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Abstract— While most approaches to semantic reasoning
have focused on improving performance, in this paper we argue
that computational times are very important in order to enable
real time applications such as autonomous driving. Towards this
goal, we present an approach to joint classification, detection
and semantic segmentation via a unified architecture where the
encoder is shared amongst the three tasks. Our approach is
very simple, can be trained end-to-end and performs extremely
well in the challenging KITTI dataset. Our approach is also
very efficient, allowing us to perform inference at more then
23 frames per second.

Training scripts and trained weights to reproduce
our results can be found here: https://github.com/
MarvinTeichmann/MultiNet

I. INTRODUCTION

Current advances in the field of computer vision have

made clear that visual perception is going to play a key role

in the development of self-driving cars. This is mostly due to

the deep learning revolution which begun with the introduc-

tion of AlexNet in 2012 [29]. Since then, the accuracy of new

approaches has been increasing at a vertiginous rate. Causes

of this are the existence of more data, increased computation

power and algorithmic developments. The current trend is to

create deeper networks with as many layers as possible [22].

While performance is already extremely high, when deal-

ing with real-world applications, running times becomes

important. New hardware accelerators as well as compres-

sion, reduced precision and distillation methods have been

exploited to speed up current networks.

In this paper we take an alternative approach and design

a network architecture that can very efficiently perform

classification, detection and semantic segmentation simulta-

neously. This is done by incorporating all three task into a

unified encoder-decoder architecture. We name our approach

MultiNet.

The encoder is a deep CNN, producing rich features that

are shared among all task. Those features are then utilized

by task-specific decoders, which produce their outputs in

real-time. In particular, the detection decoder combines the

fast regression design introduced in Yolo [45] with the size-

adjusting ROI-align of Faster-RCNN [17]and Mask-RCNN

[21], achieving a better speed-accuracy ratio.

Fig. 1: Our goal: Solving street classification, vehicle detec-

tion and road segmentation in one forward pass.

We demonstrate the effectiveness of our approach in the

challenging KITTI benchmark [15] and show state-of-the-

art performance in road segmentation. Importantly, our ROI-

align implementation can significantly improve detection

performance without requiring an explicit proposal gener-

ation network. This gives our decoder a significant speed

advantage compared to Faster-RCNN [46]. Our approach is

able to benefit from sharing computations, allowing us to

perform inference in less than 45 ms for all tasks.

All our code and trained weights to reproduce our re-

sults is released on Github: https://github.com/

MarvinTeichmann/MultiNet

II. RELATED WORK

In this section we review current approaches to the

tasks that MultiNet tackles, i.e., detection, classification and

semantic segmentation. We focus our attention on deep

learning based approaches.

a) Classification:: After the development of AlexNet

[29], most modern approaches to image classification utilize

deep learning. Residual networks [22] constitute the state-

of-the-art, as they allow to train very deep networks without

problems of vanishing or exploding gradients. In the context

of road classification, deep neural networks are also widely

employed [37]. Sensor fusion has also been exploited in this

context [50]. In this paper we use classification to guide other

semantic tasks, i.e., segmentation and detection.

b) Detection:: Traditional deep learning approaches to

object detection follow a two step process, where region

proposals [31], [25], [24] are first generated and then scored

using a convolutional network [18], [46]. Additional perfor-

mance improvements can be gained by using convolutional
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Fig. 2: MultiNet architecture.

neural networks (CNNs) for the proposal generation step

[10], [46] or by reasoning in 3D [6], [5]. Recently, several

methods have proposed to use a single deep network that

is trainable end-to-end to directly perform detection [51],

[33], [54], [33]. Their main advantage over proposal-based

methods is that they are much faster at both training and

inference time, and thus more suitable for real-time detection

applications. However, so far they lag far behind in per-

formance. In this paper we propose an end-to-end trainable

detector which reduces significantly the performance gap. We

argue that the main advantage of proposal-based methods is

their ability to have size-adjustable features. This inspired

our ROI pooling implementation.

c) Segmentation:: Inspired by the successes of deep

learning, CNN-based classifiers were adapted to the task of

semantic segmentation. Early approaches used the inherent

efficiency of CNNs to implement implicit sliding-window

[19], [32]. FCN were proposed to model semantic segmen-

tation using a deep learning pipeline that is trainable end-

to-end. Transposed convolutions [59], [9], [26] are utilized

to upsample low resolution features. A variety of deeper

flavors of FCNs have been proposed since [1], [40], [47],

[42]. Very good results are achieved by combining FCN

with conditional random fields (CRFs) [61], [3], [4]. [61],

[49] showed that mean-field inference in the CRF can be

cast as a recurrent net allowing end-to-end training. Dilated

convolutions were introduced in [57] to augment the recep-

tive field size without losing resolution. The aforementioned

techniques in conjunction with residual networks [22] are

currently the state-of-the-art.

d) Multi-Task Learning:: Multi-task learning tech-

niques aim at learning better representations by exploiting

many tasks. Several approaches have been proposed in the

context of CNNs [36], [34]. An important application for

multi-task learning is face recognition [60], [56], [44].

Learning semantic segmentation in order to perform de-

tection or instance segmentation as been studied [16], [7],

[43]. In those systems, the main goal is to perform an

instance level task. Semantic annotation is only viewed as an

intermediate result. Systems like [51], [55] and many more

design one system which can be fine-tuned to perform tasks

like classification, detection or semantic segmentation. In this

kind of approaches, a different set of parameters is learned

for each task. Thus, joint inference is not possible in this

models. The system described in [20] is closest to our model.

However this system relies on existing object detectors and

does not fully leverage the rich features learned during

segmentation for both tasks. To the best of our knowledge

our system is the first one proposed which is able to do this.

III. MULTINET FOR JOINT SEMANTIC REASONING

In this paper we propose an efficient and effective feed-

forward architecture, which we call MultiNet, to jointly

reason about semantic segmentation, image classification and

object detection. Our approach shares a common encoder

over the three tasks and has three branches, each implement-

ing a decoder for a given task. We refer the reader to Fig. 2

for an illustration of our architecture. MultiNet can be trained

end-to-end and joint inference over all tasks can be done in



less than 45ms. We start our discussion by introducing our

joint encoder, follow by the task-specific decoders.

A. Encoder

The task of the encoder is to process the image and extract

rich abstract features [58] that contain all necessary informa-

tion to perform accurate segmentation, detection and image

classification. The encoder consists of the convolutional and

pooling layers of a classification network. The weights of

the encoder are initialized using the weights pre-trained on

ImageNet Classification Data [48]. As encoder any modern

classification network can be utilized. We perform experi-

ments using VGG16 [53] and ResNet [22] architectures.

We perform experiments using versions of VGG16 [58]

and ResNet [22] architectures. Our first VGG encoder uses

all convolutional and pooling layer of VGG16. but discards

the fully-connected softmax layers. We call this version

VGG-pool5, as pool5 is the last layer used from VGG16.

The second implementation only discards the final fully-

connected softmax layer. We call this architecture VGG-fc7,

as fc7 is the last layer used from VGG16. VGG-fc7 utilizes

two fully-connected layers from VGG, namely fc6 and fc7.

We replace those layers with equal 1 × 1 convolutions as

discussed in [51], [35]. This idea allows the encoder to

process images with arbitrary input size. In particular we are

not bound to the original VGG input of 224 × 224, which

would be to small to perform perception in street scenes.

For ResNet we implement the 50 and 101 layer Version

of the Network. As encoder we utilize all layers apart from

the layers fully-connected softmax.

B. Classification Decoder

We implement two classification decoders. One version

is a vanilla fully-connected layer with softmax activation.

This encoder is used in conjunction with an input size

of 224 × 224. Thus, the overall network is equal to the

original VGG or ResNet respectively, when used with the

corresponding encoder. The purpose of this encoder is to

serve as high quality baseline to show the effectiveness of

your scene classification approach. This first classification

encoder cannot be used for joint inference with segmentation

and detection. Both approaches require a larger input size.

Increasing the input size on this classification encoder how-

ever, yields into an unreasonable high amount of parameters

for the final layer.

The second classification decoder is designed to take ad-

vantage of the high resolution features our encoder generates.

In typical image classification tasks (e.g. [48], [28]) the input

features one object, usually centred prominently in the image.

For this kind of task it is reasonable to use a very small

input size. Street scenes on the other hand contain a large

amount of smaller scale objects. We argue that it is vital to

use high-resolution input in order to utilize features those

objects provide. By increasing the input size of our image

to 1248× 348, we effectively apply our feature generator to

each spatial location of the image [51], [35]. The result is

a grid of 39 × 12 features, each corresponding to a spatial

region of size 32×32 pixels. In order to utilize this features,

we first apply a 1 × 1 convolution with 30 channels. This

layer serves as BottleNeck. The main purpose is to greatly

reduce dimensionality.

C. Detection Decoder

The detection decoder is designed to be a proposal free

approach similar to Yolo and Overfeat ReInspect [54], Yolo

[45] and Overfeat [51]. By omitting and artificial proposal

generator step much faster inference can be obtained. This

is crucial towards our goal of building a real-time capable

detection system.

Proposal based detection systems have a crucial advantage

over non-proposal based. They internally rescale the rich

features utilized for detection. This makes the CNN inter-

nally invariant to scale. This is a crucial feature, as CNN

are naturally not able to generalize over different scales.

We argue, that the scale invariants is the main advantage

of proposal based systems.

Our detection decoder tries to marry the good detection

performance of proposal based detection systems with the

fast speed of non-proposal based systems. To achieve this,

we include a rescaling layer inside the decoder. The rescaling

layer consists of RoI align [21] and provides the main

advantage of proposal based systems. Unlike proposal based

systems, no non-differential operations are done and the

rescaling can be computed very efficiently.

The first step of our decoder is to produce a rough estimate

of the bounding boxes. Towards this goal, we first pass the

encoded features through a 1 × 1 convolutional layer with

500 filters, producing a tensor of shape 39×12×500. Those

features serve as bottleneck. This tensor is processed with

another 1× 1 convolutional layer which outputs 6 channels

at resolution 39 × 12. We call this tensor prediction, the

values of the tensor have a semantic meaning. The first two

channels of this tensor form a coarse segmentation of the

image. Their values represent the confidence that an object

of interest is present at that particular location in the 39×12
grid. The last four channels represent the coordinates of a

bounding box in the area around that cell. Fig. 3 shows an

image with its cells.

Those prediction are then utilized to introduce scale in-

variance. A rescaling approach, similar to the once found

in proposal based systems is applied on the initial coarse

prediction. The rescaling layer follows the RoI align strategy

of [21]. It uses however the prediction of each cell to produce

a RoI align. This makes the operation differentiable. Thus it

can be implemented inside the CNN pooling. The result is

an end-to-end trainable system which is faster. The features

pooled by the RoI align are concatenated with the initial

prediction and used to produce a more accurate prediction.

The second prediction is modeled as offset, its output is

added to the initial prediction.

D. Segmentation Decoder

The segmentation decoder follows the main ideas of the

FCN architecture [35]. Given the features produced by the



Fig. 3: Visualization of our detection encoding. Blue grid:

cells, Red cells: cells with positive confidence label. Trans-

parent Cells: cells with negative confidence label. Grey cells:

cells in don’t care area. Green boxes: ground truth boxes.

encoder, we produce a low resolution segmentation of size

39 × 12 using a 1 × 1 convolutional layer. This output is

than upsampled using three transposed convolution layers

[9]. Skip connections are utilized to extract high resolution

features from the lower layers. Those features are first

processed by a 1 × 1 convolution layer and then added to

the partially upsampled results.

IV. TRAINING DETAILS

In this section we describe the loss functions we employ

as well as other details of our training procedure including

initialization.

a) MultiNet Training Strategy: MultiNet training fol-

lows a fine-tuning approach. First the encoder network is

trained to perform classification on the ILSVRC2012 [8]

data. In practise, this step is omitted. Instead we initialize the

weights of all layers of the encoder with weights published

by the authors whose network architecture we are using.

In a second step, the final fully connected layers are

removed and replaced by our decoders. Then the network is

trained end-to-end using KITTI data. Thus MultiNet training

follows a classic fine-tuning pipeline.

Our joint training implementation computes the forward

passes for examples corresponding to each of the three tasks

independently. The gradients are only added during the back-

propagation steps. This has the practical advantage that we

are able to use different training parameters for each decoder.

Having this degree of freedom is an important feature of

our joint training implementation. The classification task

for example requires a relative large batch size and more

aggressive data-augmentation than the segmentation task to

perform well.

b) Loss function: Classification and segmentation are

trained using a softmax cross-entropy loss function.

For the detection, the final prediction is a grid of 12× 39
cells. Each cell gets assigned a confidence label as well as a

box label. The box label encodes the coordinates of the box

and is parametrized relative to the position of a cell. A cell

c gets assigned a positive confidence label if and only if it

intersects with at least one bounding box. If this is the case

the cell also gets assigned to predict the coordinates of the

box it intersects with. If multiple boxes intersect with a cell,

the box whose centre is closest to the centre of c is chosen.

Note that one box can be predicted by multiple cells.

Method MaxF1 AP Place

FTP [30] 91.61% 90.96% 6th

DDN [38] 93.43% 89.67% 5th

Up Conv Poly [41] 93.83% 90.47% 4rd

DEEP-DIG [39] 93.83% 90.47% 3th

LoDNN [2] 94.07% 92.03% 2rd

MultiNet 94.88% 93.71% 1st

TABLE I: Summary of the URBAN ROAD scores on the

public KITTIRoad Detection Leaderboard [13] at submission

time.

If a box b is assigned to a cell c the following values are

stored in c:

cx = (xb − xc)/wc cy = (yb − yc)/hc (1)

cw = wb/wc ch = hb/hc (2)

where xb, yb and xc yc correspond to the center coordinates

of b and c and w and h denote width and hight. Note, that

wc and hc are always 32, as the cells of our model have a

fixed width and height. We use L1 as our loss

losscell(c, ĉ) := δcp · (|cx − ĉx|+ |cy − ĉy|+

|cw − ĉw|+ |cw − ĉw|) (3)

where ĉ is the prediction of a cell and c its ground-truth, and

cp denotes whether a positive label has been assigned to a

cell. The δcp term ensures that the regression loss is zero

if no object is present. We train the confidence labels using

cross-entropy loss. The loss per cell is given as the weighted

sum over the confidence and the regression loss. The loss

per image is the mean over the losses of all cells. The Kitti

Dataset also contains ’don’t Care areas’. Those areas are

handled by multiplying the loss of the corresponding cells

with zero. We note, that our label representation is much

simpler than FasterRCNN or ReInspect. This is an additional

feature of our detection system. The loss for MultiNet is

given as the sum of the losses for segmentation, detection

and classification.

The loss for the joint training is given as the sum of the

losses for segmentation, detection and classification.

c) Initialization: The weights of the encoder are ini-

tialized using weights trained on ImageNet [8] data. The

weights of the detection and classification decoder are initial-

ized using the initialization scheme of [23]. The transposed

convolution layers of the segmentation decoder are initialized

to perform bilinear upsampling. The skip connections of the

segmentation decoder are initialized to very small weights.

Both these modifications greatly improve segmentation per-

formance.

d) Optimizer and regularization: We use the Adam

optimizer [27] with a learning rate of 10−5 to train our

MultiNet. A weight decay of 5 · 10−4 is applied to all layers

and dropout with probability 0.5 is applied to the 3 × 3
convolution of the classification and all 1 × 1 convolutions

of the detection decoder.

Standard data argumentation are applied to increase the

amount of effective available training data. We augment



Fig. 4: Visualization of the segmentation output. Top row: Soft segmentation output as red blue plot. The intensity of the

plot reflects the confidence. Bottom row hard class labels.

Task: Metric MaxF1 AP

vgg-pool5 95.80% 92.19%

resnet50 95.89% 92.10%

vgg-fc7 95.94% 92.24%

resnet101 96.29% 92.32%

TABLE II: Performance of the segmentation decoder.

Task: Metric moderate easy hard

vgg no RIO pool 77.00% 86.45% 60.82%

Faster-RCNN 78.42% 91.62% 66.85%

vgg-pool5 84.76% 92.18% 68.23%

resnet50 86.63% 95.55% 74.61%

resnet101 89.79% 96.13% 77.65%

TABLE III: Performance of our detection decoder.

colour features by applying random brightness and random

contrast. Spatial feature are distorted by applying random

flip, random resize and random crop.

V. EXPERIMENTAL RESULTS

In this section we perform our experimental evaluation on

the challenging KITTI dataset.

A. Dataset

We evaluate MultiNet on the KITTI Vision Benchmark

Suite [14]. The Benchmark contains images showing a

variety of street situations captured from a moving platform

driving around the city of Karlruhe. In addition to the raw

data, KITTI comes with a number of labels for different tasks

relevant to autonomous driving. We use the road benchmark

of [12] to evaluate the performance of our semantic segmen-

tation decoder and the object detection benchmark [15] for

the detection decoder. We exploit the automatically generated

labels of [37], which provide us with road labels generated

by combining GPS information with open-street map data.

Detection performance is measured using the average

precision score [11]. For evaluation, objects are divided into

three categories: easy, moderate and hard to detect. The

segmentation performance is measured using the MaxF1

score [12]. In addition, the average precision score is given

for reference. Classification performance is evaluated by

computing the mean accuracy, precision and recall.

speed [msec] speed [fps]

vgg-pool5 42.14ms 23.73Hz

resnet50 39.56ms 25.27Hz

vgg-fc7 96.84ms 10.32Hz

resnet101 69.91ms 14.30Hz

TABLE IV: Inference speed of our segmentation.

speed [msec] speed [fps] processing

vgg no RIO 35.75ms 27.96Hz 2.46ms

Faster-RCNN 78.42ms 12.75Hz 5.3ms

vgg-pool5 37.31ms 26.79Hz 3.61ms

resnet50 40.09ms 24.93Hz 3.19ms

resnet101 65.89ms 15.17ms 3.11ms

TABLE V: Inference speed of our segmentation detection.

B. Experimental evaluation

The section is structured as follows. We first evaluate the

performance of the our three decoders individually. To do this

we fine-tune the encoder using just one of the three losses

segmentation, detection and classification and compare their

performance with a variety of baseline. In the second part we

compare joint training of all three decoders with individual

inference and show, that the performance of joint training

can keep up with the performance of individual inferences.

Overall we show, that our approach is competitive with

individual inference. This makes our approach very relevant.

Joint training has many advantages in robotics application,

such as a fast inference time.

a) Segmentation: The segmentation decoder encoder is

trained using the four different encoder discussed in Section

III-A. The scores, computed on a halt-out validation set is

reported in Table I.

To compare our approach against the state-of-the-art we

trained a segmentation network with vgg-fc7 encoder on the

whole training set and submitted the results to the KITTI

road leaderboard. At submission time our approach achieved

first place in the benchmark. Recently our approach was

overtaken by newer submissions. Some of those are directly

based on our work and utilize our code [52]. The results at

the time of our benchmark submission are given in Table II.

Qualitative results are shown in Fig. 4 both as red blue

plot showing the confidence level at each pixel as well as a

hard prediction using a threshold of 0.5.



Fig. 5: Visualization of the detection output. With and without non-maximal suppression applied.

mean Acc. Precision Recall

VGG pool5 [our] 97.34% 98.52% 87.58%

resnet50 [our] 98.86% 100.00% 94.11%

resnet101 [our] 99.84% 98.70% 100.00%

vgg16 [base] 93.04% 91.61% 87.90%

resnet101 [base] 93.83% 91.94% 89.54%

TABLE VI: Classification performance of our decoder com-

pared to baseline classification.

b) Detection: The detection decoder is trained and eval-

uated on the data provided by the KITTI object benchmark

[15]. We train the detection decoder on a vgg [53] and

resnet [22] decoder and evaluate on a validation set. Table III

shows the results of our decoder compared to a Faster-RCNN

baseline, evaluated on the same validation set. The results

show that our rescaling approach is very efficient. Training

the detection decoder with rescaling is only marginality

slower then training it without. However it offers a significant

improvement in detection performance. Overall our approach

achieves is speed-up over faster-rcnn of almost a factor 2 and

outperforms its detection accuracy. Qualitative results of the

detection decoder can be seen in 5.

All in all our results indicate that utilizing a rescaling

layer in order to achieve scale invariance is a good idea. A

rescaling layer might be the key to closing the gap between

proposal and non-proposal based approaches.

Our detection decoder is trained and evaluated on the data

provided by the KITTI object benchmark [15]. We train our

detection decoder on a vgg [53] and resnet [22] decoder and

evaluate on a validation set. Table III shows the results of

our decoder compared to a Faster-RCNN baseline, evaluated

on the same validation set. We report the inference speed in

Table V. We observe that our approach achieves is speed-

up over faster-rcnn of almost a factor 2 and outperforms

speed [msec] speed [fps]

VGG pool5 [our] 37.83ms 26.43Hz

resnet50 [our] 44.27ms 27.96Hz

resnet101 [our] 71.62ms 22.58Hz

vgg16 [base] 7.10ms 140Hz

resnet101 [base] 33.06ms 30.24Hz

TABLE VII: Inference speed of our classification.

its detection accuracy. This makes our decoder particularly

suitable for real-time applications. Qualitative results of our

detection decoder can be seen in 5.

c) Classification: The classification data is not part of

the official Kitti Benchmark. To evaluate the classification

decoder we first need to create our own dataset. This is done

using the method descriped in [37]. To obtain a meaningful

task all images of one scene ether fully in the train or fully

in the validation set. This is important as the images of one

scene are usually visually very similar.

We use a vanilla ResNet and VGG classification approach

as baseline and compare this to a VGG and ResNet approach

with our classification decoder. The differences between

those two approaches are discussed in more detail in Section

III-B. The results are reported in Table VI and Table VII. Our

customised classification decoder clearly outperforms vanilla

decoders, showing the effectiveness of our approach.

d) MultiNet: We ran a series of experiments comparing

vgg and resnet as encoder. Table VIII and Table IX compare

performance of VGG and Resnet. We observe, that both

ResNet-based encoders are able to outperform VGG slightly.

There is however a trade-off, as the VGG encoder is faster.

The speed gap between VGG pool5 and resnet50 is much

larger when performing joint inference compared to the

individual task. This can be explained by the fact that ResNet

computes features with 2048 channels, while VGG features



Fig. 6: Visualization of the MultiNet output.

MaxF1 AP moderate easy hard m. Acc. Precision Recall

VGG pool5 95.99% 92.31% 84.68% 92.06% 72.08% 95.75% 100% 91.50%

resnet50 96.35% 92.13% 86.92% 96.84% 72.75% 98.36% 100% 96.73%

resnet101 95.99% 91.99% 89.30% 96.31% 75.42% 98.61% 99.33% 97.38%

TABLE VIII: Results of joint training

speed [msec] speed [fps]

VGG pool5 42.48ms 23.53Hz

resnet50 60.22ms 16.60Hz

resnet101 79.70ms 12.54Hz

TABLE IX: Speed of joint inference.

have only 512 channels. Thus, computing the fist layer of

each decoder is significantly more expensive.

Overall we conclude, that MultiNet using a VGG decoder

offers a very good trade-off between performance and speed.

VI. CONCLUSION

In this paper we have developed a unified deep architecture

which is able to jointly reason about classification, detection

and semantic segmentation. Our approach is very simple, can

be trained end-to-end and performs extremely well in the

challenging KITTI, outperforming the state-of-the-art in the

road segmentation task. Our approach is also very efficient,

taking 42.48ms to perform all tasks. In the future we plan

to exploit compression methods in order to further reduce

the computational bottleneck and energy consumption of

MutiNet.
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