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Abstract

This paper addresses the problem of monocular 3D human shape and pose estima-
tion from an RGB image. Despite great progress in this field in terms of pose prediction
accuracy, state-of-the-art methods often predict inaccurate body shapes. We suggest that
this is primarily due to the scarcity of in-the-wild training data with diverse and accurate
body shape labels. Thus, we propose STRAPS (Synthetic Training for Real Accurate
Pose and Shape), a system that utilises proxy representations, such as silhouettes and 2D
joints, as inputs to a shape and pose regression neural network, which is trained with syn-
thetic training data (generated on-the-fly during training using the SMPL statistical body
model) to overcome data scarcity. We bridge the gap between synthetic training inputs
and noisy real inputs, which are predicted by keypoint detection and segmentation CNNs
at test-time, by using data augmentation and corruption during training. In order to eval-
uate our approach, we curate and provide a challenging evaluation dataset for monocular
human shape estimation, Sports Shape and Pose 3D (SSP-3D). It consists of RGB im-
ages of tightly-clothed sports-persons with a variety of body shapes and corresponding
pseudo-ground-truth SMPL shape and pose parameters, obtained via multi-frame optimi-
sation. We show that STRAPS outperforms other state-of-the-art methods on SSP-3D in
terms of shape prediction accuracy, while remaining competitive with the state-of-the-art
on pose-centric datasets and metrics.

1 Introduction
3D human shape and pose estimation from a single RGB image is a challenging computer
vision problem, with widespread applications in computer animation and augmented reality.
Recently, several deep-learning-based methods have been proposed [8, 15, 16, 22, 24, 27,
29, 32, 34]. Such methods provide impressive 3D pose reconstructions given single RGB
images as inputs, by leveraging datasets of images of humans in a diverse range of labelled
3D poses [3, 7, 17, 21, 28, 30]. However, these approaches often predict inaccurate body
shapes, as shown in Figure 1. We suggest that this is due to a lack of body shape diversity
within the prevalent training datasets. Most learning-based models will struggle to generalise
to unseen test data if the distribution of the test data is significantly different from the training
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Figure 1: STRAPS predicts body shapes with greater accuracy than other approaches
to monocular human 3D shape and pose estimation, such as SPIN [15], CMR [16] and HMR
[8], without requiring training images annotated with 3D labels. The images shown in this
figure are part of the dataset we provide, SSP-3D.

data distribution. Thus, increasingly inaccurate body shapes are predicted as the shape of the
test subject is further removed from the training datasets’ mean shape.

In this paper, we present Synthetic Training for Real Accurate Pose and Shape (STRAPS),
a deep-learning-based framework that uses synthetic training data to overcome the lack of
shape diversity in current datasets. Given an input image, inference occurs in two stages (see
Figure 2a). First, we predict a proxy representation, which encodes the subject’s silhouette
and 2D joint locations, using off-the-shelf segmentation and 2D keypoint detection CNNs
[4, 6, 31]. Then, we use a neural network regressor to predict the parameters of a statisti-
cal body model (SMPL [20]) from the proxy representation. The regressor is trained using
synthetic input-target pairs generated on-the-fly during model training. We sample target
SMPL shape and pose parameters from a training distribution and render the corresponding
silhouettes and 2D joints, which act as inputs. Since we can choose the form of the training
distribution, we have control over the diversity of human body shapes seen by the regressor
during training. We utilise simple data augmentation and corruption techniques (see Figure
2a) to make our regressor robust to noisy inputs encountered at test-time.

Moreover, we curate and provide Sports Shape and Pose 3D (SSP-3D), a dataset which
contains images of tightly-clothed sports-persons with a diverse range of body shapes in
varied environments, obtained from the Sports-1M video dataset [9]. We use multi-frame
optimisation, with forced shape consistency between frames, to obtain pseudo-ground-truth
SMPL shape and pose parameters for each sports-person. We evaluate our neural network
regressor, along with several recent learning-based approaches, on SSP-3D and report shape
prediction accuracy in terms of per-vertex Euclidean error in a neutral pose. Examples from
SSP-3D are shown in Figure 3, along with statistics illustrating the greater body shape diver-
sity in SSP-3D compared to widely-used 3D human datasets.

In summary, we have two main contributions: (i) a deep-learning framework which uses
synthetic training data and simple data augmentation techniques to overcome the lack of
body shape diversity within prevalent datasets and (ii) the SSP-3D dataset, which we use to
show that our neural network regressor results in better shape prediction accuracy than other
competing approaches. Our model, code and dataset is available for research purposes at
https://github.com/akashsengupta1997/STRAPS-3DHumanShapePose.

2 Related Work
In this section, we discuss recent approaches to 3D human pose and shape estimation, as
well as the training datasets typically used for this task.
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Monocular 3D human pose and shape estimation approaches can be classified into two
paradigms: optimisation-based and learning-based. Optimisation-based approaches attempt
to fit a parametric body model [1, 20, 25] to 2D observations, such as 2D joints [2, 25], body
surface landmarks [17], silhouettes [17] or body part segmentations [33]. These approaches
produce reliable results without requiring 3D-labelled datasets, which are expensive to ob-
tain. However, they are slow at test-time, sensitive to initialisation and can get stuck in bad
local minima, which motivates learning-based approaches.

Learning-based approaches can be further divided into two types: non-parametric 3D
regression and body model parameter regression. Non-parametric 3D regression involves
estimating a 3D human body representation from an image, such as a voxel occupancy grid
[29] or vertex mesh [16]. However, each representation has associated drawbacks for body
shape prediction: e.g. voxels are limited by the resolution of the voxel grid and direct mesh
predictions can result in surface artifacts such as wrinkles and sharp protrusions. Body model
parameter regression involves estimating the parameters of a statistical body model, such
as SMPL [20], which provides a useful prior over body shape. Several approaches first
predict a proxy representation from the input RGB image, such as surface keypoints [17,
24], silhouettes [24, 27], body part segmentations [22] or IUV maps [32, 34], and use this
representation as the input to a regressor. Other approaches directly predict body model
parameters from the input image [8, 15, 26]. Fundamentally, learning-based approaches
are dependent on the label accuracy and sample diversity of the training datasets used. This
results in a significant drawback when the training data distribution is not sufficiently diverse
in terms of body shape, pose and image (e.g. background) conditions, as discussed below.
3D human pose and shape datasets. Learning-based approaches are trained using datasets
of images paired with labels in the form of 3D joints or body model parameters. 3D labels
may be obtained using motion capture (as for Human3.6M [7] and BML MoVi [3]), using in-
ertial motion units (as for 3DPW [30]), or by optimisation (as for UP3D [17]). While current
datasets contain varied and accurate 3D poses, they all suffer from limited body shape di-
versity, which greatly hampers the shape prediction accuracy of learning-based approaches.
Additional drawbacks include: baggy clothing obscuring body shape and data captured in
indoor MoCap environments being unrepresentative of in-the-wild images. We overcome
these limitations of current training datasets by using synthetic training data. Furthermore,
we create our own in-the-wild dataset, SSP-3D, to evaluate monocular 3D body shape pre-
dictions, which contains subjects with a greater variety of body shapes than current datasets.

3 Method
In this section we describe STRAPS, our framework which utilises synthetic training data to
overcome the lack of body shape diversity in real datasets. We also detail the multi-frame
optimisation procedure used to create SSP-3D.

3.1 STRAPS
The proposed synthetic training process has two parts: synthetic data generation and neural
encoder and regressor training, both of which use a parametric 3D body model.
Parametric 3D body model. The SMPL [20] body model is used to generate training data
on-the-fly (top of Figure 2a). SMPL provides a fully-differentiable functionM(θθθ ,βββ ) that
takes shape-space coefficients βββ and 3D joint rotations θθθ as inputs and outputs a vertex mesh
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(a) STRAPS Training and Inference (b) SSP-3D Optimisation

Figure 2: (a) Overview of the training and inference pipelines for STRAPS and (b) opti-
misation pipeline for SSP-3D. Synthetic training data is generated by sampling SMPL pose
and shape parameters and decoding them into 3D vertices and joints, which are projected,
rendered and corrupted to form an input proxy representation. The proxy representation is
passed through an encoder and iterative regressor (both with trainable weights) that predicts
pose, shape and camera parameters. Supervision signals are applied to SMPL parameters,
3D joints and vertices, and 2D joints. At test-time, off-the-shelf detection and segmentation
CNNs are used to create the input proxy representation. Optimisation for SSP-3D involves
fitting SMPL to multi-frame 2D joints and silhouettes of a subject, which yields optimised
pose and camera parameters for each frame and shape parameters for the subject.

v ∈ RN×3. 3D joint locations are obtained as a linear combination of the vertices, j3D = Jv,
where J ∈ RL×N is a regression matrix for L joints of interest.
Synthetic data generation. In each iteration of the training loop, βββ and θθθ are sampled from
any training dataset with SMPL parameters - paired images are not required. A camera trans-
lation vector t is sampled randomly, while camera intrinsics and rotation matrices, K and R,
are fixed. To combat the insufficient body shape diversity in prevalent training datasets, we
perform body shape augmentation by replacing βββ with a new random vector βββ

′, which is
generated by sampling each shape parameter β ′n ∼ N (µ,σ2

n ), where σn is chosen (empiri-
cally) to provide greater body shape variance than current datasets. Then, the 3D vertices
v and 3D joints j3D corresponding to θθθ and βββ

′ are perspective-projected and rendered [10]
into a silhouette S ∈ [0,1]H×W and 2D joint locations j2D ∈ RL×2. j2D is transformed into
2D Gaussian joint heatmaps, G ∈ RH×W×L, where each channel corresponds to a separate
joint location. We obtain our clean synthetic proxy representation (PR), X ∈ RH×W×(L+1)

by concatenating S and G along the channel dimension. Note that we opt for simple silhou-
ettes and 2D joints as our proxy representation, instead of more complex part segmentations
or IUV maps [4], because the synthetic-to-real domain gap is smaller for a simple repre-
sentation, and can be more easily bridged with proxy representation augmentation during
training. This involves modelling the failure modes of the off-the-shelf detection and seg-
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mentation CNNs used at test-time. In particular, noisy keypoint and silhouette predictions
are modelled by adding uniform random noise to the 2D joint centres and silhouette edges
in X . Occlusion is modelled by randomly removing body parts from and adding occluding
boxes to the silhouette in X . The augmented PR X ′ serves as the training input to our neural
encoder. The training labels consist of θθθ ,βββ ′,v, j3D and j2D.
Neural encoder and regressor. STRAPS is architecture-agnostic. For this paper, we use the
same network architecture as [8, 15], which consists of a convolutional encoder for feature
extraction and an iterative regressor that outputs predicted SMPL pose, shape and camera
parameters (θ̂θθ , β̂ββ and p̂) given these features. Note that [8, 15] implement additional mod-
ules, namely an adversarial prior [8] or “in-the-loop” optimisation [15], necessitated by their
use of training images with only 2D joint labels. However, 2D joints crucially fail to su-
pervise 3D shape, unlike our strong 3D supervision, which also does not require such addi-
tional modules. A weak-perspective camera model is used during regression, represented by
p̂ = [ŝ, t̂], where s ∈R represents scale and t̂ ∈R2 represents x-y camera translation. We pre-
dict a continuous 6-dimensional rotation representation for θ̂θθ , as proposed by [35], instead
of the discontinuous Euler rotation vectors used by SMPL. From θ̂θθ and β̂ββ , SMPL is used to
obtain predicted 3D vertices and joints, v̂ and ĵ3D. Finally, projected 2D joint predictions are
obtained by ĵ2D = sΠ(ĵ3D + t̂), where Π represents an orthographic projection.

We train our network using a combination of 5 loss functions in a highly-multi-task
framework. We use homoscedastic uncertainty [11] to adaptively learn the loss weights
during training, which results in an objective function of the form

L =
1

σ2
β

Lβ +
1

σ2
θ

Lθ +
1

σ2
v

Lv +
1

σ2
j3D

L j3D +
1

σ2
j2D

L j2D + log(σβ σθ σvσ j3Dσ j2D), (1)

where the σ2 terms represent task uncertainties and the L terms represent mean squared error
losses. Empirically, we found that redundancy in the multi-task objective - e.g. applying
losses on SMPL parameters as well as on 3D vertices, despite v being fully determined by
(θθθ ,βββ ) - improved both network convergence and final performance. We hypothesise that
this is because each supervision signal has a different granularity. For instance, a loss on
vertices provides a finer-scale supervision signal than a loss on 3D joints. Thus, we apply
mean squared error losses on 3D joints (L j3D ), 3D vertices (Lv), SMPL pose parameters in
the 6D rotation representation of [35] (Lθ ), and SMPL shape coefficients (Lβ ). We employ
an additional loss on projected 2D joints (L j2D ) to enforce image-model alignment.

3.2 SSP-3D
SSP-3D contains 311 in-the-wild images of 62 tightly-clothed sports-persons (selected from
the Sports-1M video dataset [9]) with a diverse range of body shapes, along with correspond-
ing pseudo-ground-truth SMPL shape and pose labels. Figure 3 illustrates the greater body
shape diversity in SSP-3D compared to Human3.6M [7], 3DPW [30] and MoVi [3]. Note
that Human3.6M and MoVi are not in-the-wild and have homogeneous backgrounds.

SMPL shape and pose labels were acquired via optimisation, using an extended version
of SMPLify [2] in a similar manner to the UP-3D dataset [17]. Unlike [2] and [17], we
used multiple frames of the same subject in parallel, obtaining different optimised poses θθθ

∗
n

and camera translations t∗n for each frame n, but forcing the optimised shape βββ
∗ to be the

same across all frames to exploit multi-view information. We used 2D joints, acquired using
Keypoint-RCNN [6], and pixel-accurate silhouettes, acquired using PointRend [13] on top of
FPN [18], as the target 2D observations into which we fit the SMPL model. The use of multi-
frame silhouettes ensures that SSP-3D has significantly more accurate body shape labels than
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(a)

(b)

Dataset No. of Subjects β2 Var β3 Var

SSP-3D 62 4.44 0.52
H3.6M [7] 7 0.17 0.41
3DPW [30] 7 0.39 0.49
MoVi [3] 86 0.68 1.40

(c)
Figure 3: SSP-3D samples and statistics. (a) shows RGB images and corresponding opti-
mised SMPL body shape and pose labels provided in the SSP-3D dataset. It also illustrates
the improvement in shape and pose parameter estimates after optimisation, compared to
initial estimates obtained with VIBE [14]. (b) and (c) demonstrate the greater body shape
diversity in SSP-3D compared to widely-used datasets, by considering the distribution of the
2nd and 3rd shape coefficient labels β2 and β3. (b) plots β2 and β3 for each sample in each
dataset. (c) gives the number of subjects and the variance of β2 and β3 labels in each dataset.
Note that β2 is strongly correlated with variation in body fat content. β1 is not used because
it is strongly correlated with overall size, which is ambiguous in monocular predictions.

UP-3D. To prevent getting stuck in bad local minima, we obtained an initialisation for per-
frame pose and camera parameters, θθθ

init
n and tinit

n , and shape coefficients, βββ
init, by using

VIBE [14], a method for SMPL prediction from video (see Figure 3a). Suitable frames for
optimisation, with good SMPL initialisations and accurate target silhouettes and 2D joints,
were hand-picked by human annotators. Our objective function is the sum of 6 error terms:

E(βββ ,{θθθ n, tn}N
n=1) = λ jE j +λSES +λaEa +λθ Eθ +λβ Eβ +λ

θ initEθ init , (2)
where N is the number of frames and the λ terms represent weights. The silhouette error
term, ES, penalises the L1 difference between target and SMPL silhouettes. It is defined as

ES(βββ ,{θθθ n, tn}N
n=1,K,{Sn}N

n=1) =
1
N

N

∑
n=1

‖Ŝ(ΠK(v̂n(βββ ,θθθ n)+ tn))−Sn‖1

WH
, (3)

where W,H are the width and height of the target silhouettes Sn and v̂n(βββ ,θθθ n) represent the
SMPL vertices for the n-th frame. ΠK() is a perspective-projection with intrinsic camera
parameters K. Neural Mesh Renderer [10] is used to differentiably render SMPL silhouettes
Ŝn from projected vertices.
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E
θ init is a pose regularisation term, which penalises the L2 distance between the current

and initial estimates (from VIBE [14]) of the SMPL pose parameters in rotation matrix form.
We observed that the optimiser would use perspective effects to fit the SMPL model to tar-
get silhouettes of large persons, instead of updating the shape parameters. For example, the
global rotation parameters would be updated to make the SMPL body lean towards the cam-
era, enlarging the rendered silhouette. E

θ init was incorporated to prevent such effects. It is
defined as

E
θ init({θθθ n}N

n=1;{θθθ init
n }N

n=1) =
1
N

N

∑
n=1

‖r(θθθ n)− r(θθθ init
n )‖2

2
|r(θθθ n)|

, (4)

where r(θθθ n)∈R216 represents the vector of flattened and concatenated rotation matrices (for
each of the 24 SMPL joints) corresponding to θθθ n.

E j, Ea, Eθ and Eβ are derived from SMPLify and full definitions can be found in [2]. In
short, E j is a weighted 2D joint reprojection error, Ea is an angle prior term which penalises
unnatural bending of the elbow and knees, Eθ is the negative log-likelihood of a Gaussian
mixture model pose prior and Eβ is a L2 regularisation penalty upon shape parameters.

We optimise our objective function using the Adam [12] optimiser with a learning rate of
0.01. After convergence, a human annotator selects good SMPL fits. Details on the human
annotation, as well as all hyperparameter values, are available in the supplementary material.

4 Implementation Details
Training datasets. To generate synthetic training data, we sample SMPL pose parameters
from the training sets of UP-3D [17] and 3DPW [30], and from Human3.6M [7] subjects S1,
S5, S6, S7 and S8 (after applying MoSh [19] to obtain SMPL poses from 3D joint labels).
For our baseline experiments without shape augmentation, we also use the SMPL shape
parameters from these datasets. Synthetic silhouettes are cropped and resized to 256×256.
Evaluation datasets. We report metrics on Human3.6M (Protocol 2 [8] subjects S9, S11),
3DPW (test set), BML-MoVi [3] (F-PG1 videos) and SSP-3D. For Human3.6M and 3DPW,
we report mean per joint position error after rigid alignment with Procrustes analysis (MPJPE-
PA [21]). For BML-MoVi and SSP-3D, we report scale-corrected per-vertex Euclidean error
in a neutral pose (or T-pose), i.e. PVE-T-SC. A description of the scale-correction tech-
nique used to combat scale ambiguity is given in the supplementary material. We also report
silhouette mean intersection-over-union on SSP-3D.
Architecture. We use a ResNet-18 [5] encoder, the output of which is average pooled,
producing a feature vector φφφ ∈ R512. The regressor network consists of two fully connected
layers with 512 neurons each, followed by an output layer with 157 neurons. We use the
Adam [12] optimiser to train our encoder and regressor, with a learning rate of 0.0001 and
a batch size of 140. We train for 240 epochs, which takes 5 days on a single 2080Ti GPU.
During inference, 2D joint predictions are obtained using Keypoint-RCNN [6] and silhouette
predictions are obtained using DensePose [4]. All implementations are in PyTorch [23].
Inference runs at ∼4fps, 90% of which is silhouette and joint prediction.

5 Empirical Evaluation
In this section, we present results from our ablative study, which investigates the effects of
shape and proxy representation augmentation during synthetic training. We also compare
our method to other approaches in terms of shape and pose accuracy.
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(a)

Input Augmentation SSP-3D H3.6M 3DPW
PVE-T-SC MPJPE-PA MPJPE-PA

GT
Synthetic

Baseline 14.4 40.4 39.0
Shape aug. 10.1 34.1 34.9
PR aug. 16.1 42.2 44.7
Shape+PR aug. 10.0 33.1 37.6

DP +
KPRCNN

Baseline 20.1 70.5 71.3
Shape aug. 24.1 75.5 88.6
PR aug. 18.9 61.0 69.9
Shape+PR aug. 15.9 55.4 66.8

(b)

Figure 4: Ablation study. (a) illustrates that applying shape and proxy representation
(PR) augmentation improves predictions of non-typical body shapes and develops robustness
against noisy inputs. (b) reports pose (MPJPE-PA in mm) and shape (PVE-T-SC in mm) met-
rics when using synthetic proxy representations (rendered from ground-truth SMPL labels)
versus predicted proxy representations (from DensePose and Keypoint-RCNN) as inputs.

(a)

Method SSP-3D MoVi H3.6M 3DPW
PVE-T-SC mIOU PVE-T-SC MPJPE-PA MPJPE-PA

Ours (baseline) 20.1 0.62 13.2 70.5 71.3
Pavlakos et al. [24] - - - 75.9 -
HMR (unpaired) [8] 20.8* 0.61* 14.2* 66.5 -
SPIN (unpaired) [15] - - - 62.0 -
Ours 15.9 0.80 14.0 55.4 66.8

HMR [8] 22.9* 0.69* 15.5* 56.8 71.5*
NBF [22] 20.9* - 14.4* 59.9 90.7*
CMR [16] 19.5* 0.68* 15.2* 50.1 70.3*
SPIN [15] 22.2* 0.70* 14.3* 41.1 59.2

(b)

Figure 5: Quantitative comparison with the SOTA on SSP-3D, MoVi, Human3.6M (Pro-
tocol 2) and 3DPW. We report PVE-T-SC (mm) and mIOU on shape-centric datasets SSP-3D
and MoVi and MPJPE-PA (mm) on pose-centric datasets 3DPW and Human3.6M. (a) plots
the (sorted) distributions of metrics per evaluation sample. (b) lists mean metrics over all
samples. Methods in the top part of (b) do not require training data comprised of images
paired with 3D ground truth, while methods in the bottom part do. Numbers marked with *
were evaluated for this paper, all other numbers are reported by the respective papers.

Ablation studies. Our ablative study investigates the effects of shape and proxy represen-
tation (PR) augmentation applied during synthetic training. We compare four networks,
trained with: (i) no augmentation (baseline), (ii) only shape augmentation, (iii) only PR aug-
mentation and (iv) shape + PR augmentation. Evaluations are carried out with two types of
input proxy representations: synthetic silhouettes and 2D joints generated from GT SMPL
labels and "real" silhouettes and 2D joints predicted from test RGB images using DensePose
[4] and Keypoint-RCNN [6] respectively. SSP-3D evaluates 3D shape prediction across a
diverse range of body shapes, while Human 3.6M and 3DPW evaluate 3D pose prediction.

The quantitative performance of the baseline network on GT synthetic inputs (see Fig-
ure 4b first row) motivates the use of synthetic training data, since, in this ideal case, it
achieves greater than SOTA accuracy (compare with Figure 5b). However, in the practically-
applicable situation using "real" inputs, the baseline network has two key failure modes:
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Figure 6: Qualitative comparison on SSP-3D. Each row shows examples from different
PVE-T-SC quartiles (for our method), top to bottom: 0-25%, 25-50%, 50-75%, 75-100%.
Results from SPIN [15], CMR [16] and HMR [8] are shown for comparison. Our method
is able to accurately predict a diverse range of body shapes, whereas other approaches are
biased towards an average body shape prediction.

firstly, the predicted body shape is inaccurate, particularly for non-typical subjects (see Fig-
ure 4a, top row) and secondly, the network becomes reliant on the perfectly-rendered syn-
thetic inputs and is unable to deal with noisy real inputs. Incorporating shape augmentation
alleviates the first problem, since the network sees a greater variety of shapes during training.
However, the second problem is greatly exacerbated, particularly in cases with occluded sil-
houettes (see Figure 4a, bottom row). Hence, the network trained with shape augmentation
results in better shape (and pose) metrics on synthetic inputs compared to the baseline, as
shown in Figure 4b, while the metrics on real inputs are poor. Incorporating PR augmentation
shrinks the performance deterioration when using real versus synthetic inputs by explicitly
modelling input noise and occlusion during the synthetic training process. By combining PR
and shape augmentation, we are able to predict a diverse range of body shapes, improve our
pose accuracy significantly over the baseline and produce semantically-plausible outputs on
all datasets, even when the input is heavily corrupted (see Figure 4a).
Comparison with the state-of-the-art. Our method, with shape and PR augmentation, sur-
passes the state-of-the-art in terms of PVE-T-SC and mIOU on SSP-3D and MoVi. The dis-
tribution of errors per SSP-3D sample, shown in Figure 5a, suggests that our method is able
to maintain shape prediction accuracy for challenging evaluation samples while the perfor-
mance of competing approaches degrades for samples featuring non-average body shapes,
qualitative examples of which are given in Figure 6. Our method may give erroneous re-
constructions for outlier body shapes, in which case DensePose fails to predict an accurate
silhouette, or due to poses with substantial self-occlusion, as shown in Figure 6 bottom row.
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Figure 7: Qualitative results on Human3.6M (left), 3DPW (middle) and MoVi (right).
Each row shows examples from different error metric quantiles (MPJPE-PA for H3.6M and
3DPW, PVE-T-SC for MoVi). Top to bottom: 0-33%, 33-66%, 66-100%. Input silhouettes
and input 2D keypoints are visualised over each image.

Although we focus on shape prediction, our method is competitive with the SOTA on
H3.6M and 3DPW in terms of MPJPE-PA and outperforms other methods that do not re-
quire training data comprised of images paired with expensive-to-obtain 3D labels. Qual-
itative examples are given in Figure 7. We observe that we perform relatively better on
3DPW than H3.6M, as compared to other methods, particularly up to the median error (Fig-
ure 5a). Methods trained on images captured in an indoor MoCap environment (like H3.6M)
do not maintain the same pose prediction accuracy for test images with unconstrained back-
ground and lighting conditions (like in 3DPW). We create our input proxy representation
using 2D segmentation and detection CNNs, which are more easily trained to be invariant to
such variables. Thus, we match or surpass the SOTA on 3DPW for samples up to the me-
dian MPJPE-PA. However, 3DPW contains samples with severe occlusion (beyond what is
modelled by PR augmentation) and overlapping persons, which cause DensePose to predict
erroneous silhouettes and results in worse MPJPE-PA in the 75-100% quartile.

6 Conclusion
In this paper, we addressed the problem of monocular 3D human shape and pose estimation.
In particular, we observed that current approaches often predict inaccurate body shapes,
particularly for non-typical subjects, due to a lack of body shape diversity in prevalent 3D
human datasets. Thus, we proposed STRAPS, a learning framework that overcomes the lack
of diversity by generating synthetic training data with diverse body shapes on-the-fly, such
that the regressor sees a new body shape at every training iteration. To evaluate our ap-
proach, we created a challenging evaluation dataset for monocular human shape estimation,
SSP-3D, which consists of RGB images of tightly-clothed sports-persons with a variety of
body shapes and corresponding pseudo-ground-truth SMPL shape and pose parameters. We
showed that STRAPS outperforms other approaches on SSP-3D in terms of shape prediction
accuracy, while remaining competitive with the state-of-the-art on pose-centric datasets.
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