
CHARLES et al.: EXTRACTING THE X FACTOR IN HUMAN PARSING 1

Real-time Factored ConvNets: Extracting the
X Factor in Human Parsing
James Charles
jjc75@cam.ac.uk

Ignas Budvytis
ib255@cam.ac.uk

Roberto Cipolla
rc10001@cam.ac.uk

Machine Intelligence Lab
Department of Engineering
University of Cambridge
Cambridge, U.K.

Abstract

We propose a real-time and lightweight multi-task style ConvNet (termed a Factored
ConvNet) for human body parsing in images or video. Factored ConvNets have isolated
areas which perform known sub-tasks, such as object localization or edge detection. We
call this area and sub-task pair an X factor. Unlike multi-task ConvNets which have
independent tasks, the Factored ConvNet’s sub-task has direct effect on the main task
outcome. In this paper we show how to isolate the X factor of foreground/background
(f/b) subtraction from the main task of segmenting human body images into 31 different
body part types. Knowledge of this X factor leads to a number of benefits for the Factored
ConvNet: 1) Ease of network transfer to other image domains, 2) ability to personalize to
humans in video and 3) easy model performance boosts. All achieved by either efficient
network update or replacement of the X factor whilst avoiding catastrophic forgetting
of previously learnt body part dependencies and structure. We show these benefits on a
large dataset of images and also on YouTube videos.

1 Introduction
In many Computer Vision applications, great success has been observed when using convo-
lutional neural networks (ConvNets) [15, 22, 34]. These networks are typically trained to
solve a main task in an end-to-end manner using an appropriately chosen loss function. Un-
fortunately, this style of training makes it difficult to identify the sub-tasks being solved by
the network prior to final inference. For instance, it is well known, at the first few layers of
most ConvNets operating on images, an edge detection task is being solved and edge based
filters are learnt [41]. However, deeper in the network, isolating and identifying sub-tasks
of this nature becomes more difficult. This is very limiting, for example, if two ConvNets
are designed to solve different tasks, it often resorts in costly training of all weights for both
ConvNets, even though they could potentially be solving the same sub-problems. As an al-
ternative, we propose Factored ConvNets as an approach for factoring out part of a network
used for solving a sub-problem, such as edge detection, object localization, or background
removal, and call this the X factor of the network. There are three main benefits to such an
approach: (1) a simple plug-and-play style method to model building, where X factors from
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one network can be plugged straight into a new model without the need for costly retrain-
ing, (2) overall network performance boosting by introduction of additional training data,
not appropriate for the main task, but relevant for better training the X factor, and (3) small
lightweight models adaptable to different domains by hot-swapping X factors from other
ConvNets or updating them in a semi-supervised fashion [20].

Here we demonstrate the Factored ConvNet approach within the application of human
body parsing were the task is pixel-wise segmentation of the human body into 31 parts. The
ConvNet is designed to be both lightweight (low number of parameters) and fast, perform-
ing at 120fps in batch mode or 11fps through a webcam (512x512 input resolution), yet
easily adaptable to new domains and capable of semi-supervised personalization to people
in videos. The chosen X factor for this task is foreground/background (f/b) segmentation,
i.e. a precise pixel-wise classification into person (foreground) or non-person (background).
This is an appropriate sub-task to body part segmentation which is a more fine-grained seg-
mentation of the foreground region. We show how to build and train the Factored ConvNet
to correctly use knowledge supplied by the X factor, leading to four main contributions: (i)
A real-time method for human parsing, (ii) easy model improvements by swapping out the
X factor for better modules, (iii) a method of simple transfer of the network to new domains
and (iv) a technique to personalize the network to people (and backgrounds) in input videos
without catastrophic forgetting of previously learnt human body structure and part depen-
dencies.

1.1 Related work
Multi-task learning. ConvNets designed for multi-task learning typical have a shared
layer of features which acts as input for two or more independent network branches trained
for different tasks [12, 19, 21, 36, 38]. This often results in improved prediction efficiency
and increased accuracy but is hindered by the assumption of task independence. To address
this, Misra et al. [26] recently proposed a method for learning how to ‘stitch’ two networks
together to share information. However, this intertwining of networks inhibits task modu-
larity. In [10] tasks are produced sequentially, with the next task dependent on the previous
and in [3] a recurrent architecture learns how to interconnect tasks to help improve overall
performance. While our work also benefits from a shared representation, we also show how
to form intertask dependencies while keeping certain tasks modular and easily updated.

Modular networks. Using the first set of image encoding layers from e.g. VGG [34] or
ResNet [15] can work well when fine-tuned for new tasks, but easily sharing network archi-
tecture and weights from sub-nets within a network in a plug-and-play style approach is still
a difficult. Recently Fernando et al. [13] developed PathNet for unsupervised task sharing
between networks. However, we tackle the problem (for the case of human parsing) in a
supervised approach where the shared task is known and can also be substituted by non-
network based models. Alternative methods [8, 27] grow networks or update them over time
to learn new tasks, but we endeavour to have a lightweight and fast network (not a large
universal problem solver) capable of adapting online to different domains.

Human body parsing. We tackle the problem of human parsing [14, 24, 29] which has
seen recent advances, particularly due to the introduction of more training data [9, 16, 23,
39]. Of similar application is human pose estimation where recent ConvNets have shown
very good performance [2, 5, 6, 28, 40] when designed to capture the dependencies between
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Figure 1: The Factored ConvNet. shown on a main task of human body parsing. Blue blocks show
bottleneck and convolutional modules. Foreground/background segmentation factored out as an X
Factor.

body parts. In our design, we capture large image context and learn global human body
structure, while retaining network efficiency, by using dilated convolutions [42] and separa-
ble filters [17, 35]. Our novelty in this area is a real-time system which is capable of being
personalized and also transferred to other domains. This is extremely important as human
parsing training data is costly to obtain. Also, although personalized methods have been de-
veloped for human pose tracking in video [7, 31], we believe this is a first for human parsing
in video.

2 Network overview
For the Factored ConvNet to be efficient at run-time and also capable of being updated
quickly during domain transfer or personalization, we use similar architectural choices to
the ENet network [30] which is also fast and lightweight. Our network has two tasks, a main
task and a chosen factored task, illustrated in Figure 1 for the main task of human parsing
(body part segmentation) and sub-task of f/b segmentation.

Factored ConvNet. Our feed-forward network can be applied to both images and video
and operates on each frame/image independently. The network is composed of convolutional
modules (indicated as blue blocks in Figure 1). The input image is first down-sampled
through an initial block and shared features are later computed for two separate tasks: (1)
the factored task and (2) the main task. An aggregation module combines the outputs from
the factored task with shared features prior to inference on the main task. In this manner, it
is clear where in the network the sub-task (f/b segmentation) is computed, i.e. the factored
module.

The X Factor. The factored module and it’s associated task define the X Factor. Any
factored task that is related to the main task but for which training data is more prolific or
easier to obtain would be ideal for an X Factor. In the case of human parsing, this could
be 2D human pose estimation or person detection. We later show that the performance of
the main task can then be boosted by simply using additional training data when training
the factored module. To enforce the factored module to reason about the X factor’s task an
associated loss function is attached.

Aggregation module. This module makes the Factored ConvNet different to traditional
multi-task networks. Rather than each task being solved independently after the shared fea-
ture stage, here information coming from the factored task is merged back into the network
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Figure 2: ConvNet modules. Diagrams showing the three fundamental building blocks for the Con-
vNet modules. Top table details the four types of bottleneck blocks used [30]. Bottom table details
blocks used within modules from left to right, indicating the direction of information flow through the
network.

by combining it with the information stream from shared features. For best performance, it
is important for the aggregation module to ‘know’ when to attend to or when to ignore the
information coming from each stream. For example, in some cases poor lighting can make
specific body part detection difficult, but background subtraction can still be performed eas-
ily. Under such conditions the network should learn to pay more attention to information
from the factored module when solving the main task (see Section 4 for how this behavior is
trained). This type of reasoning is lost in traditional multi-task setups.

3 Benefits to factoring

Due to task dependencies, boosts in overall network performance can be obtained by only
having to improve X factor accuracy, making it easier to transfer the network to new domains
or personalize it to an input video.

Domain transfer. Compared with traditional ConvNets, factored ConvNets can be eas-
ily transfered to different domains where training data is available for the X factor but not
available for the main task. Transfer is simply done by updating the factored module with
additional training data, while keeping the rest of the network fixed to avoid catastrophic
forgetting of previously learnt knowledge for computing the main task. The ConvNet can
also be transfered in a semi-supervised approach onto a collection of images (detailed in
Section 4), or if the X factor is already provided in the new domain (e.g. f/b silhouettes), one
can directly inject it into the network for immediate performance boosts on the main task
(see Figure 3(a)).

Personalization. Similar to Charles et al. [7] we personalize the Factored ConvNet through
fine-tuning, however, in our case, only a portion of the network (the factored module) has to
be fine-tuned with training data of the target person. Personalization can be fully automatic
through semi-supervised learning, particularly if the X factor is a much easier task to the
main task. In the next section we provide the details of our model under the application of
human body parsing (31 body part segmentation) and describe a semi-supervised approach
for personalizing the Factored ConvNet to a target person merely by using their silhouette.
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4 Method details
Factored ConvNet architecture. Three fundamental blocks (illustrated in Figure 2) are
employed to build the Factored ConvNet. Each of the modules (see Figure 1) is composed
of different types of ENet [30] style bottleneck blocks. Exact construction is detailed in
the tables shown in Figure 2. The ConvNet is trained on 512x512 RGB images and final
resolution of the output segmentation is 64x64. Up-sampling is not performed here as evalu-
ation at the low resolution is sufficient to demonstrate the benefits of factoring out sub-tasks.
Batch normalization is used between all conv layers except where stated otherwise. Channel
padding [30] in bottlenecks is used to match the number of feature maps prior to summing.

Losses. An associated prediction layer and loss is appended to the factored module. In our
case a 1×1 conv layer and softmax activation predicts two classes (foreground/background)
and a cross entropy loss is assigned. In a similar fashion for the main task, a prediction
layer of 32 classes (body parts + background) and cross entropy loss is appended to the
aggregation module. During training we found both losses weighted equally worked well.

Aggregation module. A concat block (see Figure 2) lies at the head of this module and
concatenates output feature maps (128 channels) from the shared feature module with output
class prediction maps (2 channels) from the factored module.

Training. The network is trained end-to-end when provided with appropriate training data.
However, it is important to ensure the aggregation module learns how much attention to
pay towards signals coming from either the factored or shared feature modules. This is
taught by injecting noise at specific points in the network under four types of settings. Each
setting gives rise to different learnt behavior. For Setting 1, noise is injected at only the
output of the Factored module, accomplished by swapping confidence values (between f/b
classes) at random locations in the prediction map (see Figure 3(a)). Setting 2, the initial
block of the network is cloned, producing two parallel streams through the network, one
stream connecting to each module (see Figure 3(a)). Gaussian noise is added to the input
image of the shared feature stream, while keeping the input to the factored module clean. In
Setting 3, no noise is injected and for Setting 4 both types of noise from Settings 1 and 2 are
added. One setting per training batch is chosen at random. Setting 1 ensures the network
can reason about image features when classifying pixels into body parts, Setting 2 forces the
network to reason about silhouette shape and Settings 3 and 4 provide balance. Other than
the aggregation module, all weights in other modules are held fixed when training under
Settings 1 2 and 4. The variance in Gaussian noise is also randomly chosen for each image,
ranging between 10 and 120 pixel values.

Boosting network performance. main task predictions can be boosted by improving fac-
tored task performance in two ways: 1) direct injection of known silhouettes for the input
image, which may come from a different source (e.g. a human user or another f/b model) or
2) Factor fine-tuning, where the factored module is fine-tuned on training images of people
and their silhouettes while the weights of all other modules are fixed.

Domain transfer. If provided with target domain training data of human silhouettes, the
Factored ConvNet is transferred by factor fine-tuning, (or even by direct injection if silhou-
ettes are provided on all images in the new domain). For semi-supervised transfer, training
images of human silhouettes are automatically obtained by initializing Grabcut segmenta-
tion [32] with f/b silhouette predictions from the factored module. Transfer is then accom-
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Figure 3: (a) Noise injected into the Factored ConvNet in two different ways during training of the
aggregation module, all other module weights are held fixed. (b) Shows the semi-supervised label
propagation method [4] used to help obtain silhouettes for video personalization. Areas of high, low
and close to 0.5 confidence for foreground are shown as red, blue and black respectively.

plished by factor fine-tuning on these new silhouettes. Note, only f/b segmentation is re-
quired for transfer, this is far easier to obtain than segmented images of people into 31 body
parts, and much less error prone if being produced automatically.

Personalization in video. Personalization is achieved by factor fine-tuning on automati-
cally obtained human silhouettes from a target video. Temporal information is leveraged to
obtain training silhouettes as follows: Initially predicted f/b segmentation regions in each
frame (regions where the factored module has very high class prediction (>0.99)) are propa-
gated both forward and backward in time through the video using a tree structured graphical
model [4]. Unlike dense optical flow, which smooths tracking across object boundaries, this
technique can produce crisp tracked silhouettes which align well with f/b edges. An added
advantage is that the method has the capability to fill in any initially missed f/b regions, see
Figure 3(b). As with domain transfer, semi-supervised label generation using the silhouette is
much easier than obtaining labels for the main task (which would involve the complex prob-
lem of detecting and tracking body parts [7]). When fine-tuned, the module learns person
and background specific features resulting in better f/b segmentation and improved human
parsing by the main network.

5 Experimental evaluation

For our experimental evaluation we test the Factored ConvNet on the application of parsing
an image into 31 different body parts, as introduced by Shotten et al. [33] (see Figure 7(b)).
Two datasets are used, one for training and testing the model on still images, the other for
testing personalization to video.

5.1 Datasets and training

Unite the People S31 [23]. A total of 8515 images originating from Leeds Sports Pose [18],
single person tagged people from MPII Human Pose Dataset [1] and FashionPose [11]. Full-
body part segmentations for 31 parts (and background) are provided by Lassner et al. [23]
by automatic fitting of a 3D body model and part projection. Example images and body part
types in different colors are shown in Figure 7(b). We randomly split this collection into
6812 images for training and 1703 for testing.
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(b) Qualitative results on occlusion experiment (c) Unite the People S31 comparison

Figure 4: Human parsing under simulated occlusion. (a) The baseline ConvNet. (b) Human
body segments from the baseline and Factored ConvNet (B and F) on example images from Unite the
People S31 test set. Baseline and Factored ConvNet output with provided GT silhouettes (with Sil)
and without (no Sil) are shown. Notice how the Factored ConvNet can reason well about the silhouette
when forming body part classification. (c) shows per-class IOU comparison on Unite the People S31.

YouTube Pose [7]. A 50 video dataset of different people from YouTube, each with a
single person in the video. For each video, 100 frames are manually labeled with human
upper body pose. Five testing videos from this dataset are chosen where our model has
difficulty producing good body part segmentation. All labeled frames from each of the five
videos is used for testing (500 frames in total). Example frames from these videos are shown
in Figure 7(a).

Freiburg Sitting People (FSP) [29]. A dataset of 201 images of six different sitting peo-
ple. Each image is provided with ground truth segmentation into 14 different body parts.
The train set consists of two people while a test set of four people are held out as in [29].
Models trained from Unite the People S31 are tested against this dataset by merging certain
class labels (from the 31 classes) to form matching 14 body part classes.

Training. For all experiments both the baseline and factored model are trained for 260
epochs on Unite the People S31 training set. Heavy augmentation such as horizontal flips,
rotation (-80 to 80 degrees), random cropping (±200 pixels off center) and scaling (0.8 to
1.2 scaling) is used. Optimization of weights is done using RmsProp [37] with a learning
rate of 0.0005 and weight decay of 0.0002, training took about 1.5 days on a Titan XP GPU,
no learning rate scheduling was applied.

5.2 Experiments
Baseline. While we also compare to the state of the art (ENet [30] and FCN [25]), a non-
factored baseline ConvNet is additionally tested against. This is a very similar network to
the Factored ConvNet, except without having a factored task and can be considered as a
deeper version of ENet [30]. This baseline is constructed from the same number of modular
components as the Factored ConvNet and has similar number of parameters.1 For details of
the baseline architecture a diagram is shown in Figure 4(a).

Evaluation metrics. Segmentation performance is scored by measuring mean per-class
pixel-classification accuracy and also mean per-class intersection over union (IOU). On
Unite the People, these scores are shown as averages over left-right body parts. On the
YouTube pose experiment, segmentation accuracy cannot be scored directly as no ground
truth labels are available for this task. Instead we measure performance indirectly by infer-
ring body joint locations from predicted class labels and calculating their distance to ground

1A few extra parameters are used in the Factored ConvNet for computing the factored task prediction (1×1)
convolution and also in the concat block (see Figure 2) used by the aggregation module.
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Method FCN [25] ENet [29] Baseline Factored ConvNet Transfered
Mean class accuracy (%) 59.7 28.0 68.9 69.0 71
Mean class IOU 0.43 0.13 0.41 0.39 0.48

Table 1: Comparison on Freiburg Sitting People [30]. The Factored ConvNet performs favorably
against the state-of-the-art. When transfered to this new domain (using only human silhouettes) the
Factored ConvNet (Transfered) outperforms all networks.
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Figure 5: Unite the People S31 experiment. (a) Improved performance of Factored ConvNet over
Baseline ConvNet when GT background silhouettes are provided by direct injection (b) Performance
curves showing improvement over body part classes (all classes shown in supplementary material)
when GT background silhouettes are used during factor fine-tuning.

truth body joint annotation (which is available). Centre of mass for wrist, elbow, shoulder,
and combined top/bottom head segments are used to obtain 7 body joint estimates.

Experiment 1: State-of-the-art vs Factored. On the FPS testing data, mean pixel classi-
fication accuracy and IOU (not including background) of the Factored ConvNet, FCN [25],
our implementation of ENet [30] and the baseline is shown in Table 1. Note, all networks
were trained on Unite the People, other than the FCN which was fine-tuned by [29] on the
train set of FSP. Performance charts showing IOU on Unite the People is shown in Fig-
ure 4(c). Both the baseline and Factored ConvNet perform similarly well with mean per
class pixel accuracy of 44% and 43% respectively, with ENet falling behind at 28%. The
Factored ConvNet performs favourably against all networks, and illustrates factoring is not
detrimental to accuracy, yet also provides benefits which we show next.

Experiment 2: Direct injection. Here we test the degree of performance boosting capable
by the Factored ConvNet on it’s main task, when only improving performance of the factored
module on the factored task. An upper bound is obtained by providing the network with GT
silhouettes on testing images using the method of direct injection (see Section 4). For com-
parison to the baseline method, when maximizing over the baseline’s softmax layer, GT test-
ing silhouettes are used to boost it’s performance by hard constraining pixels to be either one
of 31 foreground classes or background. Figure 5(a) shows the benefits of factorization, with
IOU of the Factored ConvNet overtaking the baseline across all body parts. This indicates
the aggregation module is correctly reasoning about GT silhouette shape when making body
part class prediction, rather than merely suppressing erroneous background confidences, as
is only capable by a model which has no obvious insertion for sub-task knowledge. This
effect is highlighted more so in the next experiment.

Experiment 3: Simulated occlusions. Situations where body part detection is difficult
compared with f/b segmentation can occur in many real-life scenarios, poor lighting on the
human body but uniform background, grainy video but where motion can be used for f/b
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Method BG Hnds Wrst Larm Elbw Uarm Shldr Chst Plvs Thgh Kne Shn Ankl Ft T-Hd B-Hd Nck
Orig 96.5 22.8 8.2 41.5 41.3 47.3 48.3 59.9 58.3 54.7 47.9 49.1 28.5 16.7 22.8 8.2 41.5
Tran-Init 96.6 24.8 9.0 43.1 42.7 49.3 49.6 61.2 57.6 54.5 46.3 46.0 26.0 13.7 24.8 9.0 43.1
Tran-Grab 93.3 36.0 9.0 46.9 45.9 51.1 53.4 63.8 60.6 57.3 50.8 52.0 29.0 23.6 36.0 9.0 46.9

Table 2: Semi-supervised domain transfer to Unite the People S31. Pixel classification accuracy
shown.
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(a) (b)
Figure 6: Simulated occlusion experiment. Mean per-class IOU of Baseline and Factored ConvNet
under simulated occlusion when (a) GT background silhouettes are not provided and (b) when GT
background silhouettes are provided, notice the large improvement gains over Baseline when better
background silhouettes are available.

subtraction or domains where there is more training data for the f/b subtraction task. Here
we simulate difficult body part detection by occluding body parts (in test images) with a
randomly placed black box (see Figure 4(b)), and ensure easy f/b segmentation by providing
the baseline and Factored ConvNets with GT silhouettes (as in Experiment 2). Mean IOU
over classes before GT silhouettes are provided is shown in Figure 6(a), both models perform
equally. Once GT is provided, both models improve, but huge gains in IOU from the Fac-
tored ConvNet over the baseline is observed across all body part classes (see Figure 6(a)).
This clearly demonstrates the ability of the aggregation module to correctly attend to the
signal from the f/b segmentation task. Qualitative performance is as equally compelling,
figure 4(b) shows example testing images and model outputs before and after GT silhouettes
are provided. The baseline model, even when given GT silhouettes, has no chance of re-
covery as image features are no longer useful. On the other hand, the Factored ConvNet,
which has been trained to interpret the silhouette, can successfully recover. Experiments 2
and 3, thus suggests swapping out the factored module for better trained or other types of f/b
segmentation nets or methods will lead to improved performance on the main task.

Experiment 4: Supervised domain transfer. Using the method of factor fine-tuning the
Factored ConvNet can be transfered from the training set to the testing set. Different to direct
injection of GT silhouettes (which are perfect), the response of the factored module will alter
slightly during training. Figure 5(b) shows the robustness of the aggregation module to the
effects of fine-tuning, and demonstrates smooth improvements in body part segmentation as
f/b segmentation becomes better. In this manner, we also transfer the Factored ConvNet to
the FSP dataset using only f/b segmentation of training images. Results of this ‘Transfered’
model are shown in table 1 improving on the state-of-the-art and baseline.

Experiment 5: Semi-supervised domain transfer. Using the semi-supervised method
detailed in Section 4, we transfer the Factored ConvNet from the train set to the test set of
Unite the People. The factored module is fine-tuned for one epoch through the testing data.
Table 2 shows pixel-wise classification accuracy before (Orig) and after (Tran-Grab) domain
transfer. We also tested factor fine-tuning on initial silhouette predictions (Tran-Init) from
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(a) YouTube Pose (b) Unite the People S31

Figure 7: Qualitative examples on Youtube Pose videos and Unite the people S31 test set. (a) Mid-
dle row is by non-personalized Factored ConvNet, bottom row is by personalized Factored ConvNet.
(b) Columns 2 and 5 are ground truth, while columns 3 and 6 are by standard Factored ConvNet.

Method Head Wrists Elbows Shoulders
Non-personalized Factored ConvNet 9.1 15.4 23.5 12.8
Personalized Factored ConvNet 9.1 12.6 17.3 9.6

Table 3: Body joint estimation on YouTube videos. Average pixel distance from ground truth for
body joint estimates (averaged over all videos and test frames, 500 frames in total), smaller is better.

the factored module on the test set (without Grabcut [32] refinement) . This also leads to
some body part prediction improvements, but less so than when initializing with Grabcut.

Experiment 6: Personalization to YouTube. For each video, within a window of 301
frames around one testing frame, initial f/b segmentation labels are computed by the fac-
tored module (abitrarily, the closest test frame to the half-way point of the video is chosen).
Label propagation [4] is applied to frames only within this window. The Factored Con-
vNet is personalized to each testing video separately using labels from only this window of
301 frames. During testing it is applied to all 100 test frames throughout the whole video.
Quantitative results in table 3 show improvement from personalizing over all body joints.
Qualitative results (see Figure 7(a)), shows personalization now recovers hands and arms
while body part segments also fit the shape of the person better.

Model complexity. Compared to other ConvNets for segmentation, the Factored ConvNet
uses very few parameters. In fact only ~0.5 million parameters are used compared to e.g.
FCN [25] of ~136 million. At test time the network can process each frame live through a
webcam at ~11fps (inclusive of rendering in MATLAB) or ~120fps in batchmode on a Titan
XP GPU.

6 Summary and future work.
Factored ConvNets are proposed for extracting X factors which are localized sub-nets per-
forming known sub-tasks, such as edge detection or background removal. Under the appli-
cation of human parsing (segmentation into 31 body parts), we show how one can build a
real-time Factored ConvNet with a foreground/background (f/b) segmentation X factor, lead-
ing to ease of domain transfer, personalization and leveraging of extra silhouette training data
to improve body part classification. The X factor was shown to be modular and replaceable
with other f/b segmentation algorithms. Adding other X factors to the model such as human
pose estimation or even factors with relatively small training material (e.g. skin detection or
optical flow), would likely bring benefits and we leave this for future studies.
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