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Abstract

Using only a mobile phone app, our objective is to
cheaply retro-fit digital meters (e.g blood pressure, blood
glucose or industrial gauges) with ‘smart’ data transfer ca-
pabilities. Using the mobile phone camera we build an app
to securely and accurately transcribe information from dig-
ital meter screens. Only a single labelled training image
of a target meter is required to build a custom screen read-
ing module. Here we show how this can scale to potentially
hundreds of different meters by learning to recognising the
meter type so that the reading module can be automatically
selected. This makes the system very easy for a user who
would need to scan multiple different meter types. To this
end, we build a CNN based system which runs in real-time
on mobile device with very high read accuracy and meter
recognition. Our contributions include (i) a method of one-
shot training by synthesis through domain shift reduction,
(ii) a deep embedding network for scale, translation and
rotation invariant re-identification of digital meters, (iii) a
highly accurate and efficient mobile phone app for recog-
nising and parsing digital meter screens and (iv) release of
a new digital meter re-identification dataset.

1. Introduction
A surprisingly high number of different digital meters

are actively used by any one person on a day to day basis.
Whether this be a scale to measure body weight or a ther-
mometer to check temperature. In fact a large majority of
these types of meters are for personal health monitoring e.g.
blood pressure and blood glucose, etc. In clinical and in-
dustrial settings the number of digital meters escalates e.g.
oximeter, spirometer and machine status monitors. With
all this data, collection and analysis is valuable, but record
keeping is still normally done manually. Not only is this
time consuming, it is also prone to human entry error.

To combat this problem, modern meters are gradually
becoming ‘smart’, meaning they wirelessly transmit data
for remote analysis. This is typically done by pairing the
meter with a moblie phone using Bluetooth. However, up-
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Figure 1. Recognition and screen reading on mobile phone. Our
system can both recognise and parse the screen of a digital meter
at near 100% read accuracy. The system is trainable using a sin-
gle human labelled image consisting of a binary mask indicating
screen and background pixels, and the four corner coordinates of
the screen, see Figure 2. For meter recognition the system matches
a deep re-id embedding to the best matching meter in a gallery of
collected digital meters.

grading equipment to ‘smart’ capabilities is very costly,
particularly in industrial or hospital settings. Furthermore,
Bluetooth pairing is a rather slow and cumbersome opera-
tion.

We address failings of ‘smart’ meters and manual data
entry and build a vision based system to reliably recognise
meters and then read their screens using a mobile phone.
Focus is on precise automatic reading, especially essential
when handling medical data. To this end, we first recognise
and detect the exact model of meter screen and precisely lo-
calise screen position. Only then is the display parsed. Tun-
ing our recognition system to the exact target meter as in [3]
means very strict validation schemes can be applied based
on display type and screen digit positions, see Figure 1.

Unlike [3], we also show how to recognise the meter
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Figure 2. Screen detection training with one-shot learning. A single template image and training labels: binary mask indicating screen
and background pixels, and the four corner coordinates of the screen (green rectangle), is used to train a meter specific screen detection
network. The modality converter is applied to synthetic images at train time and real images at test time. Altering the function of the
modality converter adjusts the domain shift between real and synthetic data.

make itself allowing the app to read multiple screen types
without user guidance on the make/model of meter. We
also show how to improve validation performance by using
temporal information to check reading consistency between
frames. This increases read precision to 100% on all meters
in our dataset. The system is designed to be lightweight and
runs in real-time at over 50fps on an iPhone 11, an improve-
ment of 20fps over [3].

For each meter a reading module is trained to detect and
parse the screen. Selection of the correct module is auto-
matic and built from matching deep embeddings of digital
meters. The embedding is scale, translation and rotation in-
variant which means a single training image is all that is
necessary for recognition in the wild.

The reading module has to obtain precise screen coordi-
nates of a particular model of meter. This is a challenging
task for 4 main reasons: 1) screens are typically highly re-
flective and in some cases mirror like, 2) screens change
appearance, 3) hands occlude many types of meters and
4) manually collecting enough ground truth data of screen
corner positions to cover all variations in lighting, position,
camera angle, screen appearance, and backgrounds is very
restrictive. Because of this, a one-shot learning approach
(i.e. only one real template image is labelled) is used to
synthesise the training data by pasting a single labelled im-
age of the target meter (under various transformations) on
multiple different backgrounds. A simple image generation
scheme such as this may seem unsophisticated when com-
pared with modern simulation methods using 3D model ren-
dering or using generative adversarial networks. Further-
more, it is often true that such training data does not produce
models which generalise well to the real-world. However,
using a ‘modality converter’ [3] one can use this coarse type
of synthesis to train deep networks which now generalise to
the real-world. Thus leveraging a very simple technique to
generate enormous amounts of training data efficiently.

Using synthetic data for object detection is not new, sim-
ilar methods to ours [7, 6] use in the order of hundreds of la-
belled images per object instance and also typically require

some help from real training data. Here though, we show
how only one manually labelled training image is necessary
and how synthesis can be used without overfitting. An al-
ternative approach to synthesising data is one-shot-learning
methods [21, 13]. However, to date, these methods only
provide image axis aligned bounding box detections [5] and
do not natively support variation in object size, rotation and
perspective transformation (essential for our task). Simi-
larly tracking based approaches such as correlation filter-
ing [2] or long term object trackers [14] (which can be ini-
tialised from a single image) do not consider rotation or per-
spective distortion of the bounding box. Keypoint matching
to a single template image theoretically handles these con-
straints but in our experimental section this is shown to not
work in practice.

Recognising text or numbers in generic scenes using
neural networks has been addressed by a number of prior
works using a two step approach of localisation then recog-
nition [11, 8]. Recently some success has been found by in-
corporating both localisation and recognition into the same
network [17]. In all cases however, localisation does not
consider perspective distortion, resulting in systems which
either a) fail due to oblique camera angles, or b) require
larger networks to cope with larger variation of text.

Here domain shift from synthetic to real data is reduced
using a modality converter, see Figure 2. Once trained,
our models can be applied to real data for screen detec-
tion and perspective distortion correction. As such, a much
simpler network for text recognition can be used, this too
is trainable from completely synthetic data. Our screen
detector assumes a CNN model which the modality con-
verter is plugged into. The modality converter is agnostic
to architecture and we evaluate the performance using Mo-
bileNet [10] and MaskRCNN [9]. We further show how
re-identification can be used to classify meters in the wild,
trained purely from the single template image.
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Figure 3. (a) Example synthetic digit training data for training the digit recognizer. (b) Digit heatmaps. Example synthetic digit image
with corresponding goundtruth class heatmaps.

2. Method overview
Our system takes as input an image of the target meter,

efficiently identifies the meter and then interprets the values
contained on screen. It consists of three parts, (1) meter re-
identification, (2) a meter specific screen detector which re-
covers the size, location and orientation of the meter screen,
and (3) a digit recognizer which is applied to an image of
the extracted and rectified screen at specific locations, see
Figure 1 for an overview. Parts (2) and (3) are what we
call the screen reading module. These three parts are pro-
cessed using three separate deep convolutional neural net-
works (CNNs).

Meter re-identification. A scale, translation and rota-
tion invariant embeddinng of the target meter is formed to
quickly search and retrieve the meter type from an image
gallery of meters for which there exist trained screen read-
ing modules. Once a module is identified, the meter specific
screen detector and digit recogniser can be applied to the in-
put image.

Screen detection. The meter specific screen detector re-
covers the precise four coordinates of the digital meter
screen corners, forming a quadrangle. Thus, assuming a
planar surface of the screen, perspective correction is ap-
plied prior to digit recognition. The screen detector consists
of a standard CNN backbone architecture, such as VGG16,
ResNet or Inception, but with an additional block of layers
at the input, which we call the modality converter. In order
to explain the function of the modality converter we must
first briefly describe how the screen detector is trained.

One-shot training. Training of the screen detector is ac-
complished using a single hand labelled template image.
Labels consist of a foreground/background mask as well
as locations of meter screen corners. This template is fed
into our meter synthesizer which generates other examples
of this meter under various homographic transformations,
settings, lighting and reflections, please see Figure 2 for ex-
amples of blood glucose meter synthesis.

Modality converter. As the screen detector is trained
from generated data there is a strong risk of overfitting or
learning artefacts which do not transfer to real world im-
ages. The goal of the modality converter is to convert syn-
thetic and real data into a common space where they are
indistinguishable from one another. Other works have ex-
plored using adversarial training to learn how to transfer to
a common feature space [24, 16] or adapt synthetic images
so they look as real as possible [23, 19]. These approaches
require large amounts of unsupervised data to capture the
real data distributions. However, there are many real world
applications where obtaining this amount of unlabelled data
is impossible. For example, capturing the appearance space
of a blood glucose meter under the full range of on screen
values (which is part of meter appearance) would not be
possible i.e. all times and dates and ranges of glucose would
require an insurmountable number of blood tests. To over-
come the limitations of adversarial training we propose to
explore low level and efficient functions for the modality
converter, such as edge based filters, colour removal, blur-
ring and using pre-trained filters from a convolutional net-
work. We show experimentally that by choosing the right
function one can perform very well on our dataset of meters
and surpass state-of-the-art object detectors trained without
the added modality converter.

Digit recognition. The screen area is rectified and fed to
the digit recognizer (another CNN) which extracts strings
of characters and labels them according to type e.g. date or
time. Validation of the strings is also performed. The digit
recognition is customised to the meter based on the spatial
location it is applied e.g. bottom left is date, bottom right is
time.

3. Re-identification and Screen detection

Template image. The template image contains the target
meter in a frontal facing pose with the screen surface normal
pointing at the camera. Ground truth labels consist of the
four coordinates of the meter screen in the training image,
as well as the foreground/background mask. The label for
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Figure 4. Digital meters used in our Screen-detection dataset.
Screen reflection on these glossy displays severely inhibits screen
detection and digit recognition.

background should also include the device screen, see Fig-
ure 2, so that during application the screen detector learns
to ignore screen content.

Meter synthesis. The template image is placed on ran-
domly chosen background images under various different
rotations, scales and perspective distortions using alpha
matting with the mask. Background images are taken from
a dataset of images containing people. This is also appro-
priate for transfer to real world as person reflection on the
meter screens is typical.

Re-identification. MobileNet [10] is trained to embed
images of meters into a 128 length code (by replacing the
last fully convolution layers and using linear activations).
The network is trained from a set of 10,000 digital meter im-
ages downloaded from a google image using keywords such
as “digital meter”, “home health meters” etc. The network
is trained in a self-supervised fashion by forcing it to match
input images to themselves but under various affine trans-
formations e.g. scaled, rotated and cropped. The network is
trained using a batch size of 128, with the ADAM optimiser
and learning rate of 0.0001 and a triplet loss. Triplets are
mined during training by identifying “semi-hard” triplets.
These are triplets where the negative is not closer to the an-
chor than the positive, but which still have positive loss [22].
During inference, the cosine similarity is applied to the em-
beddings to recall the first nearest neighbour from a gallery,
see Figure 1.

Screen detection. For screen detection a backbone CNN
connects to the modality converter (which is agnostic to the
CNN backbone architecture) and performs the screen re-
gression task. We use MobileNet [10] and replace the clas-
sification layer with a regression layer to output 8 values
representing the four (x,y) coordinates of the screen and
train using an L2 loss. During evaluation it is also shown
how MaskRCNN [9] or ResNet50 can also be used as a
backbone. We obtain a significant speed increase by replac-
ing Relu6 activations in MobileNet with Relu, improving
runtime performance from 30fps to 50fps on mobile phone.

4. Digit recognition
Preset regions of the rectified screens are associated with

the type of text they contain e.g. date, time or weight. As
the majority of meters have fixed areas for the type of digits
displayed, they can initially be defined by hand on the tem-
plate image. Characters within these regions are then de-
tected individually using a small CNN which we aptly call
LeDigit due to similarities with the LeNet5 [15] network
from which it is based.

LeDigit. The network ingests a grayscale image and pro-
duces a heatmap for the location of each class of possible
characters (19 classes comprising of: the digits 0-9, sym-
bols ‘:’, ‘.’, ‘-’, ‘am’, ‘pm’ and the letters ‘L’, ‘o’, ‘H’ and ‘i’
(used for certain meters in our dataset). LeDigit is derived
from LeNet5 by converting the network into a fully con-
volutional version and changing the loss to L2 for heatmap
regression. The receptive field of the network is 50x25 pix-
els, which is important to know when scaling the training
data appropriately.

Training. The training data for LeDigit is completely syn-
thetic. Various combinations of characters are generated,
including dates and times, these are augmented in various
ways (size, rotation, blurring, erosion/dilation, brightness
inversion), then alpha blended with a random background
image (see Figure 3 (a) for examples). Associated ground
truth heatmaps (see Figure 3 (b)) per character type are arti-
ficially created by positioning a Gaussian kernel at the cor-
responding character centre. Digits are sized so as to be
contained within the receptive field of the network.

Character string recognition and validation. Each out-
put channel of LeDigit is thresholded to recover modes of
high confidence and scored based on their sum. Modes be-
low a threshold are removed. A line of best fit through re-
maining modes is found using RANSAC. All modes a set
standard deviation from the line are removed. A string of
characters are formed by sorting modes according to their
class from left to right. These strings are validated using
(regular expressions) based on their position in the screen



Figure 5. Digit-recognition dataset. 5 example screen snapshots from each of our digital meters is shown. First four columns are valid
examples with the last column an invalid example (marked with red border). Notice the difficulty in recognizing the digits due to lighting
and reflections.

and expected data type e.g. date, time or floating point num-
bers. Appropriate ranges are also checked.

5. Experiments
Two datasets are collected to separately evaluate the per-

formance of the two aspects of our method (screen detection
and digit recognition).

5.1. Datasets

Digital meters. Our dataset is sourced using 5 diverse
digital meters consisting of a blood glucose monitor,
kitchen scale, bathroom scale, digital multimeter and a dig-
ital body thermometer. Figure 4 illustrates each meter and
their display.

Screen-detection dataset. This dataset consists of 30 im-
ages for each of the digital meters. All images were cap-
tured with a mobile phone aspect ratio of 9:16 at a size of
270 by 480 pixels. They contain varying background clut-
ter, rotations, lighting, translations, scale and viewpoint and
object occlusions. Please see supplementary material for
example images. Screen corner coordinates are manually
labelled.

Digit-recognition dataset. For of each of the 5 meters,
rectified screen images are semi-automatically recorded by
running a trained screen detector live on web-cam video and
recording screen snapshots. Snapshots are recorded under
varying conditions e.g. natural/artificial light from different
angles and/or backlight turned on/off, meter rotation, scale
and numerical readings, see Figure 5 for examples. Snap-
shots were manually labelled as valid if a reading is present,
i.e. no null values or blank screens, and if all digits were
visible. All other images were labelled as invalid, these in-
clude screens displaying nothing or null values, or images
with out of shot digits. Valid images were manually tagged
with their corresponding numerical readings. For the blood
glucose meter, multiple tags are given i.e. glucose, time and

date, for other meters one tag is sufficient. For the glucose
meter 556 screen snapshots were recorded, and for all other
meters 50 images per device were collected. Dataset details
can be found in Table 2.

5.2. Screen detection evaluation protocol

We propose two measures for evaluating screen location
against factors important for subsequent digit recognition,
which is reliant on very precise localisation. These mea-
sures are vertex difference and vertex alignment which con-
sider these factors by measuring the quality in detecting the
corners of the screen.

Vertex difference. The predicted screen quadrangle and
ground-truth (GT) quadrangle are first normalized by
isotropically scaling them so the longest edge of the GT
quadrangle is 100 pixels. Average pixel distances between
corresponding vertices of the GT and predicted quadrangle
is measured.

Vertex accuracy. A predicted quadrangle vertex is con-
sidered correctly detected if its vertex distance is below a
set distance threshold d. Vertex accuracy is recorded as the
percentage of correctly detected vertices overall all vertices
in the test set.

Baseline methods. We compare against a keypoint
matching system. Although a non deep learning based ap-
proach, we argue it is a challenging competitor. Unlike the
state-of-the-art deep learning based object detectors, this
system only needs one labelled training image, does not re-
quire any data augmentation and is robust to occlusions and
screen changes. Keypoints (a mix of AKAZE [1], ORB [20]
and Hessian affine [18]) are extracted from within an area
of the template image containing only the meter (using the
mask) and matched to keypoints in the test image. The
homography is used to determine screen coordinates using
LO-RANSAC [4]. We also compare against a ResNet50
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Figure 6. Modality comparisons. Precision curves (higher is better) of screen detection show percentage of all predicted screen corner
points within a set distance from ground truth. Using an edge modality proves consistently good for all devices.
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Figure 7. Quantitative comparisons. Screen detection precision
curves (higher is better) is shown as an average over all meters
(right). Our method performs best over all baselines.

network trained to regress screen coordinates and a MaskR-
CNN network (with and without the modality converter)
which is adapted to produce keypoints at screen corners.
All CNN models are pre-trained on ImageNet.

5.3. Digit recognition evaluation protocol

If a recovered string passes validation (as described in
section 4) and precisely matches the ground truth we count
this as a successful read. Two types of evaluation are con-
ducted:

Read accuracy. The percentage of successful readings
from all those which were correctly validated. Because
readings are only ever returned to the user when classed as
valid, read accuracy can also be viewed as the probability
of the system being correct in its returned reading.

Validation performance. Because a string which passes
validation is more likely to be correct, one could artificially
inflate the read accuracy (at the expense of a lower suc-
cessful read return rate) by being very strict with validation.
Therefore, we also measure the validation performance by
quantifying the recognizer’s ability in detecting if a pre-
sented meter reading is valid or invalid. Two metrics are
used: validation sensitivity which measures the proportion
of detected valid readings, and validation specificity which
measures the proportion of detected invalid readings. Both
of these metrics should be high for best performance.

5.4. Re-identification.

For each image in the screen detection dataset (across all
5 meters) we test the top 1 retrieval accuracy. The gallery
consists of the 10,000 training images downloaded from a
google image search mixed with out dataset. Our system
achieved 96% accuracy. Most failures are due to a strong
occlusion of the meter by e.g. a hand.

5.5. Screen detection

Image modality experiment. The performance of screen
detection is evaluated under four settings of the modality
converter using a MobileNet backbone CNN: (1) RGB: re-
tains the RGB input completely, (2) edge: modality con-
verter layers are constructed to produce the gradient mag-
nitude image, (3) grayscale: an averaging 1x1 convolution
is applied to the RGB channels and (4) random: modality
converter consists of 3 layers of randomly initialised con-
volutional filters of size 3x3 and linear activations, which
upscale and downscale the channels from 3 to 5 then back
to 3. The random mode has the effect of average blur-
ring the input. All models are trained with batch size 25, a
learning rate of 0.005, 300,000 iterations and use the Adam
optimizer. Figure 6 shows vertex accuracy for each me-
ter plotted against various threshold levels d. Notice how
using an edge modality produces consistently good perfor-
mance across all meters. With an RGB modality more likely
to overfit to the training data. Grayscale produces worse
performance and random is the least best all round even
though it helps blur edge artefacts left over through synthe-
sis. Please see supplementary video illustrating the quality
of the edge based model for screen detection in practice -
these models never saw a single real image.

Baseline comparisons We test our mobile phone based
model (MobileNet backbone with edge modality) against
our baseline methods. Figure 7 shows average performance
curves across all meters. The MaskRCNN detector is tested
using an RGB and edge modality. The MaskRCNN net-
work uses a ResNet50 backbone, which we test separately
using only RGB modality. The ResNet50 backbone pro-
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Figure 8. Qualitative comparisons. Examples of screen detections for blood glucose meter, quadrangles are shown as green polygons
with the red edge indicating screen top. Comparison shown against baselines.
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Figure 9. (a) Staged training of MobileNet, trained by fixing various stages of the ImageNet pre-trained network. RGB modality when
fixing stages 1 to 6 shown as a solid blue line. Performance for having no fixed stages (stage 0) for the RGB and other modalities are shown
as a dotted line. (b) Alternative vs own training images. Internet shopping sites images and our own images are compared when used as
a template during training.

duces similar results to the MobileNet-RGB backbone (see
Figure 6), indicating over-training occurs in both models.
MaskRCNN-RGB produces mildly better results to these,
due to its multi-modal output and use of non-maximum-
suppression. MaskRCNN-Edge works better but still not
as good as our network, this is because our network pro-
duces a structured quadrangle output, whereas the MaskR-
CNN approach independently predicts screen corner coor-
dinates. The keypoint based method is least successful due
to reflectance and textureless surfaces of the meters. Table 1
shows vertex accuracy at d = 15px from GT. MobileNet-
Edge performs best with 93% accuracy and an average ver-
tex difference of only 9px. A qualitative comparison against
baselines is show in Figure 8 using the glucose meter and
multimeter.

Fixed stage training. As an edge based modality works
best, we explore the idea of using pre-trained filters in
MobileNet (trained on ImageNet) as modality converters.
Pre-trained filters close to the input are known to produce
edge like features, hence we experiment with fixing vari-
ous stages of MobileNet, up to the final global max pool-

ing layer. Fixing up to six stages are tested in total. Each
stage corresponds to a downsampling of the spatial dimen-
sion. Figure 9(a) shows the vertex accuracy at d = 15px
vs the number of stages fixed. When tested on real data
we unexpectedly observe fixing up to mid-way through the
network to produce best results. However these results are
consistently worse than all other tested modalities. When
testing on synthetic data we observe a decrease in accuracy
as stages are fixed. Edge and RGB modalities produce the
worst results. This indicates that fixing pre-trained filters at-
tenuates the domain shift early in the network causing over-
training. Whereas an edge or RGB modality allows the net-
work to regularise and reduces the domain shift, with the
edge modality being best overall.

Alternative training images. In this experiment we ex-
plore training our screen detector (MobileNet -Edge) using
out of domain template images of meters sourced from in-
ternet shopping sites. These images are normally taken un-
der controlled lighting conditions and from a different cam-
era to our own. Figure 9(b) demonstrates our method can be
used to train from images scrapped from the internet with



Meter type Keypoint ResNet50 RGB MaskRCNN RGB MaskRCNN Edge MobileNet Edge
Blood glucose 90% 50% 70% 100% 100%
Body thermometer 17% 97% 67% 90% 97%
Kitchen scale 17% 97% 100% 93% 97%
Multimeter 80% 60% 90% 97% 90%
Bathroom scale 33% 80% 73% 60% 83%
Avg. vertex accuracy 29% 77% 80% 88% 93%
Avg. vertex difference 171px 18px 14px 19px 9px

Table 1. Screen detection performance, measured using vertex accuracy at d = 15px from GT, per device. Average vertex accuracy along
with average vertex difference is shown at the bottom of the table.

Meter type # Images # Valid Range Units Validation sensitivity Validation specificity Read accuracy
Blood glucose - glucose 556 534 1.1—29.1 mmol/l 99.6% 92.9% 99.8%
Blood glucose - time 556 534 - am/pm 99.6% 100% 99.8%
Blood glucose - date 556 534 - NA 99.6% 100% 100%
Body thermometer 50 44 32.2—42.5 Celsius 93.6% 100% 95.5%
Kitchen scale 50 47 0—15.65 grams 93.6% 100% 100%
Multimeter 50 49 0—28.6 volts 100% 100% 98.0%
Bathroom Scale 50 48 18-95 kg 100% 100% 100%

Table 2. Digit-recognition. Dataset information and recognition results are shown.

very little loss in accuracy, showing the potential of rapidly
training many meter readers.

5.6. Digit recognition

Static image performance. Analysis of our digit recog-
nizer was conducted on the digit-recognition dataset. Re-
sults across all of the digital meters are shown in Table 2.
The read accuracy is extremely good across all meters, with
all of the meters having greater than 95% accuracy and very
high validation sensitivity and specificity close to 100% for
all meters. A comparison is formed against two state-of-
the-art methods of [12], for reading text in the wild and [8]
for reading Google street view door numbers. When ap-
plied to our test data they give very poor performance and
are computationally slower in comparison to our LeDigit
and validation system. The method of [12] executes in
30ms but does not give reasonable digit output which we
believe is due to the original training set used. [8] executes
in 80ms and ours is less than 5ms (our time includes detec-
tion,recognition and validation). The method of [8] requires
a tight bounding box around the digits of interest. For four
of our meters (all but the glucose meter) we manually anno-
tate 200 tight bounding boxes for testing. [8] has an average
read accuracy of 8% far lower than our network (we ignore
missing symbols in evaluation as this method cannot detect
them). [8] uses 7M parameters and ours only 150K.

Video based performance. Using the app opperating on
a video stream, we set it to only validated a reading if after
10 consecutive frames a consensus of at least 8 read frames
agree. Under these conditions, by pointing the phone cam-
era at test images under various viewing angels the read ac-

curacy improved to 100% on all images with 100% valida-
tion specificity and sensitivity.

5.7. Computational performance

Per video frame processing time when running the sys-
tem on an iPhone 11 is: 0.6ms for the digit recognizer and
4ms for the screen detector. The overhead due to manipulat-
ing the video frame in memory (cropping, resizing, perspec-
tive transform) and rendering results in a processing speed
of approximately 50fps. Example tracking by detection and
recognition can be seen in the supplementary video.

6. Conclusion

Using a single labelled template image we show how one
can build a mobile phone app to efficiently recognise and
parse the screen of a digital meter. Custom meter screen
reading modules give rise to very high validation and read
accuracy performance, close to 100%. We demonstrate
converting the augmented template image during training
and real images at run time to edge images remarkable re-
duces domain shift, producing very good results. It was also
shown how one can scale this approach so that multiple me-
ters can be read without manual specification of the appro-
priate module. This employed a re-identification system for
meter recognition which was shown to have high top 1 re-
trieval accuracy out of a dataset of 10,000 digital meters.
The mobile phone framework is now also employed in a
commercial setting by GlucoRx Limited for scanning glu-
cose meter readings and helping with diabetes management
of their over 250k patients.
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