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Abstract

Three-dimensional reconstruction of objects from shad-
ing information is a challenging task in computer vision. As
most of the approaches facing the Photometric Stereo prob-
lem use simplified far-field assumptions, real-world scenar-
ios have essentially more complex physical effects that need
to be handled for accurately reconstructing the 3D shape.
An increasing number of methods have been proposed to
address the problem when point light sources are assumed
to be nearby the target object. The proximity of the light
sources complicates the modeling of the image formation
as the light behaviour requires non-linear parameterisation
to describe its propagation and attenuation.

To understand the capability of the approaches dealing
with this near-field scenario, the literature till now has used
synthetically rendered photometric images or minimal and
very customised real-world data. In order to fill the gap
in evaluating near-field photometric stereo methods, we in-
troduce LUCES the first real-world ’dataset for near-fieLd
point light soUrCe photomEtric Stereo’ of 14 objects of a
varying of materials. A device counting 52 LEDs has been
designed to lit each object positioned 10 to 30 centimeters
away from the camera. Together with the raw images, in
order to evaluate the 3D reconstructions, the dataset in-
cludes both normal and depth maps for comparing differ-
ent features of the retrieved 3D geometry. Furthermore, we
evaluate the performance of the latest near-field Photomet-
ric Stereo algorithms on the proposed dataset to assess the
SOTA method with respect to actual close range effects and
object materials.

1. Introduction
Since the introduction of the Photometric Stereo problem

(PS) by Woodham in the early ’80s [37], a wide variety of
approaches tackled the very same problem of reconstruct-
ing 3D geometry of an object under varying illumination
from the same view point. Despite the very simplified as-
sumption in [37] to make the PS problem solvable as an

Figure 1. Our Photometric Stereo setup consists of 52 LEDs placed
within the same plane of the camera image. 14 objects have been
acquired at a distances 10-30cm in order to capture full near-field
effects. The materials of the objects provide a variety of diffuse
and specular reflections, including wood, aluminium, plastic, etc.

(over-determined) linear system, similar simplifications are
often still considered nowadays to make the problem appli-
cable to real-world scenarios. Nonetheless, diffuse material
assumption was relaxed in [15, 36, 34], camera perspective
viewing was modelled in [35, 23], and robust optimisation
methods were employed by [10, 14] to increase robustness
to outliers. Light calibration assumption was also relaxed
by [30, 27].

One of the most challenging aims of more recent PS
methods is realistic illumination modelling, as uniform di-
rectional lighting is hard to achieve in practice. For this
purpose, several methods have proposed using point light
sources instead of directional ones [16, 8, 24, 26, 28, 19,
17]. Point light sources require non-linear modeling of light
propagation and attenuation but they are a more realistic as-
sumption than directional lights for near-field photometric
imaging acquisitions. Note that proximity of the camera
and lights to the object are very favorable in order to capture
detailed geometry and minimise the ambient light interfer-
ence. For example, near-field photometric stereo has been
used in practice with handheld acquisition devices [12] and
in endoscope-like inspections [9]. Whereas, the far-field as-
sumptions do not allow to combine PS with multi-view for
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Figure 2. From left to right:(1) the stage of our Photometric Stereo setup (2) a top view of a sample object (Squirrel), (3) acquisition with
the GOM scanner (4) the 3D scanned mesh.

volumetric reconstruction [20].
However, despite the increased contribution from the

computer vision community to tackle the near-field PS
problem, the evaluation of such methods has relied on syn-
thetic ([17]) or very minimal real-world datasets [28, 33].
The lack of shared data has prevented detailed and fair com-
parisons across the different methods. The aim of this work
is to provide a comprehensive near-field PS benchmark with
a variety of objects having different materials in order to
evaluate several algorithms and understand their strengths
and weaknesses. For this purpose, ground truth normal map
and depth are provided for each object.

Our contribution is as follows:

• introducing the first near-field PS dataset of 14 real ob-
jects having a wide variety of materials;

• evaluating most relevant algorithms for the near-field
PS problem and establish the actual SOTA method.

The dataset (including all images, light and cam-
era calibration parameters and ground truth meshes)
and the evaluation of the methods will be made avail-
able for download at https://www.toshiba.eu/
pages/eu/Cambridge-Research-Laboratory/
download-luces.

2. Related Work
A number of approaches for the PS problem has been

proposed since it was first introduced [37]. We refer to some
fairly recent surveys [3, 11] to cover the initial evolution of
the PS methodologies. Here we discuss more contemporary
algorithms and the datasets used to evaluate their perfor-
mances.

2.1. PS datasets

Across the years, a number of custom real-world PS
datasets have been created to suit the purposes of the pro-
posed approaches. Alldrin et al. [4] proposed a dataset con-
sisting of 3 objects lit by roughly a hundred distant light
directions. The light calibration on terms of positioning and

intensity has been performed by using respectively a mirror
sphere and a diffuse sphere. Xiong et al. [38] have proposed
a dataset of 7 objects using 20 directional lights calibrated
with two chrome spheres. As the approach was mostly mod-
eling PS images with Lamberitan irradiance equations, the
material of the objects was quite diffuse. A limited number
of PS data has been released by Quéau et al. to prove the
working principle of an edge preserving method [29] and a
multi-spectral PS approach [31].

Although initially designed for evaluating multi-view ap-
proaches, the datasets released by Aanæs et al. [1, 2] are
useful for works on Photometric Stereo problem as they also
contain images under varying illumination.

As most of the methods aimed at tackling the PS problem
deal with the far-field setting, recently Shi et al. [34] intro-
duced the first dataset in this category, namely DiLiGenT
aimed at evaluating reconstruction methods over a wide va-
riety of materials for 10 different objects. This work also
contains a well discussed taxonomy for non-Lambertian
and uncalibrated PS approaches. 96 LEDs were placed
several meters away from the objects to approximate direc-
tional illumination and the camera (with a 50mm lens) was
placed at 1.5m from the object. Such distance between the
object and the camera/lights system does not provide to this
dataset the near-filed light variation studied in many recent
approaches.

Near-field datasets: There are very limited, proper near-
field labeld data including a single object from [28] and 3
simple objects from [33].

2.2. Near-field PS

The near-field setting is intrinsically more complicated
to model than the far-field on as it requires handling not
only different type of BRDFs [5, 25] but also anisotropic
light propagation [26], inconsistent light intensity among
the set of LEDs [32, 19] and finally the uncalibrated case
[27]. Given this wide variety of difficulties, most of the
proposed near-field PS methods have proposed custom PS
data.

https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/download-luces
https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/download-luces
https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/download-luces
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Figure 3. Top view of the objects captured for this dataset. Below every object the acquisition distance between the object and the camera,
and the material of the object are reported.

With the aim to tackle all these issues simultaneously
for the near-field PS, latest approaches have been exploiting
deep learning capability training their networks with syn-
thetically rendered data and data driven rendered data [21].
In particular, Logothetis et al. [17] used a per-pixel train-
ing strategy that allows to render unlimited data without
carrying any training dataset. The sim-to-real gap is then
filled by augmenting the data with physical effects such as
noise, ambient light, interreflections, etc. Finally, the far
to near field compensation is performed by integrating the
normal field to compute the depth. By doing so iterativelly,
the method converges to an estimate of the 3D geometry.
Santo et al. [33] have recently introduced a near-field PS
method where the near-field compensation is computed af-
ter computing the far-field normals map from PSFCN [6].
The surface optimisation is performed through a differen-
tiable renderer which fuses the normal predictions and the
lighting model to re-project to the original images. This
step limits the evaluation of the method to small images due
to very high requirements of GPU RAM (around 20GB for
0.5Mpx images). Furthermore, despite the near-field set-
ting, the camera viewing is assumed orthographic.

3. Data Capture
This section gives an overview of the data capture and

calibration procedure.

3.1. Photometric Stereo Data Capture

The Photometric Stereo setup. Our setup (see Figure 2)
consists of the following main components:

• RGB camera FLIR bfs-u3-32s4c-c with 8mm lens

• 52 LED Golden Dragon OSRAM

• variable voltage for adjustable LED power

• Arduino Mega 2560

A custom printed circuit board (PCB) has been designed
to host 52 bright LED controlled with by an Arduino Mega.
The configuration of the LEDs was planar around the cam-
era, as shown in Figure 1. A single set of images was cap-
tured per object and the camera parameters (acquisition and
shutter speed) and LED voltage were adjusted to achieve
the best object exposure, which is very critical for specular
objects. All camera prepossessing was turned off during the
acquisition, including white-balance and analog gain.

Several optomechanical tools have been used for holding
the camera and the PCB jointly. A manual XYZ translation
stage with differential adjusters has been used to positioning
the PS camera accurately through the printed circuit board.

In order to limit interreflections and ambient light, the
walls surrounding the setup have been covered with black,
polyurethane-coated nylon fabric.

Camera Intrinsics. This is performed using 100 checker-
board images and the OpenCV calibration toolbox. Fourth
degree radial distortion is estimated and this is used to rec-
tify all the images. The calibration re-projection error was
0.42px. The RAW data (before demosaicing and rectifica-
tion) will also be made available.

Near Lighting Model. The lighting model is the
anisotropic point light sources [24] which is used for all
SOTA methods ([19], [28], [17], [33] evaluated in Sec-
tion 4). This model assumes that a light source m, has
a position Pm ∈ R3, principal direction Dm ∈ R3,
RGB brightness Φm ∈ R3 and angular dissipation factor



Figure 4. Demonstration of the steps performed per object: Firstly, compensation for radial distortion and demosaicing is performed
on raw images to get RBG ones (left). Laser-scanned ground truth meshes are aligned with RGB images and ground truth normal maps
are rendered (middle). Segmentation mask are generated (removing the pixels corresponding to markers) and ground truth normals are
integrated [29] to obtain pseudo-depth (right) (see Section 4).

µm ∈ R. Therefore, a point X ∈ R3 has a lighting vector
Lm(X) = Pm −X and light attenuation

am(X) =
(L̂m(X) · D̂m)µm

||Lm(X)||2
, (1)

where L̂m = Lm

||Lm|| is the normalised light direction.

Calibration. In order to estimate the LED parameters
(Pm, Dm, Φm and µm), a supplementary set of images
have been acquired for LED light calibration. This includes
measuring light intensity using a LuxMeter and images of
a white diffuse plane; we used a diffuse reflectance plane
with 99% nominal reflectance in UV-VIS-NIR wavelength
range (350 - 1600nm). For every object, the calibration
plane was captured twice, at different distances, in order to
get data redundancy and produce a more accurate calibra-
tion. Thus, the Lambertian calibration object with albedo
ρ and surface normal N, should satisfy the resulting image
irradiance equation:

Im = ΦmamρLm ·N. (2)

The irradiance Equation 2 was implemented into a dif-
ferentiable renderer (using Keras of Tensorflow v2.0) with
the LED parameters being the the model weights thus al-
lowing refinement from a reasonable initial estimate. The
parameters were initialised as follows: Φm for the LUX
meter, Dm = [0, 0, 1], µm = 0.5, Pm from the schematic

of the LED circuit and ρ = 1. Using L1 loss function for
30 epochs and converged to around 0.005 error i.e 0.5% of
the maximum image intensity. The complete calibration pa-
rameters are included in the dataset.

3.2. 3D Ground Truth Capture

3D capturing device. 3D ground-truth has been acquired
with the optical 3D scanner GOM ATOS Core 80/135 with
a reported accuracy of 0.03mm (see Figure 2). The GOM
scanner uses a stereo camera set-up and more than a dozen
scans were performed and fused per object. In order to keep
the geometry of the object consistent with the PS data, no
spray coating has been used to ease the acquisition. Instead,
markers were used for some objects.

Alignment. The laser scans of the objects were aligned
and merged using MeshLab [7]. Some manual removal
of noisy regions was performed and finally screened Pois-
son reconstruction was used in order to obtain full contin-
uous surfaces (which are both useful for rendering normal
maps and for mutual information alignment). As expected,
not all parts of the surfaces of all objects have the same
amount of noise, especially the metallic objects (Bell, Cup).
Meshes were aligned with the photometric stereo images
using the mutual information registration filter of MeshLab.
This was initialised manually and pixel perfect accuracy
was achieved. Using the aligned meshes, ground truth nor-
mal maps were rendered (using Blender). In addition, man-



ual segmentation was performed to remove regions where
the GT was unreliable (markers on the objects, holes etc).
Finally numerical integrations of the GT normals was per-
formed (using [29]) to obtain pseudo-depth which is used to
perform fair evaluation (see Section 4). The steps per object
are summarised in Figure 4.

3.3. Dataset Overview

For each of the 14 object, 52 PS images have been
acquired using the BayerRG16 RAW format. The total
amount of PS images amounts then to 728. For all objects,
rectified RGB PS images will be released (by compensating
for the radial distortion). We note that color balancing was
not performed on the images as this will distort the satu-
rated pixels (which is an important feature for CNN-based
PS methods [18, 13]). Instead, RGB light source brightness
are provided along with the rest of point light source pa-
rameters. Both normal map and depth ground truth will be
provided in order to evaluate the accuracy of near-field PS
methods with either cases.

4. Experiments
In this section, we evaluate four competing near-field

methods namely [19, 28, 17, 33]. In addition, we also eval-
uate with [13], the best performing far-field method (on
the far-field benchmark [34]) to demonstrate the need for
a near-field method.

Evaluation hyper-parameters. [19, 28] and [33] have
publicly available code whereas for [17] we contacted the
authors. Indeed, [17] has the disadvantage that the light
configurations has to be known at train time therefore spe-
cific light positions had to be assigned to the networks to
be trained for the dataset. [19] performs best with a manual
initialisation of the specularity parameter c (0 is fully spec-
ular, 1 fully Lambertian) we used 0.1 for the Cup, 0.2 for
the Bell, 0.25 for the Bawl and Tool, 0.5 for the Ball, Die,
Hippo, Jar and Squirrel, 0.75 for the Bunny and 1 for the
rest. For [28], we used the Cauchy estimator with 0.5 on
the respective hyper-parameter. For both [19] and [28] we
disabled the lighting calibration parameter. For all meth-
ods, we evaluated on full resolution images (2048x1536)
except for [33], which is severely limited by GPU RAM so
we had to subsample to (512x384) which was the maximum
we could fit on 24GB Nvidia Titan RT. All other approaches
are CPU RAM limited but ‘only’ require around 120GB.
The computation time was varied from around 15 minutes
(the fastest was [19] on the Bowl) to around two hours (the
slowest was [17] on the Jar). For all of the methods, the
initialisation was a flat plane at the mean depth computed
exactly using the GT depth map.

Finally, we also evaluated the far-field method [13]. The
assumed lighting direction was set the overage one for each

light and numerical integration was used on the output nor-
mal map to be able to compare surfaces.

Evaluation metrics. As it is the standard in PS literature,
we first evaluate the competing approaches using the angu-
lar error on normal maps. We note that [19] and [28] output
surfaces as dense depth maps, therefore the normals have
to be estimated using finite differences. The other 3 meth-
ods output both surfaces and normals. It is very important
to mention, that normal evaluation has two major limita-
tions. Firstly, for real data, there can be regions where the
ground truth normal uncertainty is non-negligible. This is
inevitable due to capturing surfaces with a laser scanner that
only provides very dense point clouds. Even micro-meter
accuracy on the surface can generate a few degress uncer-
tainty of normals in regions of complicated geometry. The
second important issue with evaluating on normals is that
even on synthetic data, ground truth normals are not fully
consistent with the ground truth depth. This is inevitable
due to the fact that for any non-trivial object, the projection
operation generates a depth map that is discontinuous and
non-differentiable for a significant portion of the pixels. In
fact, to quantify this discontinuity measure, we compared
the ground truth normals with the normals that are obtained
with differentiation of the ground truth depth and indeed ob-
served a 3.3o error on average over the whole dataset (vary-
ing from 1.8o on the Jar to 9.2o on the House, as shown on
the penultimate row of Table 1).

In addition, we also provide evaluation of the generated
depth maps with respect to the ground truth. However, as
all the evaluated approaches implicitly assume continuous
and differential surfaces, the depth error is inflated at occlu-
sion boundaries making the comparison between methods
on the depth domain less informative. To overcome this
limitation, we introduce the pseudo-depth, Z̃, generated by
numerical integration of the ground truth normals. We note
that this corresponds to a continuous and differentiable sur-
face that is locally identical to the ground truth in all of the
regions where the ground truth is continuous and differen-
tiable. Therefore, evaluating the mean error with respect
to the pseudo-depth allows for a more meaningful way of
evaluating the ability of methods to generate surfaces. The
difference between depth and pseudo-depth is quantified in
the last row of Table 1 and it varies from 0.05mm for the
mostly continuous Cup 7.8mm for the complicated geome-
try house. Complete error maps can be found in the supple-
mentary.

5. Results

In this section, we analyse the performance of [13], [19,
28] [17], [33] which is shown quantitatively at Table 1 and
qualitatively at Figures 5 and 6.



Method Error Bell Ball Buddha Bunny Die Hippo House Cup Owl Jar Queen Squirrel Bowl Tool Average

L17-[19]
MAE 28.25 9.77 11.5 20.15 11.95 15.42 29.69 30.76 13.77 10.56 13.05 15.93 12.5 15.1 17.03
MZE 4.45 0.81 4.67 7.51 4.58 3.19 6.99 2.67 3.64 6.56 1.89 1.82 4.37 3.25 4.02
MZ̃E 4.33 0.92 6.56 8.29 4.13 2.33 3.16 2.66 1.68 6.48 2.1 2.25 4.02 2.92 3.7

Q18-[28]
MAE 25.8 12.12 14.07 13.73 13.77 18.51 30.63 37.63 14.74 15.66 13.16 14.06 11.19 16.12 17.94
MZE 12.03 2.5 9.28 7.06 5.91 6.8 8.02 4.83 5.83 16.87 6.92 2.55 6.48 6.69 7.27
MZ̃E 11.77 2.36 6.65 5.21 5.85 6.12 2.94 4.82 3.28 16.37 3.89 1.99 5.72 6.11 5.93

S20-[33]
MAE 9.5 25.42 19.17 12.5 5.23 23.12 28.02 14.22 13.08 9.27 16.62 14.07 12.44 17.42 15.72
MZE 1.9 5.5 5.53 6.02 2.76 7.04 6.15 1.62 3.75 6.09 3.91 2.81 5.22 4.68 4.5
MZ̃E 1.89 5.54 5.06 3.99 2.18 5.61 3.07 1.62 2.81 5.65 4.54 2.36 5.23 4.22 3.84

L20-[17]
MAE 14.74 12.43 10.73 8.15 6.55 7.75 30.03 23.35 12.39 8.6 10.96 15.12 8.78 17.05 13.33
MZE 1.84 0.7 3.32 3.27 4.61 2.96 9.47 2.04 3.78 17.98 2.11 1.28 2.94 6.16 4.46
MZ̃E 1.63 0.69 4.17 1.83 5.11 1.26 2.36 2.04 1.53 18.31 1.62 1.63 2.68 5.97 3.63

I18-[13]
MAE 23.55 44.29 35.29 36 41.52 44.9 49.05 35.78 40.27 40.66 32.89 41.09 28.04 31.71 37.5
MZE 5.93 6.59 10.92 6.88 7.83 7.59 8.98 3.17 8.67 15.54 8.08 5.8 6.69 12.45 8.22
MZ̃E 5.84 6.4 7.94 5.35 7.29 6.75 2.65 3.17 5.1 15.29 4.85 4.93 6.18 11.85 6.68

GT Ñ-MAE 2.5 2.69 2.69 2.93 2.49 3.2 9.19 2.85 4.3 1.79 4.22 3.26 2.27 2.34 3.34
Z̃-MZE 0.29 0.29 3.3 3.18 0.96 2.92 7.77 0.05 3.9 0.95 3.34 1.57 0.82 0.93 2.16

Table 1. Complete evaluation of five methods on all obejcts. Mean angular error MAE (degrees), mean depth error MZE (mm) and mean
pseudo-depth error MZ̃E (mm) are reported. In addition, we report the angular error of normals generated by differentiation of GT depth
Ñ-MAE and the error between depth and pseudo-depth Z̃-MZE.

We first of all observe that the far-field method [13] fails
to produce accurate results as expected. The two classi-
cal optimisation methods [19, 28] are outperformed by the
deep learning approaches [33] and [17] on the normal er-
ror metric for most scenarios although [19] shows a good
consistency and achieves the minimum depth error (which
is not surprising as it is primarily a depth rather than normal
optimisation method).

Despite the fact that [17] is the best overall performer, we
emphasise that it requires knowledge of the setup at train
time. In addition, their numerical integration can signif-
icantly amplify the depth error on oblique regions (depth
real and pseudo ) such as the top of the Jar (they achieve
best normals and worst depth ). [33] achieves the best per-
formance on object with specular materials, because of the
use of a patch-based network that extract the most informa-
tion of the metallic object. It also achieves best MAE on the
Bell. The orthographic camera assumption of [33] in terms
of error translates to a growing inaccuracy towards the ex-
ternal part of the reconstruction (see Bell, Cup and Jar in
Figure 5).

We also notice that the normal predictions are more
noisy as opposed to depth prediction. This could be due
to actual noisy estimates of the ground truth normals which
is inevitable for any laser scanner (see in particular the Ball
in Figure 5). As the ground truth depth is more reliable, it
is a better evaluation metric compared to the ‘ground truth’
normals. See Figure 6 for depth evaluation.

By looking at Figure 5 it can be seen that even the best
methods perform poorly for recovering the geometry of
very oblique regions. This is observable for the Jar, Owl
and Cup in Figure 5. Therefore these represent quite hard

regions to retrieve.
An interesting observation is that for both CNN-based

methods ( [17, 33]), the material’s specularity does not seem
be a significant factor of performance. Indeed, convex re-
gions (where self reflections are negligible) are consistently
recovered correctly regardless of the material: diffuse head
of Queen, bronze Bell, plastic Hippo, wooden Bowl; with
the only exception being the aluminium Cup. This is a clear
advantage of CNN methods against the classical ones that
require diffuse or mostly diffuse materials.

We observe that the hardest regions are the ones con-
taining high frequency details (sharp boundaries) such as
House, bottom part of the Squirrel details of the Queen etc.
As PS relies on normals, non differentiable regions with non
defined surface normals are problematic and this needs to
be addressed with more sophisticated surface optimisation
methods and/or direct depth retrieval.

6. Conclusion

In this work we proposed the first large scale dataset for
the near-field PS problem. Differently from the far-field as-
sumption, when the target object is close to the camera/light
setup several non-linear physical effects as anisotropic light
propagation, light attenuation and perspective viewing ge-
ometry occur. Current PS datasets, mostly consider sce-
narios where such effects are negligible as they provide di-
rectional light coordinates and use quite long-focus lenses
giving orthographic viewing geometry.

Recent research trends on 3D reconstruction using PS
have shown an increasing interest to deal under near-field
settings. However, the lack of a dataset for this topic has
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Figure 5. Normal error map comparison for all objects and all near-field methods.

prevented to fairly compare different approaches. For this
reason, we benchmark the recent near-field PS approaches
and analyse their performance over our dataset which in-
clude objects with a wide variety of materials. We also
provide a discussion about appropriate ways of evaluation
(depth vs normals). In addition, as we noticed that most of
the error is expectedly concentrated on the edges and dis-

continuity regions we conclude that future research has to
improve the interpretation of the PS imaging data in these
specific areas and possibly exploiting networks with edge
detection capability to better deal with interreflctions.

Finally, it is worth investigating the possibility of us-
ing completely raw image data without demosicing or ra-
dial distortion compensation. This requires incorporating
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maps on depth Z and psedo-depth Z̃ domain (errors in mm).



the radial distortion into the image irradiance equation and
treating the images as pure intensity and ignoring the po-
tential of recovering colours. The advantage of skipping
these two pre-processing steps is the potential of eliminat-
ing some image artefacts, especially around image edges,
which currently achieve the least accuracy.
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A. Appendix
This appendix provides supplementary material for the

main publication. Section A.1 provides additional details of
the Photometric Stereo camera and LED setup. Section A.2
provides a discussion on the inherent errors introduced in
shape estimation from normals. Section A.3 provides a
complete qualitative comparison of all 5 methods evaluated
in the main publication.

A.1. Photometric Stereo Setup

This section gives additional details on the PS setup.

Figure 7. Close-up of the setup used for acquiring Photometric
Stereo images.

It consists of the following main components (see Figure 7):

• RGB camera FLIR bfs-u3-32s4c-c with 8mm lens

• 52 LED Golden Dragon OSRAM

• variable voltage for adjustable LED power

• Arduino Mega 2560

The Arduino Mega 2560 controls the LEDs that are
turned on and off individually during the Photometric
Stereo image capture. The PCB has been designed to ac-
commodate a specific 8mm lens that allows a reasonable
wide field of view on a target object placed few centimeters
away from the camera. The type of OSRAM LEDs (LW
W5SN) are capable of emitting 5600 Kelvin white light up
to 191 lumen. The 120o of viewing angle of the LEDs al-
lows a complete lighting of the scene. The LEDs have been
distributed on 6 different circumferences (all centered in the
camera centre) of radii 35, 45, 55, 65, 75 and 85 mm. De-
pending on the circumference, the LEDs have been posi-
tioned at variable angle of 30o and 60o.

In order to avoid out of focus areas, the aperture of the
lens is kept to the minimum (f/11). Therefore, variable time
of exposures (among objects) have been used to prevent sat-
urations or too dark regions. Note that a separate set of cal-
ibration images (see main paper Section 3.1) was captured
for each different configuration.

The complete LED parameters (positions, brightness, di-
rections, angular dissipation, see main paper Section 3.1)
are included in the dataset.

A.2. Ground Truth Meshes

This section provides supplementary information about
the laser-scanned meshes which were used as ground truth
for the evaluation of the competing PS approaches. Note
that because of the different sizes of the objects and the
characteristics of the surfaces, the number of triangles in
each object mesh varies from 260K to 6.1M as shown in
Figure 8. As the scans can be of questionable quality at
some regions due to visibility and/or specular material (i.e.
numbers on the Die), manual segmentation was performed
on the image domain to only evaluate on the reliable re-
gions.

Ground truth discontinuity and non-differentiability.
Over the years, the majority of PS approaches has assumed
that the surface can be described as a continuous and differ-
entiable depth map. It has been acknowledged before [22]
that this assumption is violated in practice and some care
has been taken to include some robustness to it (e.g. L1 loss
in [19] and Cauchy estimator by [28]). However, we be-
lieve that the extent of this issue is underestimated and thus
we attempt to quantify it here by computing the following
two metrics. Firstly, we compute a normal map through nu-
merical differentiation of the ground truth depth map [29]
and compare it with the ground truth normal map. This
is shown in Table 1 of the main submission and illustrated
visually here in Figure 9. The mean per-pixel angular er-
ror of computed and ground truth normals is on average
3.34o with the maximum value being 9.19o on the com-
plex geometry house object. We emphasise that this effect
is completely independent of the actual uncertainty of the
‘ground truth’ meshes and it is solely caused by the projec-
tion operation (and so the effect would be identical in syn-
thetic data). Note, the ground truth normal map is computed
by rendering (i.e. projection, discretisation and occlusion)
of the surface normals into the image plane which is quite
different than numerical differentiation of the ground truth
depth map. Indeed, in Figure 9, the error is concentrated on
boundaries.

In addition, we compute the average per-pixel error be-
tween the ground truth depth and the depth obtained by nu-
merical integration (using [29]) of the ground truth normals
(i.e. pseudo-depth). The observed error is not-negligible



Ball 2M Bell 1.1M Buddha 3.4M Bunny 260K Die 420K

Hippo 2.2M House 6.1M Jar 1.5M Cup 1M Owl 930K

Queen 4.9M Squirrel 5.5M Bowl 750K Tool 350K
Figure 8. Laser-scanned meshes and their respective number of triangles.

(2.16mm on average) and it propagates outwards from oc-
clusion boundaries (as the numerical integration preserves
the actual mean depth).

Finally, we note that the two error metrics explained
above are likely to be close to the theoretical minimum (for
normals and depth respectively) achievable by any approach
that is reliant of the differentiable surface assumption. As
these error bounds can be non-negligible, we motivate fu-
ture research that avoids reliance of surface differentiability
(e.g. direct depth regression).

A.3. Reconstructions

This section contains a complete qualitative comparison
of all 5 methods L17 [19], Q18 [28] I18 [13], S20 [33] and
L20 [17]. Estimated 3D surface view as well as depth Z
and pseudo-depth Z̃ error maps are provided in Figures 10
to 16. Note that errors of predicted normals are provided in
the main publication.
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Error maps between differentiated normals and ground truth normals.
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Error maps between the pseudo-depth and the ground truth depth.
Figure 9. Normals and discontinuity.
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Figure 10. Evaluations 1-2/14
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