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ABSTRACT

We propose a new method for creating computationally efficient convolutional
neural networks (CNNs) by using low-rank representations of convolutional fil-
ters. Rather than approximating filters in previously-trained networks with more
efficient versions, we learn a set of small basis filters from scratch; during train-
ing, the network learns to combine these basis filters into more complex filters that
are discriminative for image classification. To train such networks, a novel weight
initialization scheme is used. This allows effective initialization of connection
weights in convolutional layers composed of groups of differently-shaped filters.
We validate our approach by applying it to several existing CNN architectures and
training these networks from scratch using the CIFAR, ILSVRC and MIT Places
datasets. Our results show similar or higher accuracy than conventional CNNs
with much less compute. Applying our method to an improved version of VGG-
11 network using global max-pooling, we achieve comparable validation accuracy
using 41% less compute and only 24% of the original VGG-11 model parameters;
another variant of our method gives a 1 percentage point increase in accuracy
over our improved VGG-11 model, giving a top-5 center-crop validation accuracy
of 89.7% while reducing computation by 16% relative to the original VGG-11
model. Applying our method to the GoogLeNet architecture for ILSVRC, we
achieved comparable accuracy with 26% less compute and 41% fewer model pa-
rameters. Applying our method to a near state-of-the-art network for CIFAR, we
achieved comparable accuracy with 46% less compute and 55% fewer parameters.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been used increasingly succesfully to solve challeng-
ing computer vision problems such as image classification (Krizhevsky et al., 2012), object detection
(Ren et al., 2015), and human pose estimation (Tompson et al., 2015). However, recent improve-
ments in recognition accuracy have come at the expense of increased model size and computational
complexity. These costs can be prohibitive for deployment on low-power devices, or for fast analysis
of videos and volumetric medical images.

One promising aspect of CNNs, from a memory and computational efficiency standpoint, is their
use of convolutional filters (a.k.a. kernels). Such filters usually have limited spatial extent and
their learned weights are shared across the image spatial domain to provide translation invari-
ance (Fukushima, 1980; LeCun et al., 1998). Thus, as illustrated in Fig. 1, in comparison with fully
connected network layers (Fig. 1a), convolutional layers have a much sparser connection structure
and use fewer parameters (Fig. 1b). This leads to faster training and test, better generalization, and
higher accuracy.

This paper focuses on reducing the computational complexity of the convolutional layers of CNNs
by further sparsifying their connection structures. Specifically, we show that by representing con-
volutional filters using a basis space comprising groups of filters of different spatial dimensions
(examples shown in Fig. 1c and d), we can significantly reduce the computational complexity of
existing state-of-the-art CNNs without compromising classification accuracy.

Our contributions include a novel method of learning a set of small basis filters that are combined
to represent larger filters efficiently. Rather than approximating previously trained networks, we
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Figure 1: Network connection structure for convolutional layers. An input image is transformed
in one layer of an neural network into an output image of same size. Connection weight maps
show pairwise dependencies between input and output pixels. In (a), each node is connected to all
input pixels. For (b,c,d), output pixels depend only on a subset of input pixels (shared weights are
represented by unique colours). Note that sparsity increases from (a) to (d), opening up potentially
more efficient implementation.

train networks from scratch and show that our convolutional layer representation can improve both
efficiency and classification accuracy. We further describe how to initialize connection weights ef-
fectively for training networks with composite convolutional layers containing groups of differently-
shaped filters, which we found to be of critical importance to our training method.

1.1 RELATED WORK

There has been much previous work on increasing the test-time efficiency of CNNs. Some promis-
ing approaches work by making use of more hardware-efficient representations. For example Gupta
et al. (2015) and Vanhoucke et al. (2011) achieve training- and test-time compute savings by further
quantization of network weights that were originally represented as 32 bit floating point numbers.
However, more relevant to our work are approaches that depend on new network connection struc-
tures, efficient approximations of previously trained networks, and learning low rank filters.

Efficient Network Connection Structures. There has been shown to be significant redundancy
in the trained weights of CNNs (Denil et al., 2013). LeCun et al. (1989) suggest a method of prun-
ing unimportant connections within networks. However this requires repeated network re-training
and may be infeasible for modern, state-of-the-art CNNs requiring weeks of training time. Lin
et al. (2013) show that the geometric increase in the number and dimensions of filters with deeper
networks can be managed using low-dimensional embeddings. The same authors show that global
average-pooling may be used to decrease model size in networks with fully connected layers. Si-
monyan & Zisserman (2014) show that stacked filters with small spatial dimensions (e.g. 3×3), can
operate on the effective receptive field of larger filters (e.g. 5×5) with less computational complexity.

Low-Rank Filter Approximations. Rigamonti et al. (2013) approximate previously trained
CNNs with low-rank filters for the semantic segmentation of curvilinear structures within volumet-
ric medical imagery. They discuss two approaches: enforcing an L1-based regularization to learn
approximately low rank filters, which are later truncated to enforce a strict rank, and approximating
a set of pre-learned filters with a tensor-decomposition into many rank-1 filters. Neither approach
learns low rank filters directly, and indeed the second approach proved the more successful.

The work of Jaderberg et al. (2014) also approximates the existing filters of previously trained net-
works. They find separable 1D filters through an optimization minimizing the reconstruction error
of the already learned full rank filters. They achieve a 4.5× speed-up with a loss of accuracy of 1%
in a text recognition problem. However since the method is demonstrated only on text recognition, it
is not clear how well it would scale to larger data sets or more challenging problems. A key insight
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(b) Sequential separable filters (Jaderberg et al., 2014).
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(c) Our method, a learned basis space of filters that are rectangular
in the spatial domain and oriented horizontally and vertically.
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(d) Our method, a learned basis space of vertical/horizontal rect-
angular filters and square filters. Filters of other shapes are also
possible.

Figure 2: Methods of using low-rank filters in CNNs. The activation function is not shown,
coming after the last layer in each configuration.

of the paper is that filters can be represented by low rank approximations not only in the spatial
domain but also in the channel domain.

Both of these methods show that, at least for their respective applications, low rank approximations
of full-rank filters learned in convolutional networks can increase test time efficiency significantly.
However, being approximations of pre-trained networks, they are unlikely to improve test accuracy,
and can only increase the computational requirements during training.

Learning Separable Filters. Mamalet & Garcia (2012) propose training networks with separable
filters on the task of digit recognition with the MNIST dataset. They train networks with sequential
convolutional layers of horizontal and vertical 1D filters, achieving a speed-up factor of 1.6×, but
with a relative increase in test error of 13% (1.45% v.s. 1.28%).Our approach generalizes this, al-
lowing both horizontal and vertical 1D filters (and other shapes too) at the same layer and avoiding
issues with ordering. We also demonstrate a decrease in error and on more challenging datasets.

2 USING LOW-RANK FILTERS IN CNNS

2.1 CONVOLUTIONAL FILTERS

The convolutional layers of a CNN produce output ‘images’ (usually called feature maps) by con-
volving input images with one or more learned filters. In a typical convolutional layer, as illustrated
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in Fig. 2a, a c-channel input image of sizeH×W pixels is convolved with d filters of size h×w×c
to create a d-channel output image. Each filter is represented by hwc independent weights. There-
fore the computational complexity for the convolution of the filter with a c-channel input image is
O(dwhc) (per pixel in the output feature map).

In what follows, we describe schemes for modifying the architecture of the convolutional layers so
as to reduce computational complexity. The idea is to replace full-rank convolutional layers with
modified versions that represent the same number of filters by linear combinations of basis vectors,
i.e. as lower rank representations of the full rank originals.

2.2 SEQUENTIAL SEPARABLE FILTERS

An existing scheme for reducing the computational complexity of convolutional layers (Jaderberg
et al., 2014) is to replace each one with a sequence of two regular convolutional layers but with filters
that are rectangular in the spatial domain, as shown in Fig 2b. The first convolutional layer has m
filters of sizew×1×c, producing an output feature map withm channels. The second convolutional
layer has d filters of size 1×h×m, producing an output feature map with d channels. By this means
the full rank original convolutional filter bank is represented by a low rank approximation formed
from a linear combination of a set of separable w × h basis filters. The computational complexity
of this scheme is O(mcw) for the first layer of horizontal filters and O(dmh) for the second layer
of vertical filters, with a total of O(m(cw + dh)).

Note that Jaderberg et al. (2014) use this scheme to approximate existing full rank filters belonging
to previously trained networks using a retrospective fitting step. In this work, by contrast, we train
networks containing convolutional layers with this architecture from scratch. In effect, we learn the
separable basis filters and their combination weights simultaneously during network training.

2.3 FILTERS AS LINEAR COMBINATIONS OF BASES

In this work we introduce another scheme for reducing convolutional layer complexity. This works
by representing convolutional filters as linear combinations of basis filters as illustrated in Fig. 2c.
This scheme uses composite layers comprising several sets of filters where the filters in each set
have different spatial dimensions (see Fig. 5). The outputs of these basis filters may be combined in
a subsequent layer containing filters with spatial dimensions 1× 1.

This is illustrated in Fig. 2c. Here, our composite layer contains horizontal w× 1 and vertical 1× h
filters, the outputs of which are concatenated in the channel dimension, resulting in an intermediate
m-channel feature map. These filter responses are then linearly combined by the next layer of d
1 × 1 filters to give a d-channel output feature map. In this case, the filters are applied on the input
feature map with c channels and followed by a set of m 1×1 filters over the m output channels
of the basis filters. If the number of horizontal and vertical filters is the same, the computational
complexity is O(m(wc/2 + hc/2 + d)). Interestingly, the configuration of Fig. 2c gives rise to
linear combinations of horizontal and vertical filters that are cross-shaped in the spatial domain.
This is illustrated in Fig. 3 for filters learned in the first convolutional layer of the‘vgg-gmp-lr-join’
model that is described in the Results section when it is trained using ILSVRC dataset.

Note that, in general, more than two different sizes of basis filter might be used in the composite
layer. For example, Fig. 2d shows a combination of three sets of filters with spatial dimensions
w× 1, 1×h, and w×h. Also note that an interesting option is to omit the 1× 1 linear combination
layer and instead allow the connection weights in a subsequent network layer to learn to combine
the basis filters of the preceding layer (despite any intermediate non-linearity, e.g. ReLUs). This
possibility is explored in practice in the Results section.

In that our method uses a combination of filters in a composite layer, it is similar to the ‘GoogLeNet’
of Szegedy et al. (2014) which uses ‘inception’ modules comprising several (square) filters of dif-
ferent sizes ranging from 1×1 to 5×5. In our case, however, we are implicitly learning linear
combinations of less computationally expensive filters with different orientations (e.g. 3×1 and 1×3
filters), rather than combinations of filters of different sizes. Amongst networks with similar com-
putational requirements, GoogLeNet is one of the most accurate for large scale image classification
tasks (see Fig. 4), partly due to the use of heterogeneous filters in the inception modules, but also
the use of low-dimensional embeddings and global pooling.
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(a) 3× 1 filters.

(b) 1× 3 filters. (c) Learned linear combinations.

Figure 3: Learned Cross-Shaped Filters. The cross-shaped filters (c) learned as weighted linear
combination of (b) 1 × 3 and (c) 3 × 1 basis filters in the first convolutional layer of the the ‘vgg-
gmp-lr-join’ model trained using the ILSVRC dataset.

3 TRAINING CNNS WITH MIXED-SHAPE LOW-RANK FILTERS

To determine the standard deviations to be used for weight initialization, we use an approach similar
to that described by Glorot & Bengio (2010) (with the adaptation described by He et al. (2015) for
layers followed by a ReLU). In Appendix A, we show the details of our derivation, generalizing the
approach of He et al. (2015) to the initialization of ‘composite’ layers comprising several groups of
filters of different spatial dimensions (see Appendix A, Fig. 5). This is one of the main contributions
of this work.

We find that a composite layer of heterogeneously-shaped filter groups, where each filter group i has
w[i]h[i]d[i] outgoing connections should be initialized as if it is a single layer with n̂ =

∑
w[i]h[i]d[i].

Thus in the case of a ReLU non-linearity, we find that such a composite layer should be initialized
with a zero-mean Gaussian distribution with standard deviation:

σ =

√
2∑

w[i]h[i]d[i]
. (1)

4 RESULTS AND COMPARISONS

To validate our approach, we show that we can replace the filters used in existing state-of-the-art
network architectures with low-rank representations as described above to reduce computational
complexity without reducing accuracy. Here we characterize the computational complexity of a
CNN using the number of multiply accumulate operations required for a forward pass (which de-
pends on the size of the filters in each convolutional layer as well as the input image size and stride).
However, we have observed strong correlation between multiply-accumulate counts and runtime
for both CPU and GPU implementations of the networks described here (as shown in Appendix B,
Fig. 6). Note that the Caffe timings differ more for the initial convolutional layers where the input
sizes are much smaller (3-channels) as BLAS is less efficient for the relatively small matrices being
multiplied.

Methodology. We augment our training set with randomly cropped and mirrored images, but do
not use any scale or photometric augmentation, or over-sampling. This allows us to compare the
efficiency of different network architectures without having to factor in the computational cost of the
various augmentation methods used elsewhere. During training, for every model except GoogLeNet,
we adjust the learning rate according to the schedule γt = γ0(1 + γ0λt)

−1, where γ0, γt and λ are
the initial learning rate, learning rate at iteration t, and weight decay respectively (Bottou, 2012).
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When the validation accuracy levels off we manually reduce the learning rate by further factors of 10
until the validation accuracy no longer increases. Unless otherwise indicated, aside from changing
the standard deviation of the normally distributed weight initialization, as explained in §3, we used
the standard hyper-parameters for each given model. Our results use no test-time augmentation.

4.1 VGG-11 ARCHITECTURES FOR ILSVRC OBJECT CLASSIFICATION AND MIT PLACES
SCENE CLASSIFICATION

We evaluated classification accuracy of the VGG-11 based architectures using two datasets, Ima-
geNet Large Scale Visual Recognition Challenge 2012 (‘ILSVRC’) and MIT Places. The ILSVRC
dataset comprises 1.2M training images of 1000 object classes, commonly evaluated by top-1 and
top-5 accuracy on the 50K image validation set. The MIT Places dataset comprises 2.4M training
images from 205 scene classes, evaluated with top-1 and top-5 accuracy on the 20K image validation
set.

VGG-11 (‘VGG-A’) is an 11-layer convolutional network introduced by Simonyan & Zisserman
(2014). It is in the same family of network architectures used by Simonyan & Zisserman (2014);
He et al. (2015) to obtain the state-of-the-art accuracy for ILSVRC, but uses fewer convolutional
layers and therefore fits on a single GPU during training. During training of our VGG-11 based
models, we used the standard hyperparameters as detailed by Simonyan & Zisserman (2014) and
the initialization of He et al. (2015).

In what follows, we compare the accuracy of a number of different network architectures detailed
in Appendix E, Table 6. Results for ILSVRC are given in Table 1, and plotted in Fig. 4. Results for
MIT Places are given in Table 2, and plotted in Fig. 9.

Baseline (Global Max Pooling). Compared to the version of the network described in (Simonyan
& Zisserman, 2014), we use a variant that replaces the final 2× 2 max pooling layer before the first
fully connected layer with a global max pooling operation, similar to the global average pooling
used by Lin et al. (2013); Szegedy et al. (2014). We evaluated the accuracy of the baseline VGG-11
network with global max-pooling (vgg-gmp) and without (vgg-11) on the two datasets. We trained
these networks at stride 1 on the ILSVRC dataset and at stride 2 on the larger MIT Places dataset.
This globally max-pooled variant of VGG-11 uses over 75% fewer parameters than the original
network and gives consistently better accuracy – almost 3 percentage points lower top-5 error on
ILSVRC than the baseline VGG-11 network on ILSVRC (see Table 1). We used this network as the
baseline for the rest of our experiments.

Separable Filters. To evaluate the separable filter approach described in §2.2 (illustrated in
Fig. 2b), we replaced each convolutional layer in VGG-11 with a sequence of two layers, the first
containing horizontally oriented 1× 3 filters and the second containing vertically oriented 3× 1 fil-
ters (vgg-gmp-sf). These filters applied in sequence represent 3×3 kernels using a low dimensional
basis space. Unlike Jaderberg et al. (2014), we trained this network from scratch instead of ap-
proximating the full-rank filters in a previously trained network. Compared to the original VGG-11
network, the separable filter version requires approximately 14% less compute. Results are shown
in Table 1 for ILSVRC and Table 2 for MIT Places. Accuracy for this network is approx. 0.8%
lower than that of the baseline vgg-11-gmp network for ILSVRC and broadly comparable for MIT
Places. This approach does not give such a significant reduction in computational complexity as
what follows, but it is nonetheless interesting that separable filters are capable of achieving quite
high classification accuracy on such challenging tasks.

Simple Horizontal/Vertical Basis. To demonstrate the efficacy of the simple low rank filter rep-
resentation illustrated in Fig. 2c, we created a new network architecture (vgg-gmp-lr-join) by re-
placing each of the convolutional layers in VGG-11 (original filter dimensions were 3 × 3) with a
sequence of two layers. The first layer comprises half 1×3 filters and half 3×1 filters whilst the sec-
ond layer comprises the same number of 1× 1 filters. The resulting network is approximately 49%
faster than the original and yet it gives broadly comparable accuracy (within 1 percentage point) for
both the ILSVRC and MIT Places datasets.

Full-Rank Mixture. An interesting question concerns the impact on accuracy of combining a
small proportion of 33 filters with the 13 and 31 lters used in vgg-gmp-lr-join. To answer this ques-
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tion, we trained a network, vgg-gmp-lr-join-wfull, with a mixture of 25% 3 × 3 and 75% 1 × 3
and 3 × 1 filters, while preserving the total number of filters of the baseline network (as illus-
trated in Fig. 2d). This network was significantly more accurate than both ‘vgg-gmp-lr-join’ and the
baseline, with a top-5 center crop accuracy of 89.7% on ILSVRC, with a computational savings of
approx. 16% over our baseline. We note that the accuracy is approx. 1 percentage point higher than
GoogLeNet.

Implicitly Learned Combinations. In addition, we try a network similar to vgg-gmp-lr-join but
without the 1×1 convolutional layer (as shown in Fig. 2c) used to sum the contributions of 3×1 and
1×3 filters (vgg-gmp-lr). Interestingly, because of the elimination of the extra 1×1 layers, this gives
an additional compute saving such that this model is is only 1/3rd of the compute of our baseline,
with no reduction in accuracy. This seems to be a consequence of the fact that the subsequent
convolutional layer is itself capable of learning effective combinations of filter responses even after
the intermediate ReLU non-linearity.

We also trained such a network with double the number of convolutional filters (vgg-gmp-lr-2x),
i.e. with an equal number of 1× 3 and 3× 1 filters, or 2c filters as shown in Fig. 2c. We found this
to increase accuracy further (88.9% Top-5 on ILSVRC) while still being approximately 58% faster
than our baseline network.

Low-Dimensional Embeddings. We attempted to reduce the computational complexity of our
‘gmp-lr’ network further in the vgg-gmp-lr-lde network by using a stride of 2 in the first convolu-
tional layer, and adding low-dimensional embeddings, as in Lin et al. (2013); Szegedy et al. (2014).
We reduced the number of output channels by half after each convolutional layer using 1× 1 convo-
lutional layers, as detailed in Appendix E, Table 6. While this reduces computation significantly, by
approx. 86% compared to our baseline, we saw a decrease in top-5 accuracy on ILSVRC of 1.2 per-
centage points. We do note however, that this network remains 2.5 percentage points more accurate
than the original VGG-11 network, but is 87% faster.

Network Stride Multiple-Acc. ×109 Param. ×107 Top-1 Acc. Top-5 Acc.

vgg-11 1 7.61 13.29 0.649 0.862

gmp 1 7.51 3.22 0.685 0.887
gmp-sf 1 6.53 2.97 0.673 0.879
gmp-lr-join-wfull 1 6.34 3.72 0.704 0.897
gmp-lr-join 1 3.85 2.73 0.675 0.880
gmp-lr-2x 1 3.14 3.13 0.693 0.889
gmp-lr 1 2.52 2.61 0.676 0.880
gmp-lr-lde 2 1.02 2.64 0.667 0.875

Table 1: VGG ILSVRC Results. Accuracy, multiply-accumulate count, and number of parameters
for the baseline VGG-11 network (both with and without global max pooling) and more efficient
versions created by the methods described in this paper.

Network Stride Multiple-Acc. ×108 Param. ×107 Top-1 Acc. Top-5 Acc.

gmp 2 18.77 3.22 0.526 0.830
gmp-sf 2 16.57 13.03 0.517 0.824
gmp-lr-join 2 9.64 2.73 0.512 0.821
gmp-lr 2 6.30 2.61 0.520 0.825

Table 2: MIT Places Results. Accuracy, multiply-accumulate operations, and number of parameters
for the baseline ‘vgg-11-gmp’ network, separable filter network as described by Jaderberg et al.
(2014), and more efficient models created by the methods described in this paper. All networks
were trained at stride 2 for the MIT Places dataset.
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Figure 4: VGG ILSVRC Results. Multiply-accumulate operations v.s. top-5 error for VGG-derived
models on ILSVRC object classification dataset, the most efficient networks are closer to the origin.
Our models are significantly faster than the baseline network, in the case of ‘gmp-lr-2x’ by a factor
of almost 60%, while slightly lowering error. Note that the ‘gmp-lr’ and ‘gmp-lr-join’ networks
have the same accuracy, showing that an explicit linear combination layer may be unnecessary.

4.2 GOOGLENET FOR ILSVRC OBJECT CLASSIFICATION

GoogLeNet, introduced by Szegedy et al. (2014), is the most efficient network for ILSVRC, getting
close to state-of-the-art results with a fraction of the compute and model size of even VGG-11. The
GoogLeNet inception module is a composite layer of 5 homogeneously-shaped filters, 1× 1, 3× 3,
5× 5, and the output of a 3x3 average pooling operations. All of these are concatenated and used as
input for successive layers.

For the googlenet-lr network, within only the inception modules we replaced each the 3 × 3 filters
with low-rank 3 × 1 and 1 × 3 filters, and replaced the layer of 5 × 5 filters with a set of low-rank
5 × 1 and 1 × 5 filters. For the googlenet-lr-conv1 network, we similarly replaced the first and
second layer convolutional layers with 7× 1 / 1× 7 and 3× 1 / 1× 3 layers respectively.

Results are shown in Table 3. Due to the intermediate losses used for training, which contain the only
fully-connected layers in GoogLeNet, test time model size is significantly smaller than training time
model size. Table 3 also reports test time model size. The low-rank network delivers comparable
classification accuracy using 26% less compute. No other networks produce comparable accuracy
within an order of magnitude of compute. We note that although the Caffe pre-trained GoogLeNet
model (Jia et al., 2014) has a top-5 accuracy of 0.889, our training of the same network using the
given model definition, including the hyper-parameters and training schedule, but a different random
initialization had a top-5 accuracy of 0.883.

Network Multiple-Acc. ×109 Test Param. ×106 Top-1 Acc. Top-5 Acc.

GoogLeNet 1.59 5.97 0.677 0.883

lr 1.18 3.50 0.673 0.880
lr-conv1 0.84 3.42 0.659 0.870

Table 3: GoogLeNet ILSVRC Results. Accuracy, multiply-accumulate count, and number of pa-
rameters for the baseline GoogLeNet network and more efficient versions created by the methods
described in this paper.

4.3 NETWORK-IN-NETWORK FOR CIFAR-10 OBJECT CLASSIFICATION

The CIFAR-10 dataset consists of 60,000 32 × 32 images in 10 classes, with 6000 images per
class. This is split into standard sets of 50,000 training images, and 10,000 test images (Krizhevsky,
2009). As a baseline for the CIFAR-10 dataset, we used the Network in Network architecture (Lin
et al., 2013), which has a published test-set error of 8.81%. We also used random crops during
training, with which the network has an error of 8.1%. Like most state of the art CIFAR results, this
was with ZCA pre-processed training and test data (Goodfellow et al., 2013), training time mirror
augmentation and random sub-crops. The results of our CIFAR experiments are listed in Table 4
and plotted in Fig. 11.
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Network Multiple-Acc. ×108 Param. ×105 Accuracy

NiN 1.93 9.67 0.9188

nin-c3 1.43 7.74 0.9186
nin-c3-lr 1.04 4.38 0.9178

Table 4: Network-in-Network CIFAR-10 Results. Accuracy, multiply-accumulate operations,
and number of parameters for the baseline Network-in-Network model and more efficient versions
created by the methods described in this paper.

This architecture uses 5× 5 filters in some layers. We found that we could replace all of these with
3 × 3 filters, with comparable accuracy. As suggested by Simonyan & Zisserman (2014), stacked
3× 3 filters have the effective receptive field of larger filters with less computational complexity. In
this nin-c3 network, we replaced the first convolutional layer with one 3 × 3 layer, and the second
convolutional layer with two 3× 3 layers. This network is 26% faster than the standard NiN model,
with only 54% of the model parameters. Using our low-rank filters in this network, we trained the
nin-c3-lr network, which is of similar accuracy (91.8% v.s. 91.9%) but is approximately 54% of the
original network’s computational complexity, with only 45% of the model parameters.

5 DISCUSSION

It is somewhat surprising that networks based on learning filters with less representational ability
are able to do as well, or better, than CNNs with full k× k filters on the task of image classification.
However, a lot of interesting small-scale image structure is well-characterized by low-rank filters,
e.g. edges and gradients. Our experiments training a separable (rank-1) model (‘vgg-gmp-sf’) on
ILSVRC and MIT Places show surprisingly high accuracy on what are considered challenging prob-
lems – approx. 88% top-5 accuracy on ILSVRC – but not enough to obtain comparable accuracies
to the models on which they are based.

Given that most discriminative filters learned for image classification appear to be low-rank, we
instead structure our architectures with a set of basis filters in the way illustrated in Fig. 2d. This
allows our networks to learn the most effective combinations of complex (e.g. k×k) and simple (e.g.
1 × k, k × 1) filters. Furthermore, in restricting how many complex spatial filters may be learned,
this architecture prevents over-fitting, and helps improve generalization. Even in our models where
we do not use square k× k filters, we obtain comparable accuracies to the baseline model, since the
rank-2 cross-shaped filters effectively learned as a combination of 3× 1 and 1× 3 filters are capable
of representing more complex local pixel relations than rank-1 filters.

6 CONCLUSION

This paper has presented a method to train convolutional neural networks from scratch using low-
rank filters. This is made possible by a new way of initializing the networks weights which takes
into consideration the presence of differently shape filters in composite layers. Validation on image
classification in three popular datasets confirms similar or higher accuracy than state of the art, with
much greater computational efficiency.

Recent advances in state-of-the-art accuracy with CNNs for image classification have come at the
cost of increasingly large and computational complex models. We believe our results to show that
learning computationally efficient models with fewer, more relevant parameters, can prevent over-
fitting, increase generalization and thus also increase accuracy.

FUTURE WORK

This paper has addressed the spatial extents of convolutional filters in CNNs, however the channel
extents also exhibit some redundancy, as highlighted by Jaderberg et al. (2014), and exploited in
the form of low-dimensional embeddings by Lin et al. (2013); Szegedy et al. (2014). We intend to
further explore how our methods can be extended to learn and combine even smaller basis filters and
filters with more diverse shapes.
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APPENDICES
A INITIALIZING CNNS WITH MIXED-SHAPE LOW-RANK FILTERS

At the start of training, network weights are initialized at random using samples drawn from a
Gaussian distribution with a standard deviation parameter specified separately for each layer. We
found that the setting of these parameters was critical to the success of network training and difficult
to get right, particularly because published parameter settings used elsewhere were not suitable
for our new network architectures. With unsuitable weight initialization, training may fail due to
exploding gradients, where back propagated gradients grow so large as to cause numeric overflow,
or vanishing gradients where back propagated gradients grow so small that their effect is dwarfed
by that of weight decay such that loss does not decrease during training (Hochreiter et al., 2001).

To determine the standard deviations to be used for weight initialization, we use an approach similar
to that described by Glorot & Bengio (2010) (with the adaptation described by He et al. (2015)
for layers followed by a ReLU). Their approach works by ensuring that the magnitudes of back-
propagated gradients remain approximately the same throughout the network. Otherwise, if the
gradients were inappropriately scaled by some factor (e.g. β) then the final back-propagated signal
would be scaled by a potentially much larger factor (βL after L layers).

In what follows, we adopt notation similar to that of He et al. (2015), and follow their derivation
of the appropriate standard deviation for weight initialization. However, we also generalize their
approach to the initialization of ‘composite’ layers comprising several groups of filters of different
spatial dimensions (see Fig. 5). This is one of the main contributions of this work.

Forward Propagation. The response of the lth convolutional layer can be represented as

yl = Wlxl + bl. (2)

Here yl is a d × 1 vector representing a pixel in the output feature map and xl is a whc × 1 vector
that represents a w × h subregion of the c-channel input feature map. Wl is the d × n weight
matrix, where d is the number of filters and n is the size of a filter, i.e. n = whc for a filter with
spatial dimensions w×h operating on an input feature map of c channels, and bl is the bias. Finally
xl = f(yl−1) is the output of the previous layer passed through an activation function f (e.g. the
application of a ReLU to each element of yl−1).

Backward Propagation. During back-propagation, the gradient of a convolutional layer is com-
puted as

∆xl = Ŵl∆yl, (3)

where ∆xl and ∆yl denote the derivatives of loss L with respect to input and output pixels. ∆xl is
a c× 1 vector of gradients with respect to the channels of a single pixel in the input feature map and
∆y represents h × w pixels in d channels of the output feature map. Ŵl is a c × n̂ matrix where
the filter weights are arranged in the right order for back-propagation, and n̂ = whd. Note that Ŵl

can be simply reshaped from W>
l . Also note that the elements of ∆yl correspond to pixels in the

output image that had a forwards dependency on the input image pixel corresponding to ∆x. In
back propagation, each element ∆yl of ∆yl is related to an element ∆xl+1 of some ∆xl+1 (i.e. a
back-propagated gradient in the next layer) by the derivative of the activation function f :

∆yl = f ′(yl)∆xl+1, (4)

where f ′ is the derivative of the activation function.

Weight Initialization. Now let ∆yl, ∆xl and wl be scalar random variables that describe the
distribution of elements in ∆yl, ∆xl and Ŵl respectively. Then, assuming f ′(yl) and ∆xl+1 are
independent,

E[∆yl] = E[f ′(yl)]E[∆xl+1]. (5)

For the ReLU case, f ′(yl) is zero or one with equal probability. Like Glorot & Bengio (2010), we
assume that wl and ∆yl are independent of each other. Thus, equation 3 implies that ∆xl has zero
mean for all l, when wl is initialized by a distribution that is symmetric around zero. Thus we have
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Figure 5: A composite layer. Composite layers convolve an input feature map with N groups of
convolutional filters of several different spatial dimensions. Here the ith group has d[i] filters with
spatial dimension w[i]×h[i]. The outputs are concatenated to create a d channel output feature map.
Composite layers require careful weight initialization to avoid vanishing/exploding gradients during
training.

E[∆yl] = 1
2E[∆xl+1] = 0 and also E[(∆yl)

2] = Var[∆yl] = 1
2Var[∆xl+1]. Now, since each

element of ∆xl is a summation of n̂ products of elements of Ŵl and elements of ∆yl, we can
compute the variance of the gradients in equation 3:

Var[∆xl] = n̂Var[wl]Var[∆yl]

=
1

2
n̂Var[wl]Var[∆xl+1].

(6)

To avoid scaling the gradients in the convolutional layers (to avoid exploding or vanishing gradients),
we set the ratio between these variances to 1:

1

2
n̂Var[wl] = 1. (7)

This leads to the result of He et al. (2015), in that a layer with n̂l connections followed by a ReLU
activation function should be initialized with a zero-mean Gaussian distribution with standard devi-
ation

√
2/n̂l.

Weight Initialisation in Composite Layers. The initialization scheme described above assumes
that the layer comprises filters of spatial dimension w×h. Now we extend this scheme to composite
convolutional layers containing N groups of filters of different spatial dimensions w[i]×h[i] (where
superscript [i] denotes the group index and with i ∈ {1, . . . , N}). Now the layer response is the
concatenation of the responses of each group of filters:

yl =


W

[1]
l x

[1]
l

W
[2]
l x

[2]
l

. . .

W
[N ]
l x

[N ]
l

 + bl. (8)

As before yl is a d× 1 vector representing the response at one pixel of the output feature map. Now
each x[i] is a w[i]h[i]c× 1 vector that represents a different shaped w[i]×h[i] sub-region of the input
feature map. Each W

[i]
l is the c[i]l × n̂[i] weight matrix, where d is the number of filters and n̂[i] is

the size of a filter, i.e. n̂[i] = w[i]h[i]c[i] for a filter of spatial dimension w[i] × h[i] operating on an
input feature map of cl = dl−1 channels.
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Figure 6: Multiply-Accumulate Operations and Caffe CPU/GPU Timings. For the forward pass
of each convolutional layer in the ‘vgg-gmp-lr’ network. Caffe CPU and GPU timings were well
correlated with multiply-accumulate operations for most layers.

During back propagation, the gradient of the composite convolutional layer is computed as a sum-
mation of the contributions from each group of filters:

∆xl = Ŵ
[1]
l ∆y

[1]
l + Ŵ

[2]
l ∆y

[2]
l + · · ·+ Ŵ

[N ]
l ∆y

[N ]
l , (9)

where now ∆y[i] represents w[i] × h[i] pixels in d[i] channels of the output feature map. Each Ŵ
[i]
l

is a cl × n̂[i] matrix of weights arranged appropriately for back propagation. Again, note that each
Ŵ

[i]
l can be simply reshaped from W

[i]
l .

As before, each element of ∆yl is a sum over n̂ products between elements of Ŵ[i]
l and elements

of ∆y
[i]
l and here n̂ is given by:

n̂ =
∑

w[i]h[i]d[i]. (10)

In the case of a ReLU non-linearity, this leads to a zero-mean Gaussian distribution with standard
deviation:

σ =

√
2∑

w[i]h[i]d[i]
. (11)

In conclusion, a composite layer of heterogeneously-shaped filter groups, where each filter group
i has w[i]h[i]d[i] outgoing connections should be initialized as if it is a single layer with n̂ =∑
w[i]h[i]d[i].

B MULTIPLY-ACCUMULATE OPERATIONS AND CAFFE CPU/GPU TIMINGS.

We have characterized the computational complexity of a CNN using the number of multiply ac-
cumulate operations required for a forward pass (which depends on the size of the filters in each
convolutional layer as well as the input image size and stride), to give as close as possible to a
hardware and implementation independent evaluation the computational complexity of our method.
However, we have observed strong correlation between multiply-accumulate counts and runtime for
both CPU and GPU implementations of the networks described here (as shown in Fig. 6). Note
that the Caffe timings differ more for the initial convolutional layers where the input sizes are much
smaller (3-channels), and BLAS is less efficient for the relatively small matrices being multiplied.

C COMPARING WITH STATE OF THE ART NETWORKS FOR ILSVRC

Figures 7 and 8 compare published top-5 ILSVRC validation error v.s. multiply-accumulate opera-
tions and number of model parameters (respectively) for several state-of-the-art networks (Simonyan
& Zisserman, 2014; Szegedy et al., 2014; He et al., 2015). The error rates for these networks are
only reported as obtained with different combinations of computationally expensive training and
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test time augmentation methods, including scale, photometric, ensembles (multi-model), and multi-
view/dense oversampling. This can makes it difficult to compare model architectures, especially
with respect to computational requirements.

State-of-the-art networks, such as MSRA-C, VGG-19 and oversampled GoogLeNet are orders of
magnitude larger in computational complexity than our networks. From Fig. 7, where the multiply-
accumulate operations are plotted on a log scale, increasing the model size and/or computational
complexity of test-time augmentation of CNNs appears to have diminishing returns for decreasing
validation error. Our models without training or test time augmentation show comparable accuracy
to networks such as VGG-13 with training and test time augmentation, while having far less com-
putational complexity and model size. In particular, the ‘googlenet-lr’ model has a much smaller
test-time model size than any network of comparable accuracy.

Network Multiply-Acc. ×109 Test M.A. w/ Aug. ×109 Param. ×107 Top-5 Acc.

msra-c 53.46 107.17 33.06 0.943
msra-b 23.22 46.54 18.33 0.937
msra-a 19.06 38.20 17.80 0.935
vgg-19 19.63 39.30 14.37 0.910
vgg-16 (D) 15.47 30.97 13.84 0.912
vgg-16 (C) 11.77 23.57 13.36 0.906
vgg-13 11.31 22.64 13.30 0.901
vgg-11 7.61 15.24 13.29 0.895
googlenet 10x 1.59 15.91 1.34 0.909
googlenet 144x 1.59 229.11 1.34 0.921

Table 5: State of the Art Single Models with Extra Augmentation. Top-5 ILSVRC validation
accuracy, single view and augmented test-time multiply-accumulate (M.A.) count, and number of
parameters for various state of the art models with various training and test-time augmentation meth-
ods. A multi-model ensemble of MSRA-C is the current state of the art network.

D PLOTS OF RESULTS

Following are several plots of results, which for reasons of space consideration are not in the main
section of the paper. These include the results for VGG-derived models on MIT Places (Fig. 9),
GoogLeNet-derived models on ILSVRC (Fig. 10), and finally the results for Network-in-Network-
derived models on CIFAR-10 (Fig. 11).

E VGG-DERIVED MODEL TABLE

Table 6 shows the architectual details of the VGG-11 derived models used in §4.1.
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Figure 7: Computational Complexity of Single State-of-the-Art ILSVRC Models. Test-time
multiply-accumulate operations v.s. top-5 error on state of the art networks using a single model.
Note the difference in accuracy and computational complexity for VGG-11 model with/without extra
augmentation. Our ‘vgg-gmp-lr-join-wfull’ model without extra augmentation is more accurate than
VGG-11 with extra augmentation, and is much less computationally complex.
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Figure 9: MIT Places Results. Multiply-accumulate operations v.s. top-5 error for VGG-derived
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GoogLeNet-derived models on ILSVRC object classification dataset.
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Layer VGG-11 GMP GMP-SF GMP-LR GMP-LR-2X GMP-LR-JOIN GMP-LR-LDE GMP-LR-JOIN-WFULL
conv1 3×3, 64 1×3, 64 3×1, 32 ‖ 1×3, 32 3×1, 64 ‖ 1×3, 64 3×1, 32 ‖ 1×3, 32 3×1, 24 ‖ 1×3, 24 ‖ 3×3, 16

3×1, 64 1×1, 64 1×1, 32 1×1, 64
ReLU

2×2 maxpool, /2
conv2 3×3, 128 1×3, 128 3×1, 64 ‖ 1×3, 64 3×1, 128 ‖ 1×3, 128 3×1, 64 ‖ 1×3, 64 3×1, 48 ‖ 1×3, 48 ‖ 3×3, 32

3×1, 128 1×1, 128 1×1, 64 1×1, 128
ReLU

2×2 maxpool, /2
conv3 3×3, 256 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 256 ‖ 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 96 ‖ 1×3, 96 ‖ 3×3, 64

3×1, 256 1×1, 256 1×1, 128 1×1, 256
ReLU

3×3, 256 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 256 ‖ 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 96 ‖ 1×3, 96 ‖ 3×3, 64
3×1, 256 1×1, 256 1×1, 128 1×1, 256

ReLU
2×2 maxpool, /2

conv4 3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128
3×1, 512 1×1, 512 1×1, 256 1×1, 512

ReLU
3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128

3×1, 512 1×1, 512 1×1, 256 1×1, 512
ReLU

2×2 maxpool, /2
conv5 3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128

3×1, 512 1×1, 512 1×1, 256 1×1, 512
ReLU

3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128
3×1, 512 1×1, 512 1×1, 256 1×1, 512

ReLU
2×2 maxpool, /2 global maxpool

fc6 72 × 512 × 4096 512 × 4096
ReLU

fc7 4096 × 4096
ReLU

fc8 4096 × 1000
softmax

Table 6: VGG Model Architectures. Here “3×3, 32” denotes 32 3×3 filters, “/2” denotes stride 2, fc denotes fully-connected, and ‖ denotes a concatenation
within a composite layer.
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