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Abstract

Typical place recognition is dependent on the visual ap-
pearance and camera position of query images, without
explicit use of domain knowledge and geometric relation-
ships between key features in the scene. We exploit semantic
grouping of pixels, and camera-pose robust scene graphs to
perform structure-based visual localization for place recog-
nition. In particular, we first formulate place recognition as
an image retrieval task. Then, we lift the omnidirectional
input images into 3D space, and compute a rotation and
translation invariant semantic graph embedding to encode
query and reference images. Finally, place information is
obtained through graph similarity matching. Our graph
representation is a simple addition to standard image em-
beddings with minimal overhead, but contains awareness
of objects and their geometric relationships. In our ex-
periments, we show improvement over typical place recog-
nition, especially in environments with repetitions and dy-
namic appearance changes.

1. Introduction

Visual place recognition determines the camera’s loca-

tion given its current view. It is an important problem in

computer vision and robotics [1, 38, 36, 33], and is rel-

evant for a wide range of applications (e.g., autonomous

driving [13], augmented reality [27]). Efforts have been

made to overcome challenges such as illumination and ap-

pearance changes [33] and viewpoint variations [35]. Tra-

ditional approaches formulate the task as image retrieval,

and estimate the query location using the labels of the most

visually similar images from a reference dataset. Typically,

visual place recognition is tackled with perspective images,

as many large scale datasets are available (e.g. Aachen Day-

Night, RobotCar Seasons and InLoc [30, 26, 36]). Recent

work explores place recognition with panoramic and omni-

directional images [19, 6]. Similarly, in our work we focus

Figure 1. Two visually dissimilar views in the same room are

challenging for omnidirectional visual localization due to distor-

tions and object discontinuity. Our method groups object pixels

and introduces a relationship graph by lifting images into 3D and

using graph embeddings for comparison. (Colors for illustration

purpose only)

on equirectangular projections of omnidirectional images.

Omnidirectional images provide a maximum field of view

and enable speedup during database acquisition for a thor-

ough map coverage. Furthermore, the calibration parame-

ters of different cameras are normalized to the same repre-

sentation on the sphere. Here we also note, the popularity of

omnidirectional capturing devices such as GoPro Max, In-

sta360 and Ricoh Theta is rapidly increasing, making omni-

directional images in computer vision increasingly relevant,

for example in object detection [11], semantic segmentation

[42], depth estimation [47] and camera re-localization [45].

Visual feature-based localization struggles with appear-

ance changes caused by annual seasons or variable indoor

surfaces such as monitors or bed linen. In [37], semantic

information was exploited to score the feature correspon-

dence. Semantic visual localization [31] combines seman-

tics and 3D geometry in a generative descriptor learning for

robust localization. In contrast, indoor appearance changes

have not received much attention, though a recent dataset
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was introduced in [40] to evaluate camera re-localization on

different types of scene changes. In our work, we exploit in-

stance level segmentation, and use segmentation for known

classes in particular. We reason, since the reference dataset

contains information about the domain, it is reasonable to

utilize common objects in the scenes. Alternatively the ob-

jectness score may be employed directly. Furthermore, we

alleviate the issue of appearance repetitions by utilizing ge-

ometric object relationships. In the following we focus on

this concepts in particular.

Scene graph for semantic image retrieval [22] explicitly

captures attributes of objects and relationships between ob-

jects. Replacing textual queries with scene graphs allows

describing the semantics accurately. A scene graph is com-

posed of nodes and edges. For a given image, nodes rep-

resent objects, and edges denote the relationship between

them. To handle the scene graph representation, graph neu-

ral network approaches [23, 15] are used. An approach for

image-to-image retrieval using scene graph similarity was

proposed recently by [44].

In contrast to image scene graphs, we propose to lift the

relations of objects in 2D images into 3D space. There are

few works on 3D scene graph representation and genera-

tion [2, 39]. Inspired by these, we propose to represent an

equirectangular image in 3D space. Our idea is to seman-

tically aggregate expressive local features to form objects,

and use geometric relationships to reduce object ambiguity,

e.g. office desks or chairs all look similar. Our hypothesis

is that the semantically aggregated features have enhanced

discriminating information as location-based relationships

between pixels are considered during aggregation through

iterative graph-based message passing. Furthermore, we

use simple spatial information of objects in 3D scene graphs

to make our graphs translation and rotation invariant.

Our scene graph generated from equirectangular images

is visualized in Fig. 1. We first predict instance segmen-

tation and dense depth using omnidirectional input views.

With per-pixel instance label and depth, we generate 3D

scene graphs where each node is attached to CNN features.

Edges are built by thresholding the distance between ob-

jects. Finally we apply graph similarity learning to optimize

graph embeddings for the place recognition task. To vali-

date our approach we use both synthetic and real datasets

for evaluation: (i) Inspired by Clevr[21], OmniClevr is

created to verify our hypothesis that relationship graphs

are important for retrieval. (ii) Experiments on Stanford-

2D3DS [3] demonstrate that our proposed method using

predicted graphs outperforms state-of-the-art methods. In

summary, our contributions are:

1. We employ object instance segmentation to group

pixel-features using semantics;

2. We propose to lift the 2D scene graph into 3D space

and use object distances to encode edges, to ensure

translation and rotation invariance;

3. We exploit graph neural networks to formulate image

similarity learning, and show superior results in syn-

thetic and real datasets.

2. Related Work
Our work is related to omnidirectional image under-

standing such as object detection and depth estimation, and

also 3D scene graph representations and their applications.

Object Detection Modern object detectors in 2D im-

ages are usually based on a two-stage approach. For in-

stance, region-based CNN (R-CNN) [16] first makes a

set of region proposals, then a convolutional network re-

gresses the bounding boxes and class of an object. Mask

R-CNN [18] added a branch for object mask prediction and

is the most popular approach for object instance segmen-

tation. Recently, with growing interest towards omnidi-

rectional views, object detection in omnidirectional images

emerged. Su et al. [34] facilitate omnidirectional object de-

tection via a network distillation which extracts the tangent

plane of spherical images, and applies rectangular kernels.

Yang et al. [43] utilize perspective-projection based detec-

tor on a real-world dataset. However, the annotations of the

objects are rectangular shape and would have been distorted

on the sphere. Coors et al. [11] propose sphere convolution

to solve the distortion in equirectangular images.

Depth Estimation The majority of recent CNN architec-

tures for dense depth estimation follow the encoder-decoder

structure. The encoder takes a RGB input and summarizes it

to features at much smaller resolution, while the decoder re-

gresses these features to the desired output by upsampling.

For equirectangular images, Zioulis et al. [47] propose a set

of rectangular filter banks to handle the projection distor-

tions by increasing the receptive field of convolution ker-

nels. Rather than working on panoramic or equirectangular

images directly, the cube map representation simplifies the

view to 6 cube faces. Cheng et al. [8] apply cube padding

to reduce the information loss along edges between faces.

Wang et al. [41] extend cube padding to spherical padding

and proposed a two-branch encoder-decoder network for

panorama depth estimation. Chen et al. [7] introduce a

distortion-aware module and exploited strip pooling to pre-

serve more context information.

3D Scene Graphs Armeni et al. [2] generate 3D scene

graphs which holds object relationships, camera poses and

room-building hierarchies. Here, a semi-automatic frame-

work is proposed to alleviate manual labeling. The method

employs existing detection methods on multiple perspective

images sampled from an equirectangular image. However,

this sample and detect procedure inevitably increases the
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Figure 2. Our method is composed of three main parts: feature extraction, scene graph generation and graph similarity learning. We predict

instance segmentation and dense depth given equirectangular input. These are used to lift images into 3D space. Here, red dots denote

predicted object instance and green lines show the edges connecting nearby objects. We leverage a graph embedding network to learn the

graph vector for the retrieval task.

computation and relies on post-processing for panoramic

object detection. Towards the goal of 3D scene understand-

ing, Wald et al. [39] introduce a semantically rich indoor

scene graph dataset and propose a learning-based method to

regress scene graphs. However, the method requires scene

point cloud as input which limits its applicability.

Garanderie et al. [12] adapt contemporary automotive

datasets with style and projection transformation to recover

scene depth and 3D pose of vehicles. However, object se-

mantics such as vehicles are not suitable for outdoor vi-

sual localization task. For indoor scene, Guerrero-Viu et
al. [17] use object location and class information present in

the scene to recover instance segmentation masks and place

them inside the 3D room layout. Although semantic and

spatial information are also exploited in our method, our

goal is to enable graph similarity learning, rather than re-

construct 3D room layout.

3. Proposed Graphical VLAD (GraphVLAD)
The overall pipeline of our method for omnidirectional

place recognition is shown in Fig. 2. Our method includes

traditional feature encoding, our scene graph generation and

the graph similarity learning. Our scene graphs are build

from NetVLAD [1] features, instance proposal and depth

estimation. This process transforms an equirectangular im-

ages to nodes with semantically aggregated features and 3D

positions. This all enables graph-based similarity learning

using both semantics and geometry. In the following, we

demonstrate how to adapt existing methods to infer seman-

tics and geometry for indoor panorama images. In partic-

ular, we will first introduce the feature extractor used by

our work. Then, we describe how we generate scene graph

representations from equirectangular images. Finally, we

present our graph embedding network.

3.1. NetVLAD Image Feature Encoding

We follow the image retrieval approach to address

equirectangular place recognition. Typical methods either

concatenate activations of certain layers or use max pool-

ing [5, 4]. State-of-the-art methods which finetune network

end-to-end for place recognition include NetVLAD [1] for

VLAD [20] and [28] for Fisher Vector [29]. In this work,

we use NetVLAD as our feature base, but any feature ex-

tractor may be used. Later, we explain how to exploit geo-

metric relationships for our features.

A trainable VLAD layer was proposed in NetVLAD [1]

to mimic VLAD in a CNN framework. Please refer to [1]

for detail. Briefly, given N D-dimensional local pixel de-

scriptors as input, and K automatically found cluster cen-

tres, the output of NetVLAD at each pixel is a K ×D ma-

trix relating to the descriptor distance to each cluster center.

Finally all pixel matrices are simply aggregated into a sin-

gle matrix. It is then flattened and normalized, followed by

PCA to reduce the dimensionality. The reduced vector is

then used as the image embedding for the image retrieval

task. In our method, we use NetVLAD’s output with cru-

cial changes: Instead of summing up all N pixel matrices

in a orderless way, we maintain the spatial structure so we

can later apply instance-level and graph-level aggregation.

Thus, NetVLAD generates a H ′ × W ′ × K × D feature

map for images of size H × W , where H ′ = H/16 and

W ′ = W/16.

3.2. Generating Lifted Scene Graphs

In this section, we describe our method to generate 3D

scene graphs from equirectangular images. First we extract

object instances, then we lift the images into 3D and utilize

camera-motion invariant properties for our graphs.

Equirectangular Instance Segmentation The goal of

our instance segmentation is to identify each object and

group its pixel features into nodes of the graph. While gen-

eral objectness may be applied, we found it is beneficial to

build on known object categories in the scene. This is pos-

sible, as we have access to a reference dataset that contains

relevant objects. To the best of our knowledge, there is no

instance segmentation method that is trained on large-scale

equirectangular datasets, although omnidirectional object

detection dataset exist [9]. On the other hand, standard pla-
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nar Mask R-CNN [18] have strong pretrained models on

planar large-scale datasets like COCO [25]. Unfortunately,

the simple application of Mask R-CNN1 on equirectangu-

lar images produced unstable segmentation results. Thus

we refined the model on image segmentation of Stanford-

2D3DS, using training set alone, to classify 13 relevant

classes. Finally, to overcome the problem of discontinu-

ity, we generated two sets of detections: one on original

equirectangular image, and one on the equirectangular pro-

jection after 180◦ rotation around the vertical axis. Final de-

tections are filtered by non-maximum suppression (NMS).

We found this works well to identify and segment objects

reliably. We keep detected objects with at least 0.7 ob-

jectness confidence and the intersection over union (IoU)

threshold of NMS is set to 0.5. Un-segmented pixels are

aggregated as “unknown” node and is added to the scene

graph to contain global image features. Finally we note,

future improvement on instance level segmentation will di-

rectly translate into better performance for our method.

Equirectangular Depth Estimation Extracting camera

invariant relationships between objects is possible by lifting

images into 3D geometry. Given depth, we can generate

a 3D scene from 2D equirectangular images. In [47] two

architectures to estimate depth maps from equirectangular

images were presented. We use the RectNet architecture,

since it was the best performing method. Again, we increase

accuracy by finetuning to the training split of Stanford-

2D3DS. The input image size we used was 512 × 256. As

before, any depth estimation module could be used, and fu-

ture improvements will directly translate into improved per-

formance.

Pose-Invariant Scene Graphs Now we have object

masks from instance segmentation and the 3D location of

each pixel from the depth. We generate the nodes of the

graph by aggregating the pixel features for each object

through summation. We also extract the median 3D coor-

dinate location of each object, and span an edge between

objects that have small euclidean distances (Fig. 2). Note,

self-loop is not added to edges. Thus our graph is camera

pose independent and contains information of objects and

their spatial relationships in 3D world.

3.3. Graph Embedding via Similarity Learning

Each image is expressed through a scene graph as given

in the section above. We now apply graph similarity learn-

ing to obtain our graph embedding network weights. In

particular, a graph embedding module translates each graph

into a vector, and a similarity metric is learnt to measure the

similarity between graphs. We adapt the graph embedding

network from [24] to learn the graph similarity for image

retrieval.

1https://github.com/facebookresearch/detectron2

A scene graph G = (V,E) is represented as a set of

nodes V and edges E. Optionally, each node i ∈ V is as-

sociated with a feature vector xi and each edge (i, j) ∈ E
associated with a feature vector xij . In our work, nodes

are objects, and the associated feature vector is the aggre-

gation of NetVLAD descriptor at each pixel as described in

Section 3.1, i.e. the sum of residues of K clusters with D di-

mensional features as a K×D matrix. Our edges are based

on threshold distance values between object locations, and

thus no descriptor is attached. Now the graph embedding

module comprises three parts: the encoder, the propagation

layers and the final graph aggregator. Before we start the

description of our design, we emphasize that a simple sum

of all nodes in our graph will result in an image descriptor

that is similar to original NetVLAD as in essence all pixel

features are summed.

The encoder maps the node and edge features to initial

node and edge vectors h0
i and e0ij respectively. Since we use

NetVLAD [1] to extract per-pixel feature maps our encod-

ing is already rich, and we simply assign h0
i = xi while e0ij

is unused.

Our propagation layer passes messages between nodes

along edges. Here, node features ht
i get new representation

ht+1
i using messages mj→i

mj→i = fm(ht
i, h

t
j) (1)

ht+1
i = fn(h

t
i,

1

‖Ei‖
∑

(j,i)∈Ei

mj→i) (2)

where Ei ⊂ E contains all edges (j, i) connecting to i.
Both fm and fn use sum of gating function

f = σ(MLPi
gate(hi, hj))� ht

i + σ(MLP
j
gate(hi, hj))� ht

j

(3)

but with varying learnable weights. Here, MLPi
gate and

MLP
j
gate are gating MLPs also with different learnable

weights. We use gating without additional feature MLP to

avoid overfitting and emulate the summing of NetVLAD

features. If no edges (j, i) exist, ht
i = ht+1

i .

Lastly, our aggregator takes the set of final node repre-

sentations hT
i and computes a graph level representation as

follows:

hG = MLPG(
∑

i∈V
σ(MLPgate(h

T
i ))�MLPnode(h

T
i )) (4)

which transforms node representations and use weighted

sum of nodes with gating functions. Both MLPgate and

MLPnode are row kernels convoluted with features of each

cluster. Following [1], MLPG is a PCA based conversion of

the feature matrices.

Using graph representations hG for all images, we train

our graph similarity module on a set of example triplets. In

particular, given triplets where Gq is the query graph, Gp
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Figure 3. Example query images from OmniClevr are shown. Top row illustrates object changes: None, Move, Addition and Deletion;

Bottom row shows camera motions: None, Translation, Zooming and Roll (both left to right).

the positive graph and Gn the negative graph, we optimize

the margin-based triplet loss [32]:

L = EGq,Gp,Gn [max{0, d(Gq, Gp)−d(Gq, Gn)+γ}] (5)

where d(Gq, Gp) = ‖hGq − hGp‖2 is the Euclidean dis-

tance, and γ = 1.0 is the margin used in our experiments.

We note, weights for NetVLAD, instance segmentation and

depth estimation are not trainable.

4. Datasets and Training Setup
In this section, we introduce our datasets and evalua-

tion protocol for the task of omnidirectional image retrieval.

Overall, two datasets with synthetic and real data are used.

4.1. Datasets

Inspired by Clevr [21], we create an equirectangu-

lar version of Clevr called OmniClevr for the image re-

trieval study. To demonstrate the strength of our method

for equirectangular place recognition, we use Stanford-

2D3DS [3] to evaluate our method and conduct ablation ex-

periments.

OmniClevr Dataset In order to verify the idea that ex-

plicit knowledge of semantics and geometry is beneficial

for omnidirectional image retrieval, we introduce our Om-

niClevr dataset (Fig. 3). This Blender-based synthetic en-

vironment includes a room of size 16m × 16m and height

5m, containing objects of different shapes and colors, and

a randomly placed camera is used to observe the scene. We

fix the camera height at 2m, and its location is limited to

the central 10m×10m area of the room. We create training

data of 200 scenes with randomly selected 5-10 objects per

scene, each with random color, shape and material as de-

fined by the Clevr dataset [21].2 For each scene, 10 images

with random camera position and orientation are rendered

and used for similarity learning. The validation consist of

50 different scenes. Similarly, 10 images per scene are used

as reference images. As for query images, we design multi-

ple subsets to systematically investigate the effect of various

2https://github.com/facebookresearch/clevr-dataset-gen

factors on retrieval. The first split is called “object”, which

includes 4 object-centric variations: none, move, addition

and deletion. Moves may apply to all objects, but are lim-

ited to a 1m× 1m area. Addition and deletion is limited to

one object only. The second split is called “camera”. This

is to study the robustness of image retrieval against camera

motion. To render query images, we randomly choose one

reference image and start with the selected camera position

and rotation. Then we render images with 3 optional cam-

era movements: (i) horizontal translation, (ii) zoom in/out

and (iii) roll rotation. 3 For each case we render 5 query im-

ages. Finally, 35 query images per scene are generated for

validating purpose. In total, this gives us 2,000 images for

training and 2,250 images for validation. Specifically, 500

and 1,750 images are used as reference images and query

images, respectively.

Stanford-2D3DS Stanford-2D3DS [3] is a real indoor

dataset consisting of 6 building-scale areas. There are in

total 1,413 equirectangular images captured with annotated

room labels. The dataset features similar room layout and

repetitive texture which makes it a challenging dataset for

image retrieval. In our evaluation protocol, we first split

all rooms into two geographically disjoint splits: training

and validation. To minimise the bias towards any specific

room type, e.g. offices and hallways, we ensure that the ra-

tio of each room type falling into training and validation is

the same. Training split is used to learn a similarity met-

ric so that image embeddings captured in the same room

are similar, while images from different rooms are faraway.

The training split includes 884 images while validation set

contains 529 images. During validation, images from the

validation set are further partitioned into reference set and

query set. 107 images among 529 are used as query images.

Images from training set are also added to reference set dur-

ing validation as distractors, resulting in a reference set of

1,306 images.

3Camera roll rotation is uniformly sampling within the range of [-pi, pi]. Camera
translation and zooming is implemented by uniformly sampling within the range of
[7m, 7m] along X and Y axis, respectively.
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Method Dist.(m) Recall@1 Recall@5 Recall@10
NetVLAD - 73.2 84.6 90.7

GraphVLAD

0 90.6 95.9 97.4

1 90.9 96.5 97.6

3 92.1 97.1 98.0

7 92.1 97.0 98.1
Inf 91.6 96.5 97.8

NetVLADt - 83.2 94.0 96.3

GraphVLADt 3 93.2 97.2 98.2
Table 1. Quantitative comparison on OmniClevr. Average of re-

calls of all validation types are reported. GraphVLADt with

d = 3m performs best. All our experiments except d = 0 use

single propagation layer.

4.2. Training Setup and Details

On both OmniClevr and Stanford-2D3DS, we use

NetVLAD with pretrained VGG-16 backbone. The weights

of pretrained NetVLAD are taken from [10]. To obtain

NetVLAD features, images are first upsampled to 2048 ×
1024 and fed to NetVLAD as input. We use the 128 × 64
output where each pixel has a descriptor of 64 × 512. In-

stance segmentation and depth are resized to 128×64 using

nearest neighbor downsampling to match NetVLAD output

spatial dimension. Our method is implemented using Py-

Torch 1.80 with Geometric extension [14]. We use an Adam

optimizer with learning rate set to 10−4. In all experiments

the network is trained with batch size 16 up to 1k epochs.

We report the recalls for top N retrieved database images

on the query set.

5. Results

In this section we present the results of our method (de-

noted GraphVLAD): (i) on an ablation study using a syn-

thetic dataset and (ii) on a real indoor dataset.

5.1. Results on OmniClevr

For our first image retrieval experiment, we evaluate our

method on the OmniClevr dataset. Inspired by Clevr [21],

this dataset features equirectangular representation of a syn-

thetic environment with compositions of objects. Ground

truth instance segmentation and depth information are used

in our method assuming they are predicted perfectly. Alter-

natively, it is trivial to train instance segmentation and depth

estimation as shown in Section 3.2.

Baseline comparisons Our GraphVLAD uses generated

scene graphs with NetVLAD features at the nodes. The

edges are based on varying distance thresholds d, and we

note d = 3m performed best. We apply one propagation

layer. In Table 1, we report recalls of top N retrieved images

on combined object split and camera split. GraphVLAD

improves upon NetVLAD with Recall@1 of 92.1 versus

Figure 4. Recalls of GraphVLADt and NetVLADt on OmniClevr

for each validation type. Our GraphVLADt is invariant to camera

motion and more robust to object dynamics.

73.2. Here we also note, off-the-shelf NetVLAD was pre-

trained on real images, and it is not expected to perform

well on OmniClevr. Therefore, we also trained NetVLAD

on OmniClevr from scratch, denoted NetVLADt. Simi-

larly, GraphVLADt uses these retrained NetVLAD features.

Now Recall@1 improves to 83.2 for NetVLAD, while our

GraphVLADt now scores 93.2. We note, overall perfor-

mance is improved with graphs, and GraphVLAD directly

benefits from improved NetVLAD features.

Effect of object dynamics In Fig. 4, we show the ROC

curves of NetVLADt and GraphVLADt on the different

groups of the OmniClevr validation set. Static scenes (de-

noted None) are relatively easy for image retrieval while

object dynamics such as object motion and changes pose

more challenging tasks. Here, NetVLADt struggles espe-

cially with addition or deletion of objects, resulting in a 71.6

and 63.2 recall@1, respectively. In contrast, GraphVLADt

benefits from the graph embedding which is more robust

than appearance alone, resulting in much better recall@1

for addition and deletion of 78.4 and 80.4 respectively. Ob-

ject motion is less challenging, but our method again out-

performs NetVLADt.

Effect of camera motion Another critical factor eval-

uated in Fig. 4 is view variation due to camera motion,

especially across reference set and query set. We note,

NetVLADt performs particularly poor for camera under roll

rotation and zoom, with only 72.4 and 82.4 recall@1, re-

spectively. In stark contrast, GraphVLADt achieves 96.0

and 95.2 recall@1 respectively, benefiting from our rota-

tion and translation invariant graph embedding. Similarly,

translation is improved for GraphVLADt, while NetVLAD

performs reasonably.

Effect of message passing Message passing in graph

similarity learning plays an important role. Specifically, we

control context awareness through larger receptive fields via

the edge distance thresholds in our graphs. In Table 1 we
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(a) (b) (c) (d)
Figure 5. Qualitative comparison of GraphVLADt with NetVLADt on OmniClevr. Proposed GraphVLADt retrieves the correct database

images when camera is translated (a), rotated (b) or zoomed (c), and an object is modified (d). From top to bottom, query image,

NetVLAD retrieval and our retrieval are shown.

apply GraphVLAD (with pretrained weights) using varying

distance thresholds d. Without message passing (d = 0m)

recall@1 is reduced to 90.6, while d = 1 improves perfor-

mance to 90.9. Overall, we achieve best performance with a

larger set of edges, at the cost of efficiency. Our best results

are achieved with d = 3 at 92.1 recall@1. Thus we believe

accumulating neighbourhood features is beneficial for our

method.

Qualitative results In Fig. 5, we show qualitative re-

trieval results. Comparing to NetVLADt, our GraphVLADt

shows its strength under challenging scene changes. In par-

ticular, our method enables correct matching under cam-

era translation and rotation in Fig. 5(a) and Fig. 5(b). Fur-

thermore, appearance distortion due to zooming is handled

since 3D position is estimated and used in graph build-

ing Fig. 5(c). When a new object is added to the scene,

our method is robust against dynamics because of message

passing between nearby objects Fig. 5(d).

5.2. Results on Stanford-2D3DS

For our second experiment of place recognition, we show

the results on the real indoor Stanford-2D3DS dataset de-

scribed in Section 4.1. We evaluate our method using both

ground truth scene graphs and our predicted ones.

Baseline comparisons We first discuss Table 2, which

compares image retrieval performance of our method to the

baselines. First let us discuss our baseline alternatives. We

compare ResNet-50 trained on Places365 [46], NetVLAD

trained on Pitts30k [1], and NetVLAD trained or refined on

images of Stanford-2D3DS. For ResNet-50, images are re-

sized to 224×224 and the feature map after average pooling

is used as image descriptor. For NetVLAD, input images

Method R@1 R@5 R@10 Train setting
ResNet-50 35.5 57.0 65.4 Places365

NetVLAD

53.3 72.9 85.1 2D3DS

58.8 82.2 85.9 Pitt30k

53.2 72.0 82.2 Pitt30k+2D3DS

GraphVLADgt 68.3 87.5 91.4

d=0.5, 2 Prop
GraphVLADseg 67.3 87.5 91.3

GraphVLADdepth 63.5 83.2 92.5

GraphVLAD 62.6 86.9 92.5

Table 2. Comparison of GraphVLAD and baseline methods

on Stanford-2D3DS. ResNet-50 was pretrained on Places365.

NetVLAD results using different training data are reported. Our

method using either GT graphs or predicted graphs performs better

than other baselines.

are of size 2048× 1024 and PCA with whitening is applied

to result in an image embedding of size 4096. Pretrained

NetVLAD benefits from vast amount of training, resulting

in best performance for real images at 58.8 recall@1. In

contrast ResNet-50 only reaches 35.5 recall@1, showing

that triplet loss trained for discriminative features is pre-

ferred for image retrieval task. Nevertheless, finetuning

NetVLAD did not yield improve results for the real dataset

images. Using pretrained NetVLAD features, our proposed

GraphVLAD outperforms at 62.6 recall@1 using the same

input image without additional data.

Effect of message passing Like in OmniClevr, the recep-

tive field of the graph message passing increases with larger

distance threshold for edge generation. Table 3 investigates

the impact of distance threshold d 4 under the assumption

4Distance threshold is related to the spatial scale of the environment and the dis-
tribution of objects, and therefore dataset dependent.
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(a) (b) (c) (d)
Figure 6. Qualitative comparison on Stanford-2D3DS. NetVLAD retrieves visually similar but structure inconsistent reference images

(a,b,c). While our method is robust to camera rotation and zooming of equirectangular images. Wrong matching is observed when

semantics and textures are similar (d). From top to bottom, query image, NetVLAD retrieval and our retrieval are shown.

Method R@1 R@5 R@10 Dist.(m) #of Prop

GraphVLADgt

66.3 87.5 90.4 0.0 -

67.3 87.5 90.4 0.1 1

67.3 86.5 92.3 0.5 1

64.4 87.5 91.4 1.0 1

59.6 88.5 93.3 1.5 1

68.3 87.5 91.4 0.5 2

67.3 87.5 91.3 0.5 3

Table 3. Ablation study of our method using GT graphs of

Stanford-2D3DS dataset. We study the effect of different distance

threshold d and number of propagation layers.

of perfect instance segmentation and depth. Increasing d
between 0m and 0.5m improves recall results, while fur-

ther increase diminishes performance. Peak performance is

reached as d = 0.5m with 67.3 recall@1. We note, while

recall@5 is reduced toward d = 0.1m, overall more global

information is captured, increasing recall@10. With larger

context receptive graphs where d = 1.0 and above, graph

embedding disambiguate with object repetition is reduced,

as less distinguished relationships are seen. Finally we eval-

uate multiple propagation iterations, and achieve similar re-

sults but at the cost of more computation.

Effect of predicted graphs Based on previous findings

using ground truth graphs, we fix d = 0.5 and use 2 prop-

agation iterations. Table 3 shows the ablations. We in-

vestigate the effect of predicted depth as described in Sec-

tion 3.2, denoted GraphVLADseg. Since we employ ob-

ject location augmentation during training, retrieval perfor-

mance is competitive with GraphVLADgt. We then evalu-

ate predicted semantic with true depth in GraphVLADdepth.

The performance drops from 68.3 to 63.5 recall@1. Thus

we conclude that quality object segmentation improves

pixel grouping, and therefore recall results. Finally, us-

ing both predicted depth and segmentation achieves 62.6

recall@1, which is still competitive and improves upon

NetVLAD with the same input data. Again, we emphasize,

improved segmentation performance will directly translate

into better recall results. The ground truth is an indication

of top performance to be reached.

Qualitative results In Fig. 6, we compare NetVLAD and

GraphVLAD qualitatively. Without the knowledge of se-

mantics, NetVLAD descriptors only capture global appear-

ance similarity while ignoring subtle structure difference, as

shown in Fig. 6(a). Using scene graphs as representation,

our method further lifts a graph to 3D space and enable the

embedding to be robust to camera motions such as zooming

and roll rotation. An example of large translation is shown

in Fig. 6(b). Camera is translated and rotated 90 degree

in Fig. 6(c). In places such as toilets where both semantic

and texture are similar, it is difficult to distinguish between

rooms Fig. 6(d).

6. Conclusions
We presented a place recognition method based on graph

similarity learning that operates on omnidirectional query

images. Built on pixel-wise NetVLAD features, we predict

instance segmentation to guide local features aggregation

and to form nodes in a scene graph. Depth estimation is

employed to further lift scene graphs to 3D, and we extract

a rotation and translation invariant spatial relationship for

graph similarity learning. In our evaluation we improve on

original NetVLAD by introducing our GraphVLAD with

equivalent input image data.
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