a live tunnel over several months,
demonstrating it to outperform existing approaches from recent literature and industrial
practice.

1 Introduction
We address the problem of change detection between pairs of images taken at different times
by a moving camera. Our motivation is the development of a non-contact inspection system,
summarised in fig. 1, to be used for detecting anomalous visual changes on surfaces, and in
particular tunnel linings. This application is of increasing social importance as our infrastruc-
ture ages and requires more efficient maintenance than existing, frequently labour-intensive,
methods can provide. The problem is challenging for several reasons:

i) Size and nature of changes. Changes of interest are often small and subtle – e.g. a
fattening in the width of a hairline crack or a patch of discolouration caused by organic
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Figure 1: Overview of our machine vision system. The main focus of this paper is stage 4,
in which changes are detected between registered sets of image mosaics captured at different
times. We propose and evaluate a new approach to change detection using a two-channel
convolutional neural network. The network learns a model for normal modes of image vari-
ation, so as to detect abnormal changes with fewer false positives. Sections 3 and 5 outline
the system and proposed change detection method in more detail.

growth or concrete spalling. This property emerges from the nature of the change de-
tection problem: as the period over which change is measured decreases, any algorithm
is pushed against the intrinsic limits set by image resolution and sensor noise. In the
datasets examined here, fewer than 0.07% of the pixels were labelled as changes of in-
terest, and in a different scenario the ratio could be several orders of magnitude lower.
Furthermore, while certain changes such as cracks are known in advance and can be
explicitly detected (e.g. [20]), others may be too infrequent for explicit modelling and
only detectable as anomalous to natural modes of image variation.

ii) Nuisance factors. A sizeable proportion of the observed change over time is caused by
nuisance factors, either internal to the acquisition system (such as different image sen-
sors, capture settings or lighting setup) or due to external causes (for example, seasonal
changes of temperature and humidity). While tunnels are relatively static in comparison
to other environments such as outdoor scenes, external conditions such as humidity and
dust levels can cause sufficient variation in visual appearance to shroud more impor-
tant structural changes of interest. Fig. 2(b) illustrates the variation in appearance from
a random set of corresponding unchanged image patches taken at different times and
conditions.

iii) Registration error. Achieving the pixel-accurate registration required for change de-
tection is challenging because neither the sensor position nor the tunnel geometry can be
reliably determined. Inaccurate or un-modelled geometry causes parallax errors when
images are re-projected; in addition, a blanket change across the scene – caused for ex-
ample by a change in tunnel humidity level – can make feature-based registration of any
single image impossible.

Our system circumvents the need for improving both the registration and insensitivity
to nuisance sources through machine learning. We train a two-channel convolutional neural
network (CNN) which takes as input a pair of image patches and returns a measure of dissim-
ilarity or change. CNNs have recently been shown to be very effective at learning invariance
to certain modes of image variability. They require however large amounts of labelled image
data. We have unlimited access to negative pairs (i.e. patches where no abnormal change
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(a) (b) (c)

Figure 2: (a) Array of randomly sampled 64× 64 pixel patches from the dataset. (b) The
same as (a), but each row contains 9 different viewpoints of the same unchanged patch to
illustrate the natural image variation and registration error. (c) Examples of changed patches;
top rows are different viewpoints from tr, bottom rows from tq. (Best viewed on screen.)

has occurred) by taking registered viewpoints from different cameras from the same time.
We supplement this with a smaller dataset of negative pairs across the different test times
from regions where no changes of interest have occurred. This requires a limited effort in
coarsely labelling a small subset of the test data. Together, these negative pairs capture much
of the natural nuisance variation from lighting, registration errors and camera pose variation.
For the positive (changed) pair generation, we provide randomly sampled pairs as well as
synthetically generated changes. The homogeneity of the tunnel environment – illustrated
by fig. 2(a) – allows a network to generalize well from a manageable amount of labelled
ground-truth.

We evaluate our system using three sets of data from a live tunnel captured at different
times. A trained inspector was tasked with simulating real changes in the tunnel between
captures and a set of ground truth change images were generated for testing. We compare
against an implementation of the current state of the art [12] and against the results of a
manual inspection carried out by a second trained inspector in the field. The latter is of
particular importance to industry, as it is commonly still the method of choice for tunnel
inspection. To our knowledge, this is the first comparison of this kind reported in literature.

2 Background

We first define the problem of change detection for multi-view surface inspection. Given a
reference image Ir and a query image Iq taken of a surface from different positions and under
different imaging conditions at times tr and tq respectively, we seek a binary change mask, C,
which is 1 at every position in Iq that has undergone a change of interest and 0 elsewhere. In
practice, we assume that the two images have been registered into a common 2D coordinate
frame using a surface model of the scene, acquired in our case via surface fitting on geometry
recovered from Structure-from-Motion (SfM) as in [12].

The problem of change detection is then to determine:

P(C(p) = 1 | Ir(p), Iq(p)) = f (Ir(p), Iq(p)) (1)

for any pixel or patch of pixels p. The function f is a measure of change between the two
image patches and can either be designed using domain knowledge or learned from a given

Citation
Citation
{Stent, Gherardi, Stenger, Soga, and Cipolla} 2014

Citation
Citation
{Stent, Gherardi, Stenger, Soga, and Cipolla} 2014



4 STENT et al.: DETECTING CHANGE FOR MULTI-VIEW SURFACE INSPECTION

dataset. The definition of change is always problem-specific; in our application we seek local
changes in the state of the surface such as cracks, water ingress, rust and surface damage.

2.1 Related Work
Image-based change detection is an important part of many vision pipelines [8] with applica-
tions ranging from video surveillance and medical imaging to remote sensing and urban and
environmental change detection. Before changes can be detected, images are typically first
preprocessed to register them geometrically and correct for any radiometric variation [8]. In
some situations, these steps can be achieved with little error. For example, in remote sensing,
where the goal is to detect environmental changes such as the extent of deforestation on a 2D
map built from satellite images, parallax effects are negligible and synthetic aperture radar
is frequently used to lessen the effect of atmospheric and lighting change across time [3].
Many change detection methods thus assume pixel-accurate registration as a starting point.

In other situations, including our own, pixel-accurate registration is more difficult to
achieve. In urban change detection for example, camera pose, geometry and radiometric
variation are often quite severe [7]. Most methods use 3D scene geometry recovered from
SfM and multi-view stereo for image registration, and focus only on detecting 3D changes
such as the appearance or disappearance of urban structures [10, 13, 15]. The recent work
of [5] aims instead to discover textural changes on planes in the scene, but their focus is
on more significant variations (e.g. the change in appearance of a billboard) that can be
temporally clustered and their method requires a comparatively denser sampling of the envi-
ronment both in time and space. Mesh models recovered from SfM are used in [1] to register
underwater images and detect changes in images of a coral reef after radiometric correction;
this application however does not demand the detection of fine-grained changes.

While our system also relies on a geometric model for approximate registration, we
sidestep the need for finer registration or radiometric correction by using a CNN, trained
to detect unnatural changes between pairs of coarsely registered image patches. The idea
of learning similarity functions f to match pairs of image patches has been approached in
the past [6] and recent efforts to do so with CNNs have shown much promise. In [16],
a CNN is trained to compute the stereo matching cost of 9× 9 pixel patches, leading to
state-of-the-art results on the KITTI stereo benchmark. In [21], several architectures are
investigated for learning f between larger 64× 64 pixel patches. They show good results
for various matching tasks using a two channel network; we adopt a similar architecture but
unlike their approach train directly on a mixture of task and synthetic data, for the inverse
problem of detecting change rather than measuring similarity. Using task data for training
allows us to learn invariance to task-specific variation rather than making prior assumptions
(such as the distribution of translations due to registration error). The injection of synthetic
data ensures that our network can remain sensitive to a specific important class of variation
(fine cracks). Furthermore, unlike [21], we do not incorporate additional patches from larger
scales in separate input channels since by design all of our patch pairs have similar sizes
(corresponding approximately to 20×20mm).

Transfer learning, where the lower layers of networks trained for a task such as ImageNet
classification [2, 11] are reused as generic image representations to solve other tasks, has
been shown to be a successful strategy in a variety of computer vision problems [9]. The key
benefits versus learning from scratch are that it circumvents the need for large task-specific
labelled sets and long training times. We eschew this approach because: (i) the statistics of
our dataset are likely to be very different compared to those of problems such as ImageNet,
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and (ii) we seek to control more tightly the modes of variation against which the network
learns invariance.

Finally, in the field of structural monitoring, numerous tunnel inspection systems are
in active development such as [4, 14] but to our knowledge there has been no other effort
to detect general visual appearance changes in such scenes. We improve upon our previous
work [12], by introducing a more robust and scalable capture, reconstruction and registration
system (section 3) and removing the dependency on pixel-accurate registration required by
our previously proposed change detection method (section 5).

3 System Description
In this section, we briefly outline the main steps and improvements in our system (fig. 1)
leading up to the change detection stage.

Image Capture. In stage 1, overlapping 360 degree rings of images were gathered by an
autonomous calibrated camera system running along a monorail. The camera system uses
polarised lighting and orthogonally polarised lens filters to remove or attenuate image vari-
ation modes due to scene specularities. This was found to dramatically increase the number
of image correspondences, particularly in wet areas of the tunnel where reconstruction was
otherwise observed to fail.

Reconstruction and registration. Images from different times were processed indepen-
dently via Structure-from-Motion (SfM) to return sparse point clouds (side views shown)
and camera pose estimates in stage 2. The data was processed in overlapping parallel sub-
sets corresponding to approximately 3 metre long sections. We used VisualSfM [19] for
3D reconstruction with accelerated SIFT features for matching [18] and added intermediate
ring-closure checks to ensure complete reconstructions. To avoid the high computational
cost of repeatedly running bundle adjustment on large sets of images, rings of images were
treated independently given their immediate neighbouring rings, providing both efficiency
and robustness during reconstruction. Neighbouring reconstructed subsets were registered
across time in a piece-wise rigid fashion, using a similarity transform estimated via Pro-
crustes alignment on a subset of confident feature correspondences. Unlike the single-image
registration method of [12], this global alignment on a large set of images ensured that sin-
gle images could still be successfully registered even in the presence of large changes in
appearance.

Mosaicing for visualisation. A surface model was then estimated for each reconstructed
subset from tr. The same cylindrical assumption was used as in [12]. Unlike [12], points
lying close to the surface were projected directly onto the surface and individual camera
poses were refined (resectioned) to reduce registration error. Image mosaics were obtained
by projecting constituent images onto the surface model and blending. This resulted in
ghosting artefacts for areas which were off-surface but otherwise produced results which
were sufficiently accurate for the visualisation of pixel-wide (0.3mm wide) surface cracks.

4 Datasets
We gathered and processed field data to produce two different test datasets, following the
schedule detailed in fig. 3. Artificial changes such as cracks, leaks, rust and stickers were
applied to the tunnel surface before the capture of It1 and It2 . Some examples are shown in
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Figure 3: Timeline and datasets gathered for the inspection experiments.

fig. 2(c). The changes were applied by a professional inspector and designed to be as realistic
as possible. 90 changes were applied in total (45 in each instance), covering altogether less
than 0.07% of all mosaicked pixels in the test set.

The resulting change detection datasets, Dlong and Dshort , contain changes over two
months and one day respectively. The one day dataset, Dshort , is more amenable to au-
tomatic change detection since within a shorter time frame the chance for new defects to
appear (other than those purposely introduced as part of the test protocol) is lower. The
changes applied in this instance were subtle and harder to detect for human observers, in-
cluding variations in crack width and length. Dlong is a more challenging dataset, using a
different camera and lighting setup and more realistic temporal change of over two months.
The changes here also include the appearance of new cracks, objects or defects.

Manual inspections were carried out by a second professional inspector before each cap-
ture of It1 and It2 . The inspector was informed of what kind of changes to be aware of before
each test, and during the second inspection was allowed to consult with his own notes from
the first.

5 Change Detection Method
For change detection, we generated a set of reference and query image pairs by dividing
the mosaic images into 64× 64 pixel patches, and then for each patch projecting only the
image from the nearest camera. Doing so achieved two goals: firstly, within each block the
patches were free from compositing artefacts and secondly we avoided the computational
cost required to process all the available overlapping image pairs independently.

5.1 CNN Architecture
Our CNN architecture was similar to the two-channel approach proposed by [21], consisting
of four convolution layers of depths 32, 64, 128 and 512, and two fully connected layers of
depth 512, with a softmax layer to classify the input pair between changed and unchanged
states. The first three convolution layers are followed by 2×2 max pooling, and all hidden
layers are followed by a non-saturating Rectified Linear Unit (ReLU) non-linearity as in [2].
The input is two-channel, with the first layer of 7× 7× 2 pixel filters operating directly on
both 64×64 pixel gray-scale patch inputs normalised to have zero mean and unit variance.
The results of [21] suggest that this is preferable in practice to maintaining separation of the
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Training Set Number of Pairs Positive Pair Generation Method
(i) TS-R 250,000 Random
(ii) TS-SR 250,000 Semi-random
(iii) TS-C 250,000 Crack
(iv) TS-SM 250,000 Small mixture, 1

3 from each of (i-iii)
(v) TS-LM 1,000,000 Large mixture (i)+(ii)+(iii)+(iv)

Table 1: CNN training sets used. (i-iv) compare the effect of different positive pair generation
methods; (v) compares the effect of training set size vs (iv).

channels until a later layer; one likely reason for this is that high-frequency information can
be immediately compared between the patches, providing valuable similarity information
that might be otherwise lost through pooling.

5.2 Synthetic Crack Generation

We generated synthetic crack images for training by blending real image patches with a
crack mask. Each mask was created by randomly sampling a small set of crack support
points within a region encompassing the image patch. A minimum spanning tree was formed
over the support points, and branches from the tree recursively subdivided to generate new
support points, each of which was perturbed randomly according to a pre-generated perlin
noise map. The resulting crack map was rasterised, with width determined by a second perlin
noise map, resulting in a realistic random crack image generator. The perlin maps provided
coherent randomness in the crack behaviour across image scales.

5.3 CNN Training

Taking a single corresponding pair of mosaic images from tr and tq as a training set, we
trained four separate networks with the architecture described in section 5.1 from random
initialisations, each using one of the training sets (i,ii,iv and v) from table 1. The training sets
were split equally into positive (changed) and negative (unchanged) samples, with negative
samples reused across training sets (i, ii and iv) for fairness of comparison, and to gauge the
effect of using different strategies for positive pair sampling on the network’s performance.

Fig. 4 illustrates various sets of training pairs and their differences. To generate each
column of negative (unchanged) pairs in (a), we sample a random location and draw two
overlapping image patches from each of the tr and tq image datasets. Ground truth is required
to avoid sampling locations which have changed; to create it, the training mosaic is assigned
coarse labels, which are collected into a discrete change mask.

To generate each positive pair in (b) a new random location is chosen in each of the tr
and tq image datasets and patches are extracted. The semi-random patches in (c) take half
of the random patches from (b) and half of the negative patches from (a), thus ensuring that
a positive sample is tied to every negative sample in the dataset. Finally (d) and (e) are
generated using the synthetic crack generator described in section 5.2. We either take an
image pair from (a) and add a crack to one of the pair, or use a single base image which
we arbitrarily translate to generate two patches. The translation is drawn from a uniform
distribution over ±7 pixels in x and y, empirically accounting for the majority of surface
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(a) Negative Random (b) Positive Random (c) Positive Semi-Random

(d) Positive Crack (e) Negative Crack
Figure 4: Sample training pairs (rows 1+2) and their difference images (row 3) from different
training sets: (a) negative (unchanged) pairs; (b) positive (changed) random pairs, with both
members chosen randomly (TS-R); (c) semi-random positive pairs, combining (a) and (b)
(TS-SR); (d) positive crack pairs, including crack appearance/disappearance, extension and
widening (TS-C); (e) negative crack pairs (TS-C). (Best viewed on screen.)

registration errors. The translation being known, we can modify the crack appearance in
either of the images to simulate crack extension or widening.

Each network was trained identically until convergence of a log loss cost function on
the softmax output. We trained using stochastic gradient descent, using a batch size of 512
image pairs, a momentum of 0.9 and a weight decay of 0.0005. We applied 50% dropout
in the two fully connected layers to reduce overfitting. Similarly to [2], we initialised layer
biases preceding ReLU layers with the constant 1, to accelerate early learning by providing
the ReLUs with positive inputs. Filter weights were initialised by sampling from a zero-
mean Gaussian distribution with standard deviation 0.01. Convergence was observed within
30 training epochs in all cases. The networks were implemented in MatConvNet [17] with
CuDNNv2 support.

6 Evaluation and Discussion
We compared our method against both the manual inspection results and a version of [12]
modified to run on our high-resolution test datasets. In all methods, we employed the same
geometric prior as [12], which restricts change detection to segments of the image that lie on
the tunnel surface.

6.1 Quantitative Evaluation
Fig. 5 illustrates change detection performance over the two test datasets. The x-axis repre-
sents the False Positive Rate (FPR), the proportion of actual negatives which are incorrectly
assigned as positive. The y-axis shows the average ratio of pixels in each ground truth change
that were correctly labelled as having changed. This metric was chosen in order to fairly rep-
resent all changes and to be fair to the human inspector, since the distribution of the area of
changes is broad – from very small and thin cracks to large leaks. Manual refers to the
manual inspection by a trained inspector, which uncovered 29% of changes in Dshort and
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Figure 5: Change detection performance of the various methods compared for (a) Dlong and
(b) Dshort datasets. Our proposed CNN approach outperforms existing automated methods
on both datasets.

58% in Dlong; RGB shows the performance of pixel-to-pixel absolute differencing; and the
method of [12] is applied using NCC windows of varying sizes from 5×5 to 15×15 pixels.

In both datasets, we see that our CNN approach, even when trained in a naive manner, out-
performs the existing methods by a significant margin. RGB and NCC methods both require
good registration, which is not equally reliable throughout the datasets – especially in Dlong,
where the capture setup varied significantly. While the manual method outperforms ours at
very low FPR, it is not possible to retrospectively trade off FPR for TPR so the performance
is bounded below what CNN can achieve in theory.

Among the CNN methods, the performance difference between training with random
or semi-random positive pairs is negligible (CNN-TS-R vs. CNN-TS-SR), but performance
can be seen to improve when the data is augmented with synthetic crack data (CNN-TS-SM).
This is especially true of Dshort , where 27% of changes involve cracks expanding or ex-
tending (vs 0% in Dlong). Increasing the size of the training set (from CNN-TS-SM to
CNN-TS-LM) improves performance significantly in Dlong but has little effect in Dshort .
One possible explanation is that Dlong, which was captured over a longer time period and
with a different capture setup, contains more nuisance variation and thus benefits from a
larger training set to learn from.

Table 2 shows the percentage of detected changes at different FPR thresholds for various
methods. Here we define a detected change as one containing >50% of positive pixels. Our
method shows significant improvement over [12] in both datasets and over manual inspection
in Dshort , though manual inspection discovers more changes at very low FPR setting. It
should be noted that not all false positives are strictly misclassifications; many correspond to
real anomalous changes that were not part of the labelled changes of interest.

6.2 Qualitative Evaluation

Several more factors are noteworthy when comparing the tested approaches.

(i) Time required. The manual inspections took 70 minutes for Dlong and 30 minutes
for Dshort , with several additional hours required to process the results. While the
automated processes were not run exclusively on the test datasets from end to end in a
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Change detection dataset: Dshort Dlong
FPR per pixel: 0.01 0.05 0.10 0.01 0.05 0.10
Manual inspection 0.29 0.29 0.29 0.58 0.58 0.58
Modified version of [12] 0.20 0.55 0.64 0.00 0.00 0.32
Ours: CNN-TS-LM 0.73 0.87 0.87 0.26 0.65 0.84

Table 2: Percentage of artificial changes detected by the compared systems at different false
positive rates. Changes are considered detected if they are greater than >50% positively
labelled.

single stream, processing them would take an order of magnitude extra time on a single
desktop machine without employing significant parallelisation.

(ii) Objectivity. Despite the cost and time for processing, the automated approach has
numerous advantages - the foremost being that it is completely objective. Our system
does not suffer from inattentional blindness and can view every point in the tunnel at
the same resolution.

(iii) Scalability. The performance of the automated approach scales favourably with data
size, as fig. 5(b) demonstrates. Manual inspection performance drops with scale, due
to human fatigue over a repetitive task.

(iv) Visualisation. Automation allows data to be visualised at any later date. In contrast,
manual inspection notes are gathered by hand and typed up to computer and are difficult
to cross-reference across time.

(v) Manual advantages. Finally, it should be noted that manual inspection can pick up
other changes that our current system cannot detect, such as defects occluded behind
cables and small geometric defects in tunnel ring alignments.

7 Conclusions and Future Work
In this paper we have presented a system for the detection of changes from multiple views
of a tunnel surface. We proposed a novel approach to change detection using a two-channel
convolutional neural network and demonstrated its favourable performance on field data ver-
sus competing solutions.

Our approach can be straightforwardly adapted to different textured surfaces and novel
scenarios with minimal manual training effort - this is one avenue for future work. It is
also very efficient for processing data on the scale of a working system, where there may be
kilometres of data to survey.

Another area for future work is the classification of changes after change detection. It
may be feasible to re-use the same CNN for this task, with a few changes to the architecture
and training procedure. A further extension is to extend the synthesis of positive changes
beyond cracks to other common defects such as rust and water ingress.
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Donald and Cédric Girerd, Peter Long and Kenichi Soga at the University of Cambridge for
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