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Abstract

3D object detection from monocular images has proven to be an enormously chal-
lenging task, with the performance of leading systems not yet achieving even 10% of
that of LiDAR-based counterparts. One explanation for this performance gap is that ex-
isting systems are entirely at the mercy of the perspective image-based representation,
in which the appearance and scale of objects varies drastically with depth and meaning-
ful distances are difficult to infer. In this work we argue that the ability to reason about
the world in 3D is an essential element of the 3D object detection task. To this end,
we introduce the orthographic feature transform, which maps image-based features into
an orthographic 3D space, enabling us to reason holistically about the spatial configura-
tion of the scene. We apply this transformation as part of an end-to-end deep learning
architecture and demonstrate our approach on the KITTI 3D object benchmark.1

1 Introduction
The success of any autonomous agent is contingent on its ability to detect and localize the
objects in its surrounding environment. Prediction, avoidance and path planning all depend
on robust estimates of the 3D positions and dimensions of other entities in the scene. This
has led to 3D bounding box detection emerging as an important problem in computer vision
and robotics, particularly in the context of autonomous driving. Vision-only systems offer
several advantages over more widespread LiDAR-based methods [1, 5, 6, 14, 21, 26, 31, 36],
such as lower cost, higher resolution and robustness to adverse weather conditions. However
the lack of absolute depth information means that to date the performance of vision-based
systems still lags significantly behind.

In this work we aim to reduce this performance gap by emulating the orthographic birds-
eye-view representation popular in many LiDAR-based approaches [1, 31, 36]. This rep-
resentation is attractive since it is metric, making it possible to reason meaningfully about
distances in the 3D space. In order to extract this representation from the perspective 2D
image, we introduce the Orthographic Feature Transform (OFT), a differentiable neural net-
work component which uses a combination of geometric and learned reasoning to infer the

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Please see www.youtube.com/watch?v=ZpV51Fgc4jE for a video demonstration of our approach.
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Figure 1: Architecture overview. A front-end ResNet feature extractor generates image-
based features, which are mapped to an orthographic representation via our proposed ortho-
graphic feature transform. The topdown network processes these features in the birds-eye-
view space and at each location on the ground plane predicts a confidence score S, a position
offset ∆pos, a dimension offset ∆dim and an angle vector ∆ang.

locations of features on the ground plane. Crucially, we do not rely on any explicit notion
of depth, but leave the network free to generate its own implicit representation. The OFT is
incorporated into a deep learning architecture for predicting 3D object bounding boxes from
monocular images. A central theme of this work is to emphasise the importance of reasoning
in the 3D space, which we demonstrate is a key strength of our approach.

2 Related Work
2D object detection Detecting 2D bounding boxes in images is a widely studied problem.
Existing methods may broadly be divided into two main categories: single stage detectors
such as YOLO [27], SSD [19] and RetinaNet [18] which predict object bounding boxes
directly and two-stage detectors such as Faster R-CNN [28] and FPN [17] which add an
intermediate region proposal stage. Our work may be viewed as one of the first to generalize
the single stage paradigm to 3D object detection, as most 3D existing approaches adopt
proposal-based methods, in part due to the difficulty in mapping from fixed-size regions in
3D to variable-sized regions in the image. This allows us to take advantage of the purported
speed and accuracy benefits [18] of a single-stage architecture.

3D object detection from LiDAR 3D object detection is of considerable importance to
autonomous driving, and a large number of LiDAR-based methods have been proposed
which have enjoyed considerable success [6, 16, 21, 26]. Among these approaches, a
common technique is to encode 3D point cloud information as a birds-eye-view feature
map [1, 5, 14, 31, 36]. This representation is attractive since it encodes a metric repre-
sentation of the world which allows networks to exploit strong priors about the shape and
size of 3D objects. This provides the inspiration for our orthographic feature transform. Sen-
sor fusion approaches such as AVOD [14] and MV3D [5] rely on similar transformations to
match image features to 3D proposals, but these methods presuppose 3D knowledge about
the scene whilst our approach infers it implicitly.

3D object detection from images Obtaining 3D bounding boxes from images, meanwhile,
is a much more challenging problem on account of the absence of absolute depth informa-
tion. Many approaches start from 2D bounding boxes extracted using standard detectors
described above, upon which they either directly regress 3D pose parameters for each re-
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gion [13, 22, 23, 25] or fit 3D templates to the image [2, 33, 34, 37]. Perhaps most closely
related to our work is Mono3D [4] which densely spans the 3D space with 3D bounding
box proposals and then scores each using a variety of image-based features. Other works
which explore the idea of dense 3D proposals in the world space are 3DOP [3] and Pham
and Jeon [24], which rely on explicit estimates of depth using stereo geometry. A major
limitation of all the above works is that each region proposal or bounding box is treated in-
dependently, precluding any joint reasoning about the 3D configuration of the scene. Our
method performs a similar feature aggregation step to [4], but applies a secondary convolu-
tional network to the resulting proposals whilst retaining their spatial configuration.

A number of recent works have vastly improved the state of the art in monocular object
detection by taking advantage of additional components such as pretrained monocular depth
estimation [30, 35], 3D shape supervision [15] or synthetic data augmentation [9]. Our
method is compatible with these techniques and we believe that further improvements could
be achieved by incorporating the merits of each approach.

3 3D Object Detection Architecture
In this section we describe our full approach for extracting 3D bounding boxes from monoc-
ular images. An overview of the system is illustrated in Figure 1. The algorithm comprises
five main components, which are described in detail in the remainder of this section:

1. A front-end ResNet [10] feature extractor which extracts multi-scale feature maps
from the input image.

2. A orthographic feature transform which transforms the image-based feature maps at
each scale into an orthographic birds-eye-view representation.

3. A topdown network, consisting of a series of ResNet residual units, which processes
the birds-eye-view feature maps in a manner which is invariant to the perspective ef-
fects observed in the image.

4. A set of output heads which generate confidence scores and position, dimension and
orientation offsets for each location on the ground plane.

5. A non-maximum suppression and decoding stage, which identifies peaks in the confi-
dence maps and generates discrete bounding box predictions.

3.1 Feature extraction
The first element of our architecture is a convolutional feature extractor which generates a
hierarchy of multi-scale 2D feature maps from the raw input image. These features encode
information about low-level structures in the image, which form the basic components used
by the topdown network to construct an implicit 3D representation of the scene. The front-
end network is also responsible for inferring depth information based on the size of image
features since subsequent stages of the architecture aim to eliminate variance to scale.

3.2 Orthographic feature transform
In order to reason about the 3D world in the absence of perspective effects, we must first
apply a mapping from feature maps extracted in the image space to orthographic feature
maps in the world space, which we term the Orthographic Feature Transform (OFT).
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Figure 2: Orthographic Feature Transform (OFT). Voxel-based features g(x,y,z) are gen-
erated by accumulating image-based features f(u,v) over the projected voxel area. Voxel
features are then collapsed along the height dimension to yield orthographic features h(x,z).

The objective of the OFT is to populate the 3D voxel feature map g(x,y,z) ∈ Rn with
relevant n-dimensional features from the image-based feature map f(u,v) ∈ Rn extracted by
the front-end feature extractor. The voxel map is defined over a uniformly spaced 3D lattice
G which is fixed to the ground plane a distance y0 below the camera and has dimensions
W , H, D. For a given voxel grid location (x,y,z) ∈ G, we obtain the voxel feature g(x,y,z)
by accumulating features over the area of the image feature map f which corresponds to
the voxel’s 2D projection. In general each voxel, which is a cube of size r, will project to
hexagonal region in the image plane. We approximate this by a rectangular bounding box
with top-left and bottom-right corners (u1,v1) and (u2,v2) given by

u1 = f
x−0.5r

z+0.5 x
|x| r

+cu v1 = f
y−0.5r

z+0.5 y
|y| r

+cv u2 = f
x+0.5r

z−0.5 x
|x| r

+cu v2 = f
y+0.5r

z−0.5 y
|y| r

+cv (1)

where f is the camera focal length and (cu,cv) the principle point.
We can then assign a feature to the appropriate location in the voxel feature map g by

average pooling over the projected voxel’s bounding box in the image feature map f:

g(x,y,z) =
1

(u2−u1)(v2− v1)

u2

∑
u=u1

v2

∑
v=v1

f(u,v) (2)

The resulting voxel feature map g already provides a representation of the scene which
is free from the effects of perspective projection. However deep neural networks which
operate on large voxel grids are typically extremely memory intensive. Given that we are
predominantly interested in applications such as autonomous driving where most objects are
fixed to the 2D ground plane, we can make the problem more tractable by collapsing the 3D
voxel feature map down to a third, 2D representation which we term the orthographic feature
map h(x,z). The orthographic feature map is obtained by summing voxel features along the
vertical axis after multiplication with a set of learned weight matrices W (y) ∈ Rn×n:

h(x,z) =
y0+H

∑
y=y0

W (y)g(x,y,z) (3)

Transforming to an intermediate voxel representation before collapsing to the final ortho-
graphic feature map has the advantage that the information about the vertical configuration
of the scene is retained. This turns out to be essential for downstream tasks such as estimating
the height and vertical position of object bounding boxes.
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3.2.1 Fast average pooling with integral images

A major challenge with the above approach is the need to aggregate features over a very
large number of regions. A typical voxel grid setting generates around 150k bounding boxes,
which far exceeds the ∼2k regions of interest used by the Faster R-CNN [28] architecture,
for example. To facilitate pooling over such a large number of regions, we make use of a
fast average pooling operation based on integral images [29]. An integral feature map, F, is
constructed from an input feature map f using the recursive relation

F(u,v) = f(u,v)+F(u−1,v)+F(u,v−1)−F(u−1,v−1). (4)

Given the integral feature map F, the output feature g(x,y,z) corresponding to the region
defined by bounding box coordinates (u1,v1) and (u2,v2) (see Equation 1), is given by

g(x,y,z) =
F(u1,v1)+F(u2,v2)−F(u1,v2)−F(u2,v1)

(u2−u1)(v2− v1)
(5)

The complexity of this pooling operation is independent of the size of the individual regions,
which makes it highly appropriate for our application where the size and shape of the regions
varies considerably depending on whether the voxel is close to or far from the camera. It is
also fully differentiable in terms of the original feature map f and so can be used as part of
an end-to-end deep learning framework.

3.3 Topdown network
A core contribution of this work is to emphasize the importance of reasoning in 3D for
object recognition and detection in complex 3D scenes. In our architecture, this reasoning
component is performed by a sub-network which we term the topdown network. This is
a simple convolutional network with ResNet-style skip connections which operates on the
2D feature maps h generated by the OFT stage. Since the filters of the topdown network
are applied convolutionally, all processing is invariant to the location of the feature on the
ground plane. The ambition is that the final feature representation will therefore capture
information purely about the underlying 3D structure of the scene and not its 2D projection.

3.4 Confidence map prediction
Among both 2D and 3D approaches, detection is conventionally treated as a classification
problem, with a cross entropy loss used to identify regions of the image which contain ob-
jects. In our application however we found it to be more effective to adopt the confidence
map regression approach of Huang et al. [11]. Given a set of N ground truth objects with
bounding box centres pi =

[
xi yi zi

]>
, i = 1, . . . ,N, we compute the ground truth con-

fidence map S as a smooth Gaussian region of width σ around the center of each object:

S(x,z) = max
i

exp
(
− (xi− x)2 +(zi− z)2

2σ2

)
. (6)

The confidence map prediction head is trained via an `1 loss to regress the ground truth confi-
dence for each location on the orthographic gridH. We downweight the loss associated with
low-confidence locations (S(x,z)< 0.05) by a factor 10−2 to avoid it dominating training.
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3.5 Localization and bounding box estimation
The confidence map S encodes a coarse approximation of the location of each object as a
peak in the confidence score, which gives a position estimate accurate up to the resolution r
of the feature maps. In order to localize each object more precisely, we append an additional
network output head which predicts the relative offset ∆pos from grid cell locations on the
ground plane (x,y0,z) to the center of the corresponding ground truth object pi:

∆pos(x,z) =
[ xi−x

σ

yi−y0
σ

zi−z
σ

]> (7)

We use the same scale factor σ as described in Section 3.4 to normalize the position offsets
within a sensible range. A ground truth object instance i is assigned to a grid location (x,z)
if any part of the object’s bounding box intersects the given grid cell.

In addition to localizing each object, we must also determine the size and orientation
of each bounding box. We therefore introduce two further network outputs. The first, the
dimension head, predicts the logarithmic scale offset ∆dim between the assigned ground truth
object i with dimensions di =

[
wi hi li

]
and the mean dimensions d̄ =

[
w̄ h̄ l̄

]
over all

objects of the given class (Equation 8). The second, the orientation head, predicts the sine
and cosine of the objects orientation θi about the y-axis (Equation 9).

∆dim(x,z) =
[
log wi

w̄ log hi
h̄ log li

l̄

]>
(8) ∆ang(x,z) =

[
sinθi cosθi

]> (9)

The position offset ∆pos, dimension offset ∆dim and orientation vector ∆ang for each cell
are trained using an `1 loss, ignoring cells which do not correspond to any instance.

3.6 Non-maximum suppression
As with other object detection algorithms, we apply a non-maximum suppression (NMS)
stage to obtain a final discrete set of object predictions. A major advantage of the ortho-
graphic representation is that we can apply NMS in the conventional image processing sense
i.e. searching for local maxima on the 2D confidence maps S, since object centers are natu-
rally separated in the 3D space. This avoids an expensive O(N2) comparison between pairs
of non-axis-aligned 3D bounding boxes. We apply a Gaussian smoothing function of width
σNMS to alleviate noise and retain all peaks with a confidence greater that some threshold t.

4 Experiments
Architecture For our front-end feature extractor we make use of a shallow ResNet-18 net-
work. We extract features immediately before the final three downsampling layers, resulting
in a set of feature maps {fs} at scales s of 1/8, 1/16 and 1/32 of the original input resolution.
Convolutional layers with 1×1 kernels are used to map these feature maps to a common fea-
ture size of 256, before processing them via the OFT. We use a voxel grid with dimensions
80m×4m×80m and resolution r of 0.5m. For the topdown network, we use a simple 16-
layer ResNet without any downsampling or bottleneck units. The output heads each consist
of a single 1×1 convolution layer. We replace all batch normalization [12] layers with group
normalization [32].

Dataset We train and evaluate our method using the KITTI 3D object detection benchmark
dataset [7]. For all experiments we follow the train-val split of Chen et al. [4] which divides
the KITTI training set into 3712 training images and 3769 validation images.
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Training procedure The model is trained using SGD for 600 epochs with a batch size of 8,
momentum of 0.9 and learning rate of 10−7. Following [20], losses are summed rather than
averaged, which avoids biasing the gradients towards examples with few object instances.
The loss functions from the various output heads are combined using equal weights.

4.1 Evaluation on KITTI benchmark
We evaluate our approach on two tasks from the KITTI 3D object detection benchmark. The
3D car bounding box detection task requires that each predicted 3D bounding box should
intersect a corresponding ground truth box by at least 70%. The birds-eye-view detection
task meanwhile is slightly more lenient, as it ignores the vertical component of the bounding
box overlap. We report the results of our approach both on the official KITTI test benchmark
(Table 1) and the validation split of Chen et al. [3] (Table 2). Since this work was origi-
nally submitted to the benchmark, a number of other approaches have been proposed which
achieve better performance [9, 15, 35]. We include these results in the tables below, however
we note that these methods take advantage of additional training supervision such as explicit
depth prediction [35], shape estimation [15] or synthetic training examples [9], and there-
fore suggest that our method represents a complementary and novel approach which offers
further insights into the monocular problem.

Table 1: Average precision for birds-eye-view (APBEV ) and 3D bounding box (AP3D) detec-
tion on the KITTI benchmark test set.

Method Modality
AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

MultiFusion [35] Mono+Depth 7.08 5.18 4.68 13.73 9.62 8.22
A3DODWTDA [9] Mono+Synth 6.76 6.45 4.87 10.21 10.61 8.64

Ku et al. [15] Mono+Shape 12.57 10.85 9.06 20.25 17.66 15.78

3D-SSMFCNN [23] Mono 2.28 2.39 1.52 3.66 3.19 3.45
OFT-Net (Ours) Mono 2.50 3.28 2.27 9.50 7.99 7.51

Table 2: Average precision for birds-eye-view (APBEV ) and 3D bounding box (AP3D) detec-
tion on the KITTI validation set.

Method Modality
AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

3DOP [3] Stereo 6.55 5.07 4.10 12.63 9.49 7.59
A3DODWTDA [9] Mono+Synthetic 10.13 8.32 8.20 15.64 12.90 12.30
MultiFusion [35] Mono+Depth 10.53 5.69 5.39 22.03 13.63 11.60

Ku et al. [15] Mono+Shape 12.75 11.48 8.59 20.63 18.67 14.45

Mono3D [4] Mono 2.53 2.31 2.31 5.22 5.19 4.13
OFT-Net (Ours) Mono 4.07 3.27 3.29 11.06 8.79 8.91

It can be seen from the results above that our method is able to outperform comparable
(i.e. monocular only) methods. It is particularly successful on the hard evaluation category,
which includes instances which are heavily occluded or distant from the camera. Where most
methods exhibit a large performance drop between easy and hard, ours remains relatively
stable. We also show that our method performs competitively with the stereo approach of
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[3], despite not having access to any explicit knowledge of the depth of the scene. One
limiting factor of our approach is the resolution of the voxel grid, currently set at 0.5m due
to memory requirements. Whilst we have yet to perform a thorough analysis, preliminary
experiments suggest that reducing the voxel dimensions would allow us to achieve further
performance gains.

4.2 Qualitative results
Comparison to Mono3D We provide a qualitative comparison of predictions generated
by our approach and Mono3D [4] in Figure 3. A notable observation is that our system is
able to reliably detect objects at a considerable distance from the camera. This is a common
failure case among both 2D and 3D object detectors, and indeed many of the cases which are
correctly identified by our system are overlooked by Mono3D. We argue that this ability to
recognise objects at distance is a major strength of our system, and we explore this capacity
further in Section 4.4.

Figure 3: Qualitative comparison between our method (left) and Mono3D [4] (right) on
the KITTI validation set. Inset regions highlight the behaviours of both systems at large
distances. We consistently detect distant objects which are beyond the range of Mono3D.

Ground plane confidence maps A unique feature of our approach is that we operate
largely in the orthographic birds-eye-view feature space. To illustrate this, Figure 4 shows
examples of predicted confidence maps S(x,z) both in the topdown view and projected into
the image on the ground plane. It can be seen that the predicted confidence maps are well
localized around each object center.

4.3 Ablation study
A central claim of our approach is that reasoning in the orthographic birds-eye-view space
significantly improves performance. To validate this claim, we perform an ablation study
where we progressively remove layers from the topdown network (shown in Figure 5). In the
extreme case, when the depth of the topdown network is zero, the architecture is effectively
reduced to RoI pooling [8], rendering it similar to R-CNN-based architectures.
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Figure 4: Examples of confidence maps generated by our approach, which we visualize both
in birds-eye-view (right) and projected onto the ground plane in the image view (left).

The trend is clear: removing layers from the topdown network significantly reduces per-
formance. Some of this decline in performance may be explained by the fact that reducing
the size of the topdown network reduces the overall depth of the network, and therefore its
representational power. However, as can be seen from Figure 5, adopting a shallow front-end
(ResNet-18) with a large topdown network achieves significantly better performance than a
deeper network (ResNet-34) without any topdown layers, despite the two architectures hav-
ing roughly the same number of parameters. This strongly suggests that a significant part of
the success of our architecture comes from its ability to reason in 3D.

4.4 Performance as a function of depth
Motivated by the qualitative results in Section 4.1, we wished to further quantify the ability of
our system to detect and localize distant objects. Figure 6 plots performance of each system
when evaluated only on objects which are at least the given distance away from the camera.
Whilst we outperform Mono3D over all depths, it is also apparent that the performance of
our system degrades much more slowly as we consider objects further from the camera. We
believe that this is a key strength of our approach.

4.5 Evolution of confidence maps during training
While the confidence maps predicted by our network are not necessarily calibrated estimates
of model certainty, observing their evolution over the course of training does give valuable
insights into the learned representation. Figure 7 shows an example of a confidence map
predicted by the network at various points during training. During the early stages of train-
ing, the network quickly learns to identify regions of the image which contain objects but is
unable to accurately localize them in the depth dimension, leading to blurred-out predictions
extending radially from the camera. As training progresses this uncertainty is reduced, how-
ever it can be seen that for objects far away from the camera some blurring remains, strongly
corresponding to the intuition that objects further away are harder to localize.
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Figure 5: Ablation study showing the effect
of removing layers from the topdown net-
work. Zero layers implies that the topdown
network has been removed entirely. A net-
work with shallower front-end (ResNet-18)
but more topdown layers outperforms a net-
work with a deeper front-end and shallower
topdown network, despite having roughly
similar numbers of parameters.
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Figure 6: Average BEV precision (val) as a
function of the minimum distance of ground
truth objects from the camera. We use an
IoU threshold of 0.5 to better compare per-
formance at large depths. Our method sig-
nificantly outperforms Mono3D across all
depth ranges but is particularly effective for
objects at extreme distances.

20 10 0 10 20
x (m)

0

10

20

30

40

z 
(m

)

Epoch 10

10 0 10 20
x (m)

Epoch 30

10 0 10 20
x (m)

Epoch 50

10 0 10 20
x (m)

Epoch 70

10 0 10 20
x (m)

Epoch 90

10 0 10 20
x (m)

0

10

20

30

40

z 
(m

)

Ground truth

Figure 7: Evolution of confidence maps during training. The network initially exhibits high
uncertainty in the depth direction but gradually resolves this as training progresses.

5 Conclusions
In this work we have presented a novel approach to monocular 3D object detection which
takes advantage of an orthographic birds-eye-view to accurately estimate object locations in
3D. We are motivated by the intuition that operating in the birds-eye-view enables the net-
work to reason holistically about the 3D relationships between objects and factors out some
of the distortional effects of perspective projection. We obtained a mapping from image-
space to birds-eye-view via our proposed orthographic feature transform, which was imple-
mented efficiently using integral images. By evaluating our deep-learning-based approach
on the KITTI detection benchmark we were able to experimentally validate our hypothesis
that reasoning in the 3D space improves performance and that our network is robust to ob-
jects which are distant or occluded. This work forms the basis for future exploration into
other tasks where the birds-eye-view representation is naturally applicable such as 3D object
tracking and motion forecasting.
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