
Deep Multi-View Stereo for Dense 3D
Reconstruction from Monocular Endoscopic

Video

Gwangbin Bae1, Ignas Budvytis1, Chung-Kwong Yeung2, and Roberto Cipolla1

1 Department of Engineering, University of Cambridge, Cambridge, United Kingdom
{gb585, ib255, rc10001}@cam.ac.uk

2 Bio-Medical Engineering (HK) Limited, Hong Kong
ck.yeung@nisi.hk

Abstract. 3D reconstruction from monocular endoscopic images is a
challenging task. State-of-the-art multi-view stereo (MVS) algorithms
based on image patch similarity often fail to obtain a dense reconstruc-
tion from weakly-textured endoscopic images. In this paper, we present
a novel deep-learning-based MVS algorithm that can produce a dense
and accurate 3D reconstruction from a monocular endoscopic image se-
quence. Our method consists of three key steps. Firstly, a number of
depth candidates are sampled around the depth prediction made by a
pre-trained CNN. Secondly, each candidate is projected to the other im-
ages in the sequence, and the matching score is measured using a patch
embedding network that maps each image patch into a compact embed-
ding. Finally, the candidate with the highest score is selected for each
pixel. Experiments on colonoscopy videos demonstrate that our patch
embedding network outperforms zero-normalized cross-correlation and
a state-of-the-art stereo matching network in terms of matching accu-
racy and that our MVS algorithm produces several degrees of magnitude
denser reconstruction than the competing methods when same accuracy
filtering is applied.
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1 Introduction

The capability of estimating depth can improve the quality and safety of the
monocular endoscopy. The obtained depth information can be used to estimate
the shape and size of the lesions, improving the accuracy of the visual biopsy,
or to identify the safest navigation path. Numerous attempts have been made
with such motivations. However, methods that require device modification (e.g.
additional light source [13, 10], depth sensors [1], stereo setup [3]) could not be
evaluated in vivo due to engineering and regulatory barriers.

A cheaper alternative is to perform 3D reconstruction directly from the im-
ages by using multi-view geometry. For example, structure-from-motion (SfM)
[14] identifies the matches between multiple images of the scene (taken from
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Fig. 1. Our deep multi-view stereo pipeline

different viewpoints) and jointly optimizes their 3D coordinates and the relative
camera poses by minimizing the reprojection error. The reconstructed points
can be trusted as they are geometrically verified. However, the resulting recon-
struction is very sparse. For a sequence of 8 colonoscopy images (of resolution
624× 540) SfM can only reconstruct about 200 points.

Recent works [5, 8] have shown that it is possible to train deep neural net-
works with sparse SfM reconstruction. After training, such a network can predict
dense pixel-wise depth map for a given image. Nonetheless, the predicted depth
map lacks accuracy as it is generated from a single image, and is not validated
from other viewpoints. For example, single-view depth prediction can be affected
by the presence of motion blur, light speckles, or fluids.

A possible solution is to use multi-view stereo (MVS) algorithms. Once the
camera poses are estimated (e.g. via SfM), an MVS algorithm tries to find the
optimal depth each pixel should have in order for it to be projected to the visually
similar pixels in the other images. However, classical MVS algorithms suffer from
two weaknesses - large search space and poor matching accuracy. For example,
in PatchMatch stereo [2], the depth map is initialized randomly from a uniform
distribution ranging between some pre-set upper (dmax) and lower limit (dmin).
Then, the depths with high matching score are propagated to the neighboring
pixels. In BruteForce stereo [9], selected number of depths ranging from dmin to
dmax are tried for each pixel, and the one with the highest score is selected. In
both scenarios, finding the correct depth becomes challenging if (dmax− dmin) is
large. Another problem with the conventional MVS approaches is the inaccuracy
of the patch-matching. A typical matching function is the zero-normalized cross-
correlation (ZNCC). Since the computational cost increases quadratically with
the patch size, small patch sizes (e.g. 7× 7) are often preferred. However, small
patch can lead to ambiguous matches especially in texture-less images.

In this paper, we present a deep-learning-based MVS pipeline (see Fig. 1)
that can solve the aforementioned problems. The novelty of our approach is
three-fold. Firstly, we use a monocular depth estimation network to constrain
the search space for the depth candidate sampling. Secondly, we introduce a
novel patch embedding network that significantly improves the accuracy and re-
duces the computation cost compared to the ZNCC and other stereo matching
network. Lastly, we demonstrate that, after measuring the scores for the neigh-
boring images in the sequence, selecting the minimum, as opposed to maximum,
improves the quality of the reconstruction by enforcing the multi-view consis-
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Fig. 2. (a-b) Sparse reconstruction obtained via SfM. (c-d) Dense depth prediction
obtained via CNN trained on SfM reconstructions.

tency. Our method is evaluated on colonoscopy videos but can be extended to
any monocular endoscopy.

2 Method

Our method consists of three pre-processing steps followed by a multi-view stereo
reconstruction. The three pre-processing steps are (1) sparse reconstruction via
SfM, (2) monocular depth estimation, and (3) embedding vector generation via
patch embedding network. Then, the MVS pipeline generates a geometrically
validated 3D reconstruction. The following sections provide details of each step.

2.1 Sparse Depth and Camera Pose Estimation via SfM

Firstly, the sparse reconstruction and relative camera poses are estimated via
SfM. In order to minimize the effect of the non-rigid surface deformation, the
endoscopy videos are split into short sequences, consisting of 8 consecutive frames
separated by 0.08 seconds. For each sequence, the SfM reconstruction is obtained
using OpenSfM [9]. When optimizing the 3D feature coordinates and the camera
poses, only the features that appear in all 8 images are considered. This ensures
that the camera poses are supported by all feature coordinates and are hence
accurate. See Fig. 2 for an example of a resulting sparse reconstruction.

2.2 Dense Depth Prediction via CNN

The sparse reconstruction obtained via SfM is then used to train a monocu-
lar depth estimation network. Due to the inherent scale ambiguity of SfM, the
training loss is computed after matching the scale of the prediction to that of
the ground truth. More formally, the loss is defined as:
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Fig. 3. (a) The architecture of our patch embedding network. (b) During training, a
reference patch and the target image are passed through the network and the score
distribution is optimized.

L = min
s∈S

∑
p

1
(
dtruep > 0

) (
dtruep − s× dpredp

)2
(1)

where S is a discrete set of scaling factors (e.g. ranging from 0.5 to 2.0) and
1
(
dtruep > 0

)
is a binary variable which is equal to 1 if a true depth is available

for the pixel p = (u, v) and is 0 otherwise. By applying such scale-invariant loss,
the network is able to learn the relative depth (i.e. the ratio between pixel-wise
depths). In this paper, we use the U-Net architecture [12] with a single output
channel. See Fig. 2 for an example of a predicted depth map.

2.3 Pixel-wise Embedding via Patch Embedding Network

The goal of the patch embedding network is to map an image patch around each
pixel into an embedding vector f, so that the dot product between two vectors
can be used as a measure of their patch similarity. Inspired by the SIFT feature
descriptor [6], we divide the receptive field (of size 49× 49 pixel) into 7× 7 cells
of the same size. Then, a 7 × 7 convolutional layer (with 64 output channels)
is used to identify the low-level features in each cell. This results in a feature
map of size 7 × 7 × 64. Then, a set of three convolutional layers with 3 × 3
kernels maps the feature map into a 64-dimensional vector. The same network
can be applied to a full image (suitably padded) using dilated convolutions (see
Fig. 3). Each convolutional layer is followed by a batch normalization and a
rectified linear unit (ReLU). Following Luo et. al. [7], we use linear activation
in the last layer to preserve the information in the negative values. Compared
to the conventional patch embedding networks which use repeated convolutional
layers of small size (e.g. [15, 7, 16]), our architecture can incorporate larger visual
context while having fewer parameters. Lastly, the output vector is normalized,
so that the dot product of two vectors can range between −1 and 1.
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Fig. 3 illustrates the training pipeline. Suppose that the pixel p in the ref-
erence image corresponds to the pixel qtrue in the target image. The reference
patch (centered at p) and the target image pass through the embedding network
(the two branches share the parameters). The network outputs a vector f ref

p and

a vector map of size H×W ×64. f ref
p is then multiplied to the embedding vector

at each pixel in the target image. This generates a pixel-wise score distribution.

Ideally, we want the score to be high only near the pixel qtrue. To achieve
this objective, we introduce a novel soft contrastive loss, which is defined as:

Lp,qtrue =
∑
q

max(wq, 0)
(

1− f ref
p · f target

q

)
+
∑
q

max(−wq, 0) max
(
f ref
p · f target

q − α, 0
)

where wq = cos

(
||q− qtrue||π

5

)
if ||q− qtrue|| ≤ 5 and −1 otherwise.

(2)

As a result, the score is maximized if q is less than 2.5 pixels away from qtrue

and is minimized elsewhere if it is larger than the threshold, α. In this paper α
is set to 0.7 empirically.

2.4 Deep Multi-View Stereo Reconstruction

Our MVS reconstruction pipeline consists of three key steps. Firstly, 50 depth
candidates are sampled uniformly from 0.9×dpred to 1.1×dpred, where dpred is the
predicted depth. Each candidate is then projected to all the other images in the
sequence, and the score is measured for each of them. This gives Nimage−1 scores.
From these, the minimum is selected and is assigned to the depth candidate.
Once the score is assigned to every candidate, the one with the highest score is
selected. More formally, the depth at pixel p in the i-th image is selected as:

d̂ip = argmax
d∈D

[
min
j

(
f ip · f

j
P j(d)

)]
(3)

where D and P j(d) represent the set of depth candidates and the projection of
the depth candidate d on the j-th image.

The resulting depth-map is then filtered via view consistency check. In this
step, d̂ip is projected to a different image in the sequence and is compared to the
estimated depth value at the projected pixel. If there is less than 1% difference
between the two values, the two depths are considered ”consistent”. If this is
satisfied for all 7 images in the sequence, d̂ip is merged into the final reconstruc-
tion. The number of survived pixels is then used as a quantitative measure of
the reconstruction accuracy.
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Fig. 4. Qualitative comparison between the score distribution generated by different
methods shows that our method leads to significantly reduced matching ambiguity.

3 Experiments

3.1 Experimental Setup

Our dataset consists of 51 colonoscopy videos, each containing a full procedure
(∼ 20min) of a different patient. 201,814 image sequences are extracted, of which
34,868 are successfully reconstructed via SfM. The sequences from 40 videos are
used to train, validate and test the depth estimation network and the patch em-
bedding network. For the training and testing of the patch embedding network,
the SIFT [6] features that survived the SfM reconstruction are used to estab-
lish the ground truth matching. Lastly, the performance of our MVS pipeline is
tested on the sequences from the remaining 11 videos.

The depth estimation and patch embedding networks are implemented and
trained using PyTorch [11] framework. Both networks are trained for 80 epochs
with a batch size of 32 using Adam optimizer [4] (β1 = 0.9, β2 = 0.999). The
learning rate is set to 0.001 and is reduced every 20 epochs, to 0.0007, 0.0003
and 0.0001, respectively.

3.2 Accuracy of the Patch Embedding Network

The aim of this experiment is to quantitatively evaluate the matching accuracy
of our patch embedding network. The accuracy is measured as following: The
embedding vector generated for the reference pixel is convolved with all the
embeddings in the target image. The pixel in the target image that maximizes
the score (i.e. dot product) is then selected as qpred. The error is defined as
||qpred−qtrue||. We report the median error and the percentage of matches with
error larger than 3, 5, and 10 pixels. We also measure the time it takes to run a
stereo reconstruction with each scoring method. Table 1 shows the results.
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Table 1. Accuracy of stereo matching networks and ZNCC-based matching

Patch Size # Params Median Error > 3px > 5px > 10px Runtime(s)

ZNCC 7× 7 N/A 125.419 0.675 0.671 0.664 64.9
ZNCC 29× 29 N/A 1.0 0.174 0.127 0.109 777.3
ZNCC 49× 49 N/A 1.414 0.209 0.135 0.097 2029.1

Luo et. al.[7] 37× 37 695136 1.000 0.064 0.034 0.020 28.0
Ours 49× 49 120768 1.000 0.077 0.028 0.013 28.0

Table 2. Number of pixels that survive view consistency check

Method Search Space Matching Function Score Selection Average Median

BruteForce[9] (dmin, dmax) ZNCC (7× 7) Max 31 6
PatchMatch[9] (dmin, dmax) ZNCC (7× 7) Max 17 1

ZNCC (7× 7) Max 157 29
DeepNet ([7]) Max 164 39

Ours (0.9, 1.1)× dpred DeepNet (ours) Max 479 96
DeepNet ([7]) Min 5910 3622

DeepNet (ours) Min 10454 6452

While small patch does not contain sufficient information, large patch in-
cludes the surrounding pixels the appearance of which is highly view-dependent.
This explains why the accuracy of the ZNCC matching peaks at an intermediate
patch size (29×29). On the contrary, deep-learning-based approaches show high
accuracy despite the large patch size. Compared to the state-of-the-art stereo
matching network [7], our network contains fewer parameters, has larger recep-
tive field, and achieves better accuracy except for the 3 pixel error rate. Since
the patch embedding networks encode each patch into a concise representation,
the matching requires less computation compared to the ZNCC, resulting in
significantly reduced reconstruction runtime.

Fig. 4 shows the score distribution generated by each method. For ZNCC,
small patch leads to ambiguous matches, while large patch results in over-
smoothed score distribution. Our network, compared to Luo et. al. [7], shows
high score only near the correct pixel. This is mainly due to the soft-contrastive
loss (Eq. 2) which penalizes the large scores at incorrect pixels.

3.3 Evaluation of the MVS Reconstruction

This experiment aims to compare the accuracy of our MVS pipeline to that of
the competing methods. Since ground truth dense reconstruction is not available,
we use the number of pixels that survive the view consistency check (see Sect.
2.4) as a quantitative measure of accuracy. Table 2 shows the obtained results.
For our method, we also show the contribution of each component. Compared to
the BruteForce and PatchMatch reconstruciton (implemented in OpenSfM [9]),
our method produces several orders of magnitude denser reconstruction. Fig. 5
provides qualitative comparison between the resulting 3D reconstructions.
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Fig. 5. 3D reconstructions obtained from different methods

Fig. 6. (a) Visual justification for selecting the minimum score. (b) Trade-off between
density and accuracy.

Fig. 6 shows the results of two additional experiments. Firstly, the score
for each depth candidate is computed with different n-th best selection of the
matching score. In BruteForce and PatchMatch, the maximum is selected, while
we choose the minimum. The result shows that selecting the 7-th best (i.e. min-
imum) enforces the depth candidate to be supported by all available views,
thereby suppressing the scores of the ambiguous matches. Such behavior is best
observed when using our patch embedding network. Second experiment shows
the relationship between the minimum number of consistent view (used in depth
cleaning) and the number of survived pixels. By decreasing this parameter, it is
possible to obtain denser reconstruction, while sacrificing the accuracy.

4 Conclusion

In this work, we proposed a deep-learning-based multi-view stereo reconstruction
method that can produce dense and accurate 3D reconstruction from a sequence
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of monocular endoscopic images. We demonstrated that a pre-trained depth es-
timation network can constrain the search space and improve the reconstruction
accuracy. We also introduced a novel patch embedding network that outperforms
ZNCC and the state-of-the-art stereo matching network. For a fixed constraint
on view consistency, our method produces several degrees of magnitude denser
reconstruction than the competing methods.
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