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Abstract

The objective of this paper is to automatically read any
circular single pointer analogue gauge in real-time on mo-
bile phone. We make the following contributions: (i) we
show how to efficiently and accurately read gauges on mo-
bile phones using a convolutional neural network (CNN)
system which accepts both a high and low resolution gauge
image; (ii) we introduce a large synthetic image dataset (far
superior in size to prior works) with ground truth gauge
readings, pointer layout and scale face homographies that
is suitable for training a CNN for real world application;
(iii) we also release a new real world analogue gauge
dataset (larger meter variation than any previous) with an-
notation suitable for testing three different types of tasks
and finally (iv) we beat state of the art performance for
gauge reading on this dataset and an existing public dataset
in multiple metrics by large margins, notably with pointer
angle error less than 1 degree. Our method is fast and
lightweight and runs up to 25fps on mobile devices.

1. Introduction
Despite the digital age, analogue gauges are still preva-

lent in both industrial and private sectors. Examples in-
clude the tracking of pressure, speed or temperature in in-
dustrial plant equipment or the monitoring of electric, gas
and water supply in the typical home. Unfortunately, the
push for automatic monitoring and analysis, is resulting in
fully operational existing equipment becoming obsolete and
abandoned at both huge monetary and environmental cost.
Hence, enabling these analogue systems to interface with
modern digital ones is of great benefit. To this end, we pro-
pose a computer vision based system for rapidly transcrib-
ing analogue gauges into a digital format using a mobile
phone camera. Such a system would entail simply waving a
phone camera over a gauge to securely transfer the reading
onto the phone where the data can be further processed.

The majority of analogue (or dial) gauges are circular
and employ a moving pointer that directly corresponds to
a measurable parameter as indicated on a calibrated scale.

Gauge 
Reading:
0.08 bar

Figure 1. Our system runs in real-time on mobile phone and is ca-
pable of transcribing unseen analogue gauges to a very high accu-
racy. The system is trained purely from synthetic data yet transfers
very well to real world meters and is robust against the huge ap-
pearance variation in real world gauges due to bezel types, pointers
and background scales.

Recovering this reading from images or video is difficult
for a number of reasons but namely: (1) dim lighting
and/or glare (typical in industrial environments), (2) paral-
lax caused by off perpendicular camera view to the plane of
the gauge face, and most notably (3) the huge variation of
gauge appearances, due to differences in bevel, pointer and
face designs (see Figure 1).

To the best of our knowledge we are the first to propose
a mobile phone based system for analogue gauge transcrip-
tion and make the following four contributions: (i) we show
how a multitask CNN can be trained (solely with synthetic
data) to run efficiently on mobile phone (using a low res-
olution and high resolution input image), (ii) we generate
and release a large synthetic image dataset of 10,000 im-
ages, Synthetic-Gauges, that can be used for training a CNN
model to transcribe real world gauges, (iii) we also release a
new real world analogue gauge dataset for testing purposes
on three tasks (gauge detection, perspective correction and
reading), and finally (iv) we show our trained CNN beats
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Figure 2. Method overview. Our system is split into three stages:
(a) Stage 1 infers the bounding box of gauges in the image and
recovers the corners of a virtual plane lying on the back face of the
gauge. In (b) a blue plane and coloured dots illustrate the virtual
plane and corner points respectively. Stage 2 rectifies the image
to a head on view of the gauge face (c) and stage 3 detects scale
minimum, maximum, pointer centre and tip as yellow, green, blue
and red dots respectively. From these keypoints, the gauge is tran-
scribed by computing the pointer angle relative to the scale mini-
mum and maximum, see equation 1.

the state of the art in multiple metrics on our data as well as
on the publicly available Kaggle dataset [13].

Related work. The task of analogue gauge transcription
has been tackled numerous times. Recent methods fall
largely into two groups: those which use traditional based
computer vision [3, 20, 25, 8, 18, 23, 9, 26, 17] and those
which utilise deep learning [14, 10, 11, 21, 1, 16, 5, 15].

Methods using traditional based approaches are typ-
ically brittle to appearance variation in lighting, back-
ground clutter and highly constrained to particular types of
gauges. Examples include methods using the Hough trans-
form [12] for circular gauge detection and/or scale mark-
ings [10, 3, 17, 25, 26]; hand crafted heuristics based on
curved shapes [20, 18]; or K-means and PCA for detecting
and determining pointer angle [13]. Although these types of
approaches are likely efficient to run on smartphones, they
do not generalise well to in the wild conditions.

While many prior works are still using the traditional
methods, there is a growing trend in applying deep learn-
ing to the task [10, 14, 15, 16]. However, these works often
incorporate deep learning in just part of their transcription
pipeline, probably due to the severe lack of suitable train-

ing data. Semi-synthetics have been used fairly successfully
by Weidong et. al [5], but this was limited to a very small
range of meters and single camera view. For transcribing
digital meters, Charles et. al [6, 7] were successful in pro-
ducing a mobile phone system. Using fully synthetic data
for digit recognition, a single labelled image of a target me-
ter and a CNN with modality converter, they obtained good
in the wild performance. The drawback being a separate
CNN needed to be trained per meter.

Notably [13] and [21] appear to be the only prior works
which provide a dataset for analogue gauges with [13] being
the most readily available, however annotations for pointer
angle and readings are unavailable.

In section 2 an overview of our system is given, sec-
tion 3 provides technical details, section 4 introduces our
new dataset, section 5 describes our experiments, section 6
ablates and compares our method to the state of the art. Fi-
nally we conclude in section 7.

2. Method Overview
To digitise the reading displayed on a target gauge our

system ingests an input image of the gauge along with the
scale range. Operating in three stages: (1) the gauge is first
detected on a low resolution image then (2) perspective dis-
tortion is corrected on a higher resolution crop of the gauge,
and finally (3) the pointer position and angle relative to the
scale is recovered. The process of using a low and high res-
olution image in this manner means detection in stage 1 is
very fast (and low memory) and read precision in stage 3
is still accurate. These three stages are outlined in Figure 2
and described further below.

Stage 1: Gauge detection. A light weight detector is
trained to carry out two roles: (i) locate the bounding box of
the gauge and (ii) infer the homography between the back
face of the gauge (where the scale resides) and the camera.
Note this is not an easy task, the detector has to account for
various types of bevel depth and glass reflection, see Fig-
ure 2(a) and (b).

Stage 2: Perspective correction. Perspective distortion
is corrected by first predicting the four corners of the vir-
tual gauge face plane using a keypoint detector, see Figure
2(b). Then secondly, recovering the homography between
the gauge face plane and camera using these four points as
image corner correspondences [2]. And finally, use the ho-
mography to warp the gauge face into an image as if taken
by a head on camera, see Figure 2(c).

Stage 3: Gauge reading. A keypoint detector is trained to
detect several keypoints on the rectified image of the gauge
face. These are the scale minimum and maximum points,
and the pointer center and tip, see Figure 2(c). The error in
2D positions due to parallax (caused by pointers not being
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Figure 3. CNN architecture. Stage 1 and 3 models both use the same backbone architecture (with different weights). Separate fully
convolutional heads provide outputs for the various tasks. Tasks are: gauge center detection and bounding box regression, virtual gauge
face plane corner keypoint detection and finally keypoint detection on the rectified image. Heatmaps are used for keypoint regression,
illustrated as a coloured blob overlay on the rectified image in stage 3, one colour for each keypoint.

in the same 3D plane as the scale) is accounted for and then
the angle of the pointer with respect to the scale minimum
is calculated, and with this a gauge reading is calculated.

3. Implementation details

The detector for stages 1 and 3 is based on a single stage
multi task architecture on top of a deep network backbone
encoder. Design inspiration is taken from the anchor free
network CenterNet [27]. Figure 3 details the full pipeline
and shows how two types of image (one for each stage) are
processed through the network.

Multi resolution inputs. The same square RGB image
resolution is used for stage 1 and 3 (N x N x 3). For stage
1 (detection) the gauge is at a low resolution and unknown
location, but for stage 3 (reading) the gauge is at higher res-
olution filling the bounds of the image and centered. If we
did not use this approach we found a single input of (1024
x 1024) is necessary to achieve high enough resolution of
the gauge for reading. However, using the above approach
we found a (192 x 192) input for stage 1 and 3 gave good
performance and resulted in an over five fold speed increase
compared with using the single high resolution image.

CNN detectors. Two separate CNN detectors are trained
for stage 1 and 3. The detectors are multitask networks
with various fully convolutional network heads for differ-
ent tasks. For the stage 1 network three heads are used, one
detects the center of the gauge, the second infers width and
height of the bounding box and the last outputs 2D key-
point projections of the gauge face plane corners (trained
as in [27] for human pose estimation). For the stage 2 de-
tector, a single head is used to predict gauge face keypoints
(pointer tip, pointer centre and min and max scale mark-
ings). This head regresses to a heatmap representation of
keypoints (one channel per keypoint type) and at inference

a 2D coordinate for each keypoint type is selected based on
the location of maximum value within the heatmap.

Network heads. Each head operates on a (N32 x N
32 x K)

tensor from the backbone (K is channel dimension) and
consists of a 1x1 convolution for downsampling the channel
dimensions followed by 3 sets of transposed convolutions
for learnt upsampling to a resolution of (N4 x N

4 x Ch), the
channel size for head h being denoted by Ch.

Training. Our CNN detectors are only trained on syn-
thetic data. For stage 3, rectified gauge images are fed to
the network during training. Rectification is computed us-
ing ground truth gauge face plane 2D corner points (see
Figure 2(b) for an illustration) from high resolution im-
ages used to train the stage 1 detector. This type of ground
truth is available to us as we use synthetic data for training.
Both CNN detectors are trained for an input resolution of
192x192px.

Gauge reading. As pointers do not lie on the same 3D
plane as the back face of the gauge, side on camera views
can cause read errors due to parallax. This error is ac-
counted for by predicting the co-ordinates of the pointer
tip and center locations projected onto the back face of the
gauge, rather than their true co-ordinates. This projection is
done in our ground truth annotations to train the model.

To produce a final value for gauge reading an estimate
for pointer angle is first calculated. This angle is taken in
reference to the scale minimum point and can be easily cal-
culated with the cosine rule and some conditional logic. As-
suming the scale is linear, a simple linear interpolation is
used to infer the reading:

θ = cos−1

(
b2 + c2 − a2

2bc

)
, (1)

please refer to Figure 2(c) for the definitions of symbols.
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Figure 4. Synthetic-Gauges dataset. Examples of images from the Synthetic-Gauges dataset used for training our system.

Running on mobile phone. For our backbones we use the
MobileNetV2 [22] architecture with an expansion factor or
1. This network is very efficient to run, with the heads of our
model not adding much more computational burden. The
models are trained using PyTorch [19], and for iOS mobile
deployment, then converted to a 16bit CoreML model.

4. Datasets
For the task of analogue gauge reading, there is a se-

vere shortfall in large publicly available datasets (also ac-
knowledged by [1, 5, 11, 13]). We tackle this issue by (i)
using advances in 3D rendering to produce a very large set
of realistic synthetic gauge images with annotation (which
we call Synthetic-Gauges) and (ii) collecting our own real
world gauge dataset (called Real-Gauges) with compara-
tively larger meter variation than current public datasets.

4.1. Synthetic-Gauges

Our synthetic dataset consists of 10,000 training and
1,000 validation images of high quality renderings of
gauges, at resolution 1024x1024px. This set of images
contains large variations in colour, gauge shape, light-
ing conditions, scale style and background appearance. It
was produced using the open source 3D creation software,
Blender [4], utilising a high fidelity rendering engine to pro-
duce realistic environmental lighting and photo realistic im-
ages (important for good domain adaptation [24]).

A 3D scene was designed to contain a single 3D model of
an analogue gauge with one pointer. The scene and gauge
model are parameterised into 50 key variables describing
the gauge shape and texture and environmental appear-
ance. The gauge has various discrete components which can
be randomised e.g. pointer shape and angle, gauge bevel,
gauge material and scale texture. For the environment we
can randomly alter camera angle, lighting conditions and
background content. The gauge is glass fronted to capture

the real world physics of reflection and specularity. For the
scale texture, scale ranges, tick markings (based on a linear
scale) , colours and positions are all variable. Each image
is produced with a random parameter assignment from a
constrained set to ensure a realistic looking image is gener-
ated. Backgrounds were randomly generated by sampling
360 degree background images from Google Street View.
Using such a large set of parameters produced images with
massive appearance variation, as shown in Figure 4 (and
supplementary material).

Annotation includes 2D gauge bounding boxes; 2D cor-
ner points of gauge face plane; 2D keypoint locations for
pointer tip, center and scale min/max tick marks as well as
the 3D camera angle with respect to the gauge.

4.2. Real-Gauges

Expanding upon publicly available real data, we col-
lect and annotate a large quantity of real gauge images and
videos. The dataset is split into three sets to evaluate three
different tasks: (1) gauge detection, (2) perspective recov-
ery and (3) gauge reading. Six meters with varying style and
function were used during the capturing process, as shown
in Figure 5(a). Details for each task follows.

Task 1: Gauge detection. The gauge detection dataset
consists of each gauge photographed on 36 different back-
grounds. Backgrounds are taken from an interior design
magazine to give a high variation in colour and geometry
whilst also simulating environments in which gauges will
be typically situated. Centres of each gauge are labelled on
each background, see Figure 5(c) for examples.

Task 2: Perspective recovery. The perspective recovery
dataset consists of images of gauges from a variety of cam-
era angles. For each image intrinsic and extrinsic camera
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Figure 5. The 6 meters used for the Real-Gauges dataset are shown in (a), example data collected for the perspective recover task in (b) and
examples of images used for gauge detection in (c).
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Figure 6. Example meter crops from the 7 test videos of the Kaggle-Dataset.

parameters are estimated using a checkerboard camera cal-
ibration pattern. Normal vectors to the gauge face (situated
on the calibration pattern) can then be computed, see Fig-
ure 5(b). The purpose of this dataset is to evaluate the read
accuracy of a system with respect to perspective distortion.

Task 3: Gauge reading. The gauge reading set consists
of 3 videos of each gauge which are 5 seconds long at 30fps.
Each frame is labelled with the pointer angle and the gauge
reading, a total of 2700 labelled frames. Each video is
taken from a camera view face on to the gauge, so one can
measure performance of gauge reading without interference
from perspective effects.

4.3. Kaggle-Dataset

Jakob S. Lauridsen et. al [13] provides a dataset of 10
videos of varying length, comprised of 3 train videos and 7
test videos. Each video is from a static camera showing a
single gauge in all but 1 video (where an off center back-
ground gauge is present), 6 gauges are used in total. We
use the 7 test videos (illustrated in Figure 6), and use the
same video naming convention as Jakob S. Lauridsen et.
al [13]. Unfortunately, Jakob S. Lauridsen et. al [13] do
not publicly release annotation for this dataset. Therefore
for each video we partially labelled each video by annotat-
ing pointer angle and reading for approximately every 6th

frame. This annotation (although sparse) allows us to form

a comparison to the reading method of Jakob S. Lauridsen
et. al using an approximate metric.

5. Experimental setup
Here we thoroughly evaluate our method on three tasks:

gauge detection, gauge reading and perspective recovery.
Each task, the dataset and evaluation metrics used is de-
scribed below.

Gauge detection. Evaluation is done on the Real-Gauges
detection task, we measure the distance of predicted bound-
ing box centre against ground truth (GT) in pixels. The
mean norm of this distance is defined as µerror, with stan-
dard deviation σerror. Intersection over union (typically
used for detection scores) is not used here as the exact
bounds of the meter are not necessarily important for tran-
scription and not all prior methods output bounding boxes
making comparisons difficult. Detection Accuracy (Det.
Acc.) is defined as the proportion of images in which a
gauge is correctly detected, for the Real-Gauges dataset a
gauge is present in every image.

Gauge reading. The Real-Gauges and the Kaggle dataset
are both used to evaluate read accuracy. Several evalua-
tion metrics are defined. The read return rate R% is used
to measure the proportion of frames where the system re-
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turns a reading (regardless of value). Absolute read error is
measured as the mean µV and the standard deviation σV of
the difference between the ground truth gauge reading and
the system prediction. Absolute relative read error is mea-
sured as the mean µR and the standard deviation σR, and
represents absolute read error as a proportion of the gauges
reading range, to demonstrate how significant the error is in
terms of each gauge. Absolute pointer angular error is mea-
sured as the mean, µθ, and standard deviation, σθ, which
measure the difference between ground truth angle of the
pointer and the system prediction. These metrics are only
computed over frames where a reading is returned.

Perspective recovery. The 1,000 validation images from
Synthetic-Gauges dataset are used to evaluate perspective
recovery by measuring the distance between the ground
truth virtual gauge face plane corners and predicted corner
keypoints. The mean µerror and standard deviation σerror
of error are recorded in units of pixels. These are only com-
puted over frames where a gauge is detected. As an indi-
rect measure of perspective recovery we also use the Real-
Gauges perspective recovery dataset and measure read ac-
curacy across different camera angles.

Training details. Our detector was trained solely using
the Synthetic-Gauges dataset using a MobileNetV2 back-
bone pretrained on ImageNet. Image based augmenta-
tions during training, such as cropping, rotation and flip-
ping were applied. We used a batch size of 64, learning rate
1.25x10−3, with steps down to 1.25x10−4 and 1.25x10−5

at epochs 750 and 1500 respectively, and ADAM optimiser.
We trained for 2000 epochs, stopping training when no fur-
ther drop in train loss was observed.

Baseline method. We directly compare our method
against the recent state of the art approach of Jakob S. Lau-
ridsen et. al [13].

6. Results and discussion
Gauge Detection. Our performance is detailed in Table
2. There is a low µerror across all gauges. meter a was
the most difficult to detect, its colour and geometry closely
matched objects in the background scene, resulting in false
detections. This highlighted that even further variation in
the synthetic set would help detection.

Gauge Reading. Table 4 compares our performance to
the baseline. Only a direct comparison to pointer angle pre-
diction is made as Jakob S. Lauridsen et. al [13] was not
capable of outputting gauge readings, it also measured an-
gles in reference to the horizontal, and so the angle from
the horizontal to the scale minimum was provided to com-
pare to the ground truth. Jakob S. Lauridsen et. al [13]
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Figure 7. Real Gauge Prediction Performance. Ground truth (or-
ange), Our system (black), Jakob S. Lauridsen et. al [13] (green).
In every gauge type and motion our system demonstrates superior
tracking.

measures there performance with non absolute values, this
can artificially cause the mean error to become 0, and so we
recalculate performance metrics for this system. Our sys-
tem vastly outperforms the baseline in prediction error and
reading return. The poor performance of Jakob S. Laurid-
sen et. al [13] is explained by Figure 7. For a high number
of frames it predicts an angle 0 degrees to the horizontal,
meanwhile our system closely tracks the ground truth at all
times. Our system is much more capable of generalising to
unseen gauges.

Table 1 shows performance of our system at predicting
the actual value of the gauge. In most cases the relative error
is very small, showing that our system can make accurate
predictions for a wide variety of gauges.
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Gauge µR σR µV σV R% No. Frames Reading Range
meter a 0.053 0.079 0.53 0.79 100 450 0 – 10
meter b 0.070 0.115 4.22 6.89 100 450 0 – 60
meter c 0.009 0.008 2.74 2.53 100 450 0 – 300
meter d 0.043 0.056 15.84 20.59 43 450 60 – 430
meter e 0.012 0.012 4.61 4.81 100 450 50 – 450
meter f 0.023 0.019 2.04 1.70 100 450 -30 – 60
test1 0.003 0.002 0.02 0.01 100 268 0 – 6
test2 0.01 0.01 0.04 0.04 100 84 -1 – 3
test3 0.036 0.128 0.09 0.32 100 59 0 – 2.5
test4 0.008 0.012 0.02 0.03 100 42 -1 – 1.5
test5 - - - - 0 25 -1 – 1.5
test6 0.045 0.015 0.18 0.06 100 42 -1 – 3
test7 0.042 0.01 0.25 0.06 100 30 0 – 6
Mean 0.030 0.039 2.55 3.15 88 - -

Table 1. Gauge Reading performance. All results for testing on the 6 gauges from our dataset and the 7 test videos from Jakob S. Lauridsen
et. al [13]. Prediction performance is very strong in most cases and detection accuracy is very high.

Gauge µerror σerror Detection Accuracy, %
meter a 71.6 224.4 97.2
meter b 14.5 10.3 100
meter c 27.3 17.3 97.2
meter d 47.7 140.2 100
meter e 32.3 18.7 97.2
meter f 19.1 9.5 100
Mean 35.4 70.1 98.6

Table 2. Gauge detection results. Performance predicting centre of
each gauge on various backgrounds. Units are in pixels, the input
image size is 4032x3024 pixels, the average diameter of gauges in
images is 1026 pixels.

Key Point µerror σerror Det. Acc., %
Top Left 2.34 1.86 100
Bottom Left 2.43 2.42 100
Bottom Right 2.32 1.87 100
Top Right 2.44 2.41 100

Table 3. Perspective Recovery Performance. Measurable perfor-
mance for rectification is difficult with real images, so metrics are
computed with synthetic data. The mean error norm for each key
point for 1000 synthetic images is shown. Each input image has
size 1080x1080 pixels.

We found that the primary cause of errors in our pre-
dictions to be noise in predicting the scale minimum point.
There is a large amount of visual noise in the real gauges
in the form of company branding, screws, etc. Improving
the fidelity of our synthetic dataset to simulate these ef-
fects would likely help. We also noticed strong shadows
could sometimes be problematic, especially for the pointer,
where pointer shadow could be mistaken for the pointer it-
self. Given the locality of the shadow to its source, this does
not result in too large of an error, but is still an area that is
worth addressing in the future.

Perspective Recovery. Table 3 shows our system’s per-
formance for perspective recovery. Errors for each virtual

Our System Jakob S. L. et al. [13]
Gauge µθ R% µθ R%

meter a 9.24 100 36.51 100
meter b 26.06 100 103.63 100
meter c 1.94 100 127.68 32.5
meter d 11.70 43 207.07 81.1
meter e 3.70 100 116.14 99.6
meter f 4.31 100 - 0
test1 0.83 100 0.99 100
test2 2.95 100 63.89 46
test3 9.90 100 95.56 100
test4 3.39 100 34.36 100
test5 - 0 96.63 80
test6 1.43 100 15.96 93
test7 11.38 100 14.22 100
Mean 7.24 87.9 76.05 79.4

Table 4. Pointer angle prediction performance. Performance is
shown for our system and also the baseline. Only absolute an-
gle error is compared as the baseline is not designed to output an
actual reading. The baseline assumes a perfectly horizontal line
passing through the scale minimum and maximum, therefore we
have to manually adjust the baseline angles to account for this.
Our system makes no such assumptions and demonstrates supe-
rior performance in all metrics.

plane keypoint corner are shown. Keypoint error is approx-
imately 2 pixels from ground truth, which compared to the
input image size of 1080x1080 pixels, is almost negligi-
ble. A heatmap illustrating how pointer angle prediction
error varies with camera angle on synthetic data is shown
in Figure 8. Perspective recovery is shown to be harder as
the camera approaches side on views of the gauge. How-
ever, notice that even at the most severe angles we are able
to recover perspective relatively well. Perspective recovery
on the Real-Gauges dataset is analysed qualitatively in Fig-
ure 10. Note we obtain good rectification under a range of
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Figure 8. Prediction performance with perspective recovery, syn-
thetic. Perspective recovery was tested on synthetic data by
analysing images at a variety of camera positions and recording
prediction error. These images were sorted into bins of simi-
lar camera position and the mean pointer angle prediction error,
µerror is shown. Example images at various positions are shown.

camera angles. We found that the system performed worse
when other objects were interacting with the gauge and oc-
cluding it. We think this can be be addressed by introducing
occluding objects in our synthetic training data.

Read error sensitivity. The read sensitivity of our sys-
tem due to camera angle is plotted in Figure 9. Using the
Real-Gauges perspective recovery dataset, average absolute
pointer angle error and reading return rate at a range of
viewing angles is computed. Averages are taken over sets of
images split into bins based on camera angles relative to the
gauge plane normal: [-75,-50,-25,0,25,50,75] degrees. We
observe our system performs best at angles of ±20o, suit-
able for application where a human would find it difficult to
obtain perfect face on camera alignment with the gauge.

Computation Performance. On an iPhone 11 using the
Neural Engine, our system runs at 25fps with ≈300MB
memory usage. Using only GPU on iPhone 7 is very good
at ≈20fps. Comparatively the method of Jakob S. Laurid-
sen et. al [13] runs at a much slower 0.1 fps on a Intel i7
CPU, given its slow performance on a PC it can be assumed
unsuitable for a real-time mobile application.

7. Conclusions
Presented is a method for transcribing analogue gauges

using a mobile phone. The system can reliably detect
gauges in images, account for perspective distortion and ac-
curately recover pointer position. Unlike previous attempts
[5, 14, 15, 21], our system is far more general and is capa-
ble of transcribing any circular gauge with one pointer. Our
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Figure 9. Prediction performance with perspective recovery, real.
Perspective recovery was tested on real data by analysing images
at a variety of camera positions and recording prediction error.
These images were sorted into bins of similar camera position and
the mean pointer angle prediction error (with angle taken from hor-
izontal), µerror and detection accuracy are shown. Suitable usage
limits for camera angle are shown to be around ±20o

Figure 10. Perspective Recovery on real images. Qualitative
demonstration of rectification on real images. Our system can pre-
dict virtual plane points on real images as well as synthetic and use
these points to produce rectified images.

method can be used in industrial environments (on mobile
phone or other embedded systems) to aid other systems such
as robotic machine control, enable legacy industrial equip-
ment to be IOT compatible or for public use as an app to
easily record values from analogue meters. Our method is
fast, robust and can run in real-time on mobile phone.
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