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Abstract

Numerous deep learning applications benefit from multi-task learning with multiple
regression and classification objectives. In this paper we make the observation that
the performance of such systems is strongly dependent on the relative weighting
between each task’s loss. Tuning these weights by hand is a difficult and expen-
sive process, making multi-task learning prohibitive in practice. We propose a
principled approach to multi-task deep learning which weighs multiple loss func-
tions by considering the homoscedastic uncertainty of each task. This allows us
to simultaneously learn various quantities with different units or scales in both
classification and regression settings. We demonstrate our model learning per-pixel
depth regression, semantic and instance segmentation from a monocular input
image. Perhaps surprisingly, we show our model can learn multi-task weightings
and outperform separate models trained individually on each task.

1 Introduction

Multi-task learning aims to improve learning efficiency and prediction accuracy by learning multiple
objectives from a shared representation [1]]. Multi-task learning is prevalent in many applications of
machine learning — from computer vision [2] to natural language processing [3] to speech recognition

[4].

We explore multi-task learning within the setting of visual scene understanding in computer vision.
Scene understanding algorithms must understand both the geometry and semantics of the scene at
the same time. This forms an interesting multi-task learning problem because scene understanding
involves joint learning of various regression and classification tasks with different units and scales.
Multi-task learning of visual scene understanding is of crucial importance in systems where long
computation run-time is prohibitive, such as the ones used in robotics. Combining all tasks into a
single model reduces computation and allows these systems to run in real-time.

Prior approaches to simultaneously learning multiple tasks use a naive weighted sum of losses, where
the loss weights are uniform, or manually tuned [2, 5} [6]. However, we show that performance is
highly dependant on an appropriate choice of weighting between each task’s loss. Searching for
an optimal weighting is prohibitively expensive and difficult to resolve with manual tuning. We
observe that the optimal weighting of each task is dependant on the measurement scale (e.g. meters,
centimetres or millimetres) and ultimately the magnitude of the task’s noise. In this work we propose a
principled way of combining multiple loss functions to simultaneously learn multiple objectives using
homoscedastic uncertainty. We interpret homoscedastic uncertainty as task-dependant weighting
and show how to derive a principled multi-task loss function which can learn to balance various
regression and classification losses. Our method can learn to balance these weightings optimally,
resulting in superior performance, compared with learning each task individually.

Specifically, we demonstrate our method in learning scene geometry and semantics with three tasks.
Firstly, we learn to classify objects at a pixel level, also known as semantic segmentation [[7H11]].
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Figure 1: Multi-task deep learning. We derive a principled way of combining multiple regression and
classification loss functions for multi-task learning. Our architecture takes a single monocular RGB image as
input and produces a pixel-wise classification, an instance semantic segmentation and an estimate of per pixel
depth. Multi-task learning can improve accuracy over separately trained models because cues from one task,
such as depth, are used to regularize and improve the generalization of another domain, such as segmentation.

Secondly, our model performs instance segmentation, which is the harder task of segmenting separate
masks for each individual object in an image (for example, a separate, precise mask for each individual
car on the road) [12H15]]. This is a more complicated task than semantic segmentation, as it requires
not only an estimate of each pixel’s class, but also which object that pixel belongs to. It is also more
complicated than object detection, which often predicts object bounding boxes alone [16]. Finally,
our model predicts pixel-wise metric depth. Depth by recognition has been demonstrated using dense
prediction networks with supervised [6] and unsupervised [[17] deep learning. However it is very hard
to estimate depth in a way which generalises well. We show that we can improve our estimation of
geometry and depth by using semantic labels and multi-task deep learning.

In existing literature, separate deep learning models would be used to learn depth regression, semantic
segmentation and instance segmentation to create a complete scene understanding system. Given a
single monocular input image, our system is the first to produce a semantic segmentation, a dense
estimate of metric depth and an instance level segmentation jointly (Figure[I). While other vision
models have demonstrated multi-task learning, we show how to learn to combine semantics and
geometry. Combining these tasks into a single model ensures that the model agrees between the
separate task outputs while reducing computation. Finally, we show that using a shared representation
with multi-task learning improves performance on various metrics, making the models more effective.

In summary, the key contributions of this paper are:

1. a novel and principled multi-task loss to simultaneously learn various classification and
regression losses of varying quantities and units using homoscedastic task uncertainty,

2. aunified architecture for semantic segmentation, instance segmentation and depth regression,

3. demonstrating the importance of loss weighting in multi-task deep learning and how to
obtain superior performance compared to equivalent separately trained models.

2 Related Work

Multi-task learning aims to improve learning efficiency and prediction accuracy for for each task,
when compared to training the models separately [18} [19]. It can be considered an approach to
inductive knowledge transfer which improves generalisation by sharing the domain information
between complimentary tasks. It does this by using a shared representation to learn multiple tasks —
what is learned from one task can help other tasks be learned better [[1]].

Fine-tuning [20} 21]] is a basic example of multi-task learning, where we can leverage different
learning tasks by considering them as a pre-training step. Other models alternate learning between
each training task, for example in natural language processing [3]. Multi-task learning can also be
used in a data streaming setting [[18], or to prevent forgetting previously learned tasks in reinforcement



learning [22]]. It can also be used to learn unsupervised features from various data sources with an
auto-encoder [23]].

In computer vision there are many examples of methods for multi-task learning. Many focus on
semantic tasks, such as classification and semantic segmentation [24]] or classification and detection
[S]. MultiNet [25]] proposes an architecture for detection, classification and semantic segmentation.
CrossStitch networks [26]] explore methods to combine multi-task neural activations. Uhrig et al. [27]]
learn semantic and instance segmentations under a classification setting. Multi-task deep learning has
also been used for geometry and regression tasks. Eigen and Fergus [6] show how to learn semantic
segmentation, depth and surface normals. PoseNet [28] is a model which learns camera position and
orientation. UberNet [2] learns a number of different regression and classification tasks under a single
architecture. In this work we are the first to propose a method for jointly learning depth regression,
semantic and instance segmentation. Like the model of Eigen and Fergus [6], our model learns
both semantic and geometry representations, which is important for scene understanding. However,
our model learns the much harder task of instance segmentation which requires knowledge of both
semantics and geometry. This is because our model must determine the class and spatial relationship
for each pixel in each object for instance segmentation.

More importantly, all previous methods which learn multiple tasks simultaneously use a naive
weighted sum of losses, where the loss weights are uniform, or crudely and manually tuned. In
this work we propose a principled way of combining multiple loss functions to simultaneously
learn multiple objectives using homoscedastic task uncertainty. We illustrate the importance of
appropriately weighting each task in deep learning to achieve good performance and show that our
method can learn to balance these weightings optimally.

3 Multi Task Learning with Homoscedastic Uncertainty

Multi-task learning concerns the problem of optimising a model with respect to multiple objectives.
It is prevalent in many deep learning problems. The naive approach to combining multi objective
losses would be to simply perform a weighted linear sum of the losses for each individual task:

Liotar = Y wiL;. )

This is the dominant approach used by prior work [5} 24, 25| 277]], for example for dense prediction
tasks [2], for scene understanding tasks [6] and for rotation (in quaternions) and translation (in
meters) for camera pose [28]]. However, there are a number of issues with this method. Namely,
model performance is extremely sensitive to weight selection, wj, as illustrated in Figure 2] These
weight hyper-parameters are expensive to tune, often taking many days for each trial. Therefore, it is
desirable to find a more convenient approach which is able to learn the optimal weights.

More concretely, let us consider a network which learns to predict pixel-wise depth and semantic
class from an input image. In Figure [2| the two boundaries of each plot show models trained on
individual tasks, with the curves showing performance for varying weights w; for each task. We
observe that at some optimal weighting, the joint network performs better than separate networks
trained on each task individually (performance of the model in individual tasks is seen at both edges
of the plot: w = 0 and w = 1). At near-by values to the optimal weight the network performs worse
on one of the tasks. However, searching for these optimal weightings is expensive and increasingly
difficult with large models with numerous tasks. We next show how to learn optimal task weightings
using ideas from probabilistic modelling. Additionally, we show a similar result for two regression
tasks; instance segmentation and depth regression.

3.1 Homoscedastic uncertainty as task-dependant uncertainty
In Bayesian modelling, there are two main types of uncertainty one can model [29].
e Epistemic uncertainty is uncertainty in the model, which captures what our model doesn’t

know due to lack of training data. It can be explained away with increased training data.

e Aleatoric uncertainty captures our uncertainty with respect to information which our data
cannot explain. Aleatoric uncertainty can be explained away with the ability to observe all
explanatory variables with increasing precision.
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Figure 2: Learning multiple tasks improves the model’s representation and individual task performance.
These figures and tables illustrate the advantages of multi-task learning for (a) semantic classification and depth
regression and (b) instance and depth regression. Performance of the model in individual tasks is seen at both
edges of the plot where w = 0 and w = 1. For some balance of weightings between each task, we observe
improved performance for both tasks. All models were trained with a learning rate of 0.01 with the respective
weightings applied to the losses using the loss function in (). Results are shown using the Tiny CityScapes
validation dataset using a down-sampled resolution of 128 x 256.

Aleatoric uncertainty can again be divided into two sub-categories.

e Data-dependant or Heteroscedastic uncertainty is aleatoric uncertainty which depends on
the input data and is predicted as a model output.

o Task-dependant or Homoscedastic uncertainty is aleatoric uncertainty which is not dependant
on the input data. It is not a model output, rather it is a quantity which stays constant for all
input data and varies between different tasks. It can therefore be described as task-dependant
uncertainty.

In a multi-task setting, we show that the task uncertainty captures the relative confidence between
tasks, reflecting the uncertainty inherent to the regression or classification task. It will also depend on
the task’s representation or unit of measure. We propose that we can use homoscedastic uncertainty
as a basis for weighting losses in a multi-task learning problem.

3.2 Multi-task likelihoods

In this section we derive a multi-task loss function based on maximising the Gaussian likelihood with
homoscedastic uncertainty. Let fW (x) be the output of a neural network with weights W on input
x. We define the following probabilistic model. For regression tasks we define our likelihood as a
Gaussian with mean given by the model output:

p(IEY (%)) = N (EW (x),0?) 2)



with an observation noise scalar o. For classification we often squash the model output through a
softmax function, and sample from the resulting probability vector:

p(yIEW (x)) = Softmax(f" (x)). 3)

In the case of multiple model outputs, we often define the likelihood to factorise over the outputs,
given some sufficient statistics. We define fWV (x) as our sufficient statistics, and obtain the following
multi-task likelihood:

P(y1s - Y& [EY (%)) = p(y1 [V (x))--p(y e [V (x)) )

with model outputs y1, ..., Y x (such as semantic segmentation, depth regression, etc).

In maximum likelihood inference, we maximise the log likelihood of the model. In regression, for
example, the log likelihood can be written as

1
log p(y[f* (x)) o =5 ly = £ (x)[* ~ log o (5)

for a Gaussian likelihood (or similarly for a Laplace likelihood) with o the model’s observation noise
parameter — capturing how much noise we have in the outputs. We then maximise the log likelihood
with respect to the model parameters W and observation noise parameter o.

Let us now assume that our model output is composed of two vectors y; and y2, each following a
Gaussian distribution:

py1,y2lfV (%)) = p(y1 |V (%) - p(y2 £V (%)) ©6)
= Ny %V (x),07) - N(y2 7V (x),03).
This leads to the following minimisation objective (our loss) for our multi-output model:
L(W,01,02) = —logp()’h}’ﬂfw(x))
1 w 2 1 W 2 2 2
OCEHYl_f (X)H —"_@Hy?_f (X)H +1Og0102 (7)
1

1
= Eﬁl(W) + EﬁQ(W) +logoios

Where we wrote £1(W) = ||y1 — £W(x)||? for the loss of the first output variable, and similarly for
L2(W).

We interpret minimising this last objective with respect to o; and o5 as learning the relative weight
of the losses £1 (W) and L£5(W) adaptively, based on the data. As o1 — the noise parameter for the
variable y; — increases, we have that the weight of £; (W) decreases. On the other hand, as the noise
decreases, we have that the weight of the respective objective increases. The noise is discouraged
from increasing too much (effectively ignoring the data) by the last term in the objective, which acts
as a regulariser for the noise terms.

This construction can be trivially extended to multiple regression outputs. However, the extension
to classification likelihoods is more interesting. We adapt the classification likelihood to squash a
scaled version of the model output through a softmax function:

PYIEY (), ) = Softmax (1% (x)) ®

with a positive scalar o. The log likelihood for this output can then be written as
1 1
_ fW _ w Z w
logp(y - C|f (X)v U) - o2 fc (X) - log / €xXp <O‘2 c’ (X)) (9)

with fW (x) the ¢’th element of the vector W (x).

Next, assume that a model’s multiple outputs are composed of a continuous output y; and a discrete
output y2, modelled with a Gaussian likelihood and a softmax likelihood, respectively. Like before,



the joint loss is given as:

L(W,01,09) = —logp(y1,y2 = c|fW (x))
—log N (y1; £V (x), 0%) - Softmax(ys = ¢; £V (x), 09)

1
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1
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where again we write £1(W) = ||y; — fW(x)||? for the Euclidean loss of y;, write Lo(W) =
— log Softmax (y2, fW (x)) for the cross entropy loss of y» (with fW (x) not scaled), and optimise
with respect to W as well as 0}, 0. In the last transition we introduced the explicit simplifying

1
o3
assumption % > . €Xp <12 C‘fv(x)> ~ ( > o €XP ( C‘,"’(x))) which becomes an equality
2 g 2 g

when 02 — 1. This has the advantage of simplifying the optimisation objective, as well as empirically
improving results.

This last objective can be seen as learning the relative weights of the losses for each output. Large
scale values oo will decrease the contribution of £o(W), whereas small scale oo will increase its
contribution. The scale is regulated by the last term in the equation. The objective is penalised when
setting o5 too large (with the last term contributing a constant value log C' — with C classes — to the
loss).

The multi-task objective with homoscedastic task uncertainty now becomes:

1
C(W,O’l,O'Q,...7Ji) :Z:EEZ(W)-FIOgUf (11)
over all tasks indexed by i. Again, we write £;(W) = |ly; — fW(x)||? for regression losses y;,
and £;(W) = — log Softmax (y;, fW (x)) for classification losses. This construction can be trivially

extended to arbitrary combinations of discrete and continuous variables, allowing us to learn the
relative weights of each loss in a principled and well-founded way. This loss is smoothly differentiable,
and is well formed such that the task weights will not converge to zero. In contrast, directly learning
the weights using a simple linear sum of losses (1) would result in weights which quickly converge to
zero. In the following sections we introduce our experimental model and present empirical results.

4 Scene Understanding Model

To understand semantics and geometry we first propose an architecture which can learn regression
and classification outputs, at a pixel level. Our architecture is a deep convolutional encoder decoder
network [8]. Our model consists of a number of convolutional encoders which produce a shared
representation, followed by a corresponding number of task-specific convolutional decoders. A high
level summary is shown in Figure [I|and additional model details are explained in Appendix [A] Our
encoder is based on ResNet-101 [30] (without the final fully connected layer). We then split the
2048 dimensional shared feature representation into individual decoders for each task. Each decoder
consists of three convolutional layers for each task.

Semantic Segmentation. We use the cross-entropy loss to learn pixel-wise class probabilities,
averaging the loss over the pixels with semantic labels in each mini-batch.

Instance Segmentation. An intuitive method for defining which instance a pixel belongs to is an
association to the instance’s centroid. We use a regression approach for instance segmentation [31]].
This approach is inspired by [32] which identifies instances using Hough votes from object parts. In
this work we extend this idea by using votes from individual pixels using deep learning. We learn an



Task Weights Classification Instance Inverse Depth

Loss Cls. Inst.  Depth IoU [%] RMS Error [px] | RMS Error [px]
Class only 1 0 0 43.1% - -
Instance only 0 1 0 - 4.61 -

Depth only 0 0 1 - - 0.783
Unweighted sum of losses | 0.333  0.333  0.333 |  43.6% | 3.92 | 0.786
Approx. optimal weights | 0.8 005 0.15 | 463% | 3.92 | 0.799

2 task uncertainty weighting v v 46.5% 3.73 -

2 task uncertainty weighting v v 46.2% - 0.714

2 task uncertainty weighting v v - 4.06 0.744

3 task uncertainty weighting | v/ v v | 46.6% | 391 | 0.702

Table 1: Quantitative improvement when learning semantic segmentation, instance segmentation and depth with
our multi-task loss. Experiments were conducted on the Tiny CityScapes dataset, sub-sampled to a resolution
of 256x512, results are shown from the validation set. We observe an improvement in performance when
training with our multi-task loss, over both single-task models and weighted losses. Additionally, we observe
an improvement when training on all three tasks (3 x v') using our multi-task loss, compared with all pairs of
tasks alone (denoted by 2 x v'). This shows that our loss function can automatically learn an better performing
weighting between the tasks.

instance vector, &, for each pixel coordinate, c,,, which points to the centroid of the pixel’s instance,
in, such that ¢, = &,, + ¢,,. We train this regression with an L, loss using ground truth labels z,,
averaged over all labelled pixels, Ny, in a mini-batch: Ly, stance = ﬁ > Ny |lzn — Znll;. An

illustrated example is given in Appendix

To obtain segmentations for each instance, we now need to estimate the instance centres, in. We
propose to consider the estimated instance vectors, ,,, as votes in a Hough parameter space and use
a clustering algorithm to identify these instance centres. OPTICS [33]], is an efficient density based
clustering algorithm. It is able to identify an unknown number of multi-scale clusters with varying
density from a given set of samples. We chose OPICS for two reasons. Crucially, it does not assume
knowledge of the number of clusters like algorithms such as k-means [34]. Secondly, it does not
assume a canonical instance size or density like discretised binning approaches [35]]. Using OPTICS,
we cluster the points ¢,, + &, into a number of estimated instances, 7. We can then assign each pixel,
P, to the instance closest to its estimated instance vector, ¢,, + Z,.

Depth Regression. We train with supervised labels using pixel-wise metric inverse depth using a

Ly loss function: Lpepen, = INilol > Np ’ d, — d;,H . Our architecture estimates inverse depth, cin,

because it can represent points at infinite distance (such as sky). We can obtain inverse depth labels,
d,, from a RGBD sensor or stereo imagery. Pixels which do not have an inverse depth label are
ignored in the loss.

5 Experiments

We demonstrate the efficacy of our method on CityScapes [36], a large dataset for road scene
understanding. It comprises of stereo imagery, from automotive grade stereo cameras with a 22cm
baseline, labelled with instance and semantic segmentations from 20 classes. Depth images are also
provided, labelled using SGM [37]], which we treat as ground truth. Additionally, we assign zero
inverse depth to pixels labelled as sky. The dataset was collected from a number of cities in fine
weather and consists of 3,250 training and 750 validation images at 2048 x 1024 resolution. 1,000
images are used for testing on an online evaluation server.

5.1 Model Evaluation

In Table (1| we compare individual models to multi-task learning models using a naive weighted loss
or the task uncertainty weighting we propose in this paper. To reduce the computational burden, we
train each model at a reduced resolution of 128 x 256 pixels. This clearly illustrates the benefit of
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Figure 3: Qualitative results for multi-task learning of geometry and semantics for road scene under-
standing. Results are shown on test images from the CityScapes dataset using our multi-task approach with a
single network trained on all tasks. We observe that multi-task learning improves the smoothness and accuracy
for depth perception because it learns a representation that uses cues from other tasks, such as segmentation (and
vice versa).

multi-task learning, which obtains significantly better performing results than individual task models.
For example, using our method we improve classification results from 43.1% to 46.6%.

We also compare to a number of naive multi-task losses. We compare weighting each task equally
and using approximately optimal weights. Using a uniform weighting results in poor performance, in
some cases not even improving on the results from the single task model. Obtaining approximately
optimal weights is difficult with increasing number of tasks as it requires an expensive grid search
over parameters. However, even these weights perform worse compared with our proposed method.
Figure [2] shows that using task uncertainty weights can even perform better compared to optimal
weights found through fine-grained grid search. We believe that this is due to two reasons. First, grid
search is restricted in accuracy by the resolution of the search. Second, optimising the task weights
using a homoscedastic noise term allows for the weights to be dynamic during training. In general, we
observe that the uncertainty term decreases during training which improves the optimisation process.

This loss is also robust to the value we use to initialise the weights. In Appendix [B]we show with any
reasonable initialisation of log o from —2.0 to 5.0, the homoscedastic uncertainty terms converge
to the same value after 100 training iterations. This is significantly less than the 30,000 training
iterations for the network. Therefore our model is robust to the choice of initial value for the weighting
terms. Interestingly, we observe that this loss allows the network to dynamically tune the weighting.
Typically, the homoscedastic noise terms decrease in magnitude as training progresses.

6 Conclusions

We have shown that correctly weighting loss terms is of paramount importance for multi-task learning
problems. We demonstrated that homoscedastic (task) uncertainty is an effective way to weight losses.
We derived a principled loss function which can learn a relative weighting automatically from the
data and is robust to the weight initialization. We showed that this can improve performance for scene
understanding tasks with a unified architecture for semantic segmentation, instance segmentation and
per-pixel depth regression. We demonstrated modelling task-dependant homoscedastic uncertainty
improves the model’s representation and each task’s performance when compared to separate models
trained on each task individually.

An interesting question left unanswered is where the optimal location is for splitting the shared
encoder network into separate decoders for each task? And, what network depth is best for the shared
multi-task representation?
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A Scene Understanding Model Details

The purpose of the encoder is to learn a deep mapping to produce rich, contextual features, using
domain knowledge from a number of related tasks. Our encoder is based on ResNet-101 [30] (without
the final fully connected layer). We apply this encoder in a convolutional manner over the input
image, which results in a 2048 dimensional shared feature representation. Inspired by the dilated
convolutional approach of [38]], this encoder feature map is sub-sampled by a factor of 8 compared to
the input image dimensions.

We then split the network into separate decoders (with separate weights) for each task. The purpose
of the decoder is to learn a mapping from the shared features to an output. Each decoder consists of
three convolutional layers with kernel size 3 x 3,1 x 1 and 1 X 1 respectively, and feature size 512,
512 and the number of output dimensions respectively.

B Training Convergence Results

One of the attractive properties of our approach to weighting multi-task losses is that it is robust to
the initialisation choice for the homoscedastic noise parameters. Figure ] shows that for an array of
initial choices of log 2 from —2.0 to 5.0 the homoscedastic noise and task loss is able to converge
to the same minima. Additionally, the homoscedastic noise terms converges after only 100 iterations,
while the network requires 30, 000+ iterations to train.
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(c) Depth regression task

Figure 4: Training plots showing convergence of homoscedastic noise and task loss for an array of initial-
isation choices for the homoscedastic uncertainty terms for all three tasks. The left plot shows that the loss
converges to the same minimum from varying initialisation choices. The centre plot shows the the homoscedastic
noise value optimises to the same solution from a variety of initialisations. The plots on the right show a zoomed
in view of the homoscedastic noise plot, showing the initialisation and convergence over a few hundred training
iterations. Despite the network taking 10, 000+ iterations for the training loss to converge, the task uncertainty
converges very rapidly after only 100 iterations.



C Instance Segmentation Parametrisation with Centroid Vectors

Figure [3 details the representation we use for instance segmentation. Figure [5[a) shows the input
image and a mask of the pixels which are of an instance class (at test time inferred from the predicted
semantic segmentation). Figure[5|b) and Figure[5|c) show the ground truth and predicted instance
vectors for both x and y coordinates. We then cluster these votes using OPTICS [33]], resulting in the
predicted instance segmentation output in Figure Ekd).

- - .
- “-_...

(a) Input Image and Mask (b) Instance Labels (c) Model Prediction (d) Segmentation Output

Figure 5: Instance centroid regression training data. For each pixel, we regress a vector pointing to the
instance’s centroid. The loss is computed with the mask, and = and y instance centroid vectors.

One of the most difficult cases for instance segmentation algorithms to handle is when the instance
mask is split due to occlusion. Figure [6| shows that our method can handle these situations, by
allowing pixels to vote for their instance centroid with geometry. Methods which rely on watershed
approaches [[13]], or instance edge identification approaches fail in these scenarios.

il A

(a) Input Image (b) Instance Segmentation

Figure 6: This example shows two cars which are occluded by trees and lampposts, making the instance
segmentation challenging. Our instance segmentation method can handle occlusions effectively. We can
correctly handle segmentation masks which are split by occlusion, yet part of the same instance, By incorporating
semantics and geometry.
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D Further Qualitative Results

RARL " |

|

(a) Input image (b) Segmentation output (c) Instance output (d) Depth output

Figure 7: More qualitative results on test images from the CityScapes dataset.
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