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Abstract

An accurate model of the environment and the dynamic agents acting in it offers
great potential for improving motion planning. We present MILE: a Model-based
Imitation LEarning approach to jointly learn a model of the world and a policy
for autonomous driving. Our method leverages 3D geometry as an inductive bias
and learns a highly compact latent space directly from high-resolution videos of
expert demonstrations. Our model is trained on an offline corpus of urban driving
data, without any online interaction with the environment. MILE improves upon
prior state-of-the-art by 31% in driving score on the CARLA simulator when
deployed in a completely new town and new weather conditions. Our model can
predict diverse and plausible states and actions, that can be interpretably decoded to
bird’s-eye view semantic segmentation. Further, we demonstrate that it can execute
complex driving manoeuvres from plans entirely predicted in imagination. Our
approach is the first camera-only method that models static scene, dynamic scene,
and ego-behaviour in an urban driving environment. The code and model weights
are available at https://github.com/wayveai/mile.

1 Introduction

From an early age we start building internal representations of the world through observation and
interaction [1]. Our ability to estimate scene geometry and dynamics is paramount to generating
complex and adaptable movements. This accumulated knowledge of the world, part of what we often
refer to as common sense, allows us to navigate effectively in unfamiliar situations [2].

In this work, we present MILE, a Model-based Imitation LEarning approach to jointly learn a model
of the world and a driving policy. We demonstrate the effectiveness of our approach in the autonomous
driving domain, operating on complex visual inputs labelled only with expert action and semantic
segmentation. Unlike prior work on world models [3, 4, 5], our method does not assume access to a
ground truth reward, nor does it need any online interaction with the environment. Further, previous
environments in OpenAI Gym [3], MuJoCo [4], and Atari [5] were characterised by simplified visual
inputs as small as 64×64 images. In contrast, MILE operates on high-resolution camera observations
of urban driving scenes.

Driving inherently requires a geometric understanding of the environment, and MILE exploits 3D
geometry as an important inductive bias by first lifting image features to 3D and pooling them into a
bird’s-eye view (BeV) representation. The evolution of the world is modelled by a latent dynamics
model that infers compact latent states from observations and expert actions. The learned latent state
is the input to a driving policy that outputs vehicle control, and can additionally be decoded to BeV
segmentation for visualisation and as a supervision signal.
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Our method also relaxes the assumption made in some recent work [6, 7] that neither the agent nor
its actions influence the environment. This assumption rarely holds in urban driving, and therefore
MILE is action-conditioned, allowing us to model how other agents respond to ego-actions. We
show that our model can predict plausible and diverse futures from latent states and actions over
long time horizons. It can even predict entire driving plans in imagination to successfully execute
complex driving manoeuvres, such as negotiating a roundabout, or swerving to avoid a motorcyclist
(see videos in the supplementary material).

We showcase the performance of our model on the driving simulator CARLA [8], and demonstrate a
new state-of-the-art. MILE achieves a 31% improvement in driving score with respect to previous
methods [9, 10] when tested in a new town and new weather conditions. Finally, during inference,
because we model time with a recurrent neural network, we can maintain a single state that summarises
all the past observations and then efficiently update the state when a new observation is available. We
demonstrate that this design decision has important benefits for deployment in terms of latency, with
negligible impact on the driving performance.

To summarise the main contributions of this paper:

• We introduce a novel model-based imitation learning architecture that scales to the visual
complexity of autonomous driving in urban environments by leveraging 3D geometry as
an inductive bias. Our method is trained solely using an offline corpus of expert driving
data, and does not require any interaction with an online environment or access to a reward,
offering strong potential for real-world application.

• Our camera-only model sets a new state-of-the-art on the CARLA simulator, surpassing
other approaches, including those requiring LiDAR inputs.

• Our model predicts a distribution of diverse and plausible futures states and actions. We
demonstrate that it can execute complex driving manoeuvres from plans entirely predicted
in imagination.

2 Related Work

Our work is at the intersection of imitation learning, 3D scene representation, and world modelling.

Imitation learning. Despite that the first end-to-end method for autonomous driving was envisioned
more than 30 years ago [11], early autonomous driving approaches were dominated by modular
frameworks, where each module solves a specific task [12, 13, 14]. Recent years have seen the
development of several end-to-end self-driving systems that show strong potential to improve driving
performance by predicting driving commands from high-dimensional observations alone. Conditional
imitation learning has proven to be one successful method to learn end-to-end driving policies that can
be deployed in simulation [15] and real-world urban driving scenarios [16]. Nevertheless, difficulties
of learning end-to-end policies from high-dimensional visual observations and expert trajectories
alone have been highlighted [17].

Several works have attempted to overcome such difficulties by moving past pure imitation learning.
DAgger [18] proposes iterative dataset aggregation to collect data from trajectories that are likely
to be experienced by the policy during deployment. NEAT [19] additionally supervises the model
with BeV semantic segmentation. ChauffeurNet [20] exposes the learner to synthesised perturbations
of the expert data in order to produce more robust driving policies. Learning from All Vehicles
(LAV) [10] boosts sample efficiency by learning behaviours from not only the ego vehicle, but from all
the vehicles in the scene. Roach [9] presents an agent trained with supervision from a reinforcement
learning coach that was trained on-policy and with access to privileged information.

3D scene representation. Successful planning for autonomous driving requires being able to
understand and reason about the 3D scene, and this can be challenging from monocular cameras.
One common solution is to condense the information from multiple cameras to a single bird’s-eye
representation of the scene. This can be achieved by lifting each image in 3D (by learning a depth
distribution of features) and then splatting all frustums into a common rasterised BeV grid [21, 22, 23].
An alternative approach is to rely on transformers to learn the direct mapping from image to bird’s-eye
view [24, 25, 26], without explicitly modelling depth.
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World models. Model-based methods have mostly been explored in a reinforcement learning
setting and have been shown to be extremely successful [3, 27, 5]. These methods assume access
to a reward, and online interaction with the environment, although progress has been made on fully
offline reinforcement learning [28, 29]. Model-based imitation learning has emerged as an alternative
to reinforcement learning in robotic manipulation [30] and OpenAI Gym [31]. Even though these
methods do not require access to a reward, they still require online interaction with the environment
to achieve good performance.

Learning the latent dynamics of a world model from image observations was first introduced in
video prediction [32, 33, 34]. Most similar to our approach, [4, 5] additionally modelled the reward
function and optimised a policy inside their world model. Contrarily to prior work, our method
does not assume access to a reward function, and directly learns a policy from an offline dataset.
Additionally, previous methods operate on simple visual inputs, mostly of size 64× 64. In contrast,
MILE is able to learn the latent dynamics of complex urban driving scenes from high resolution
600× 960 input observations, which is important to ensure small details such as traffic lights can be
perceived reliably.

Trajectory forecasting. The goal of trajectory forecasting is to estimate the future trajectories of
dynamic agents using past physical states (e.g. position, velocity), and scene context (e.g. as an
offline HD map) [35, 36, 37, 38]. World models build a latent representation of the environment that
explains the observations from the sensory inputs of the ego-agent (e.g. camera images) conditioned
on their actions. While trajectory forecasting methods only model the dynamic scene, world models
jointly reason on static and dynamic scenes. The future trajectories of moving agents is implicitly
encoded in the learned latent representation of the world model, and could be explicitly decoded
given we have access to future trajectory labels.

[35, 37, 38] forecast the future trajectory of moving agents, but did not control the ego-agent. They
focused on the prediction problem and not on learning expert behaviour from demonstrations. [39]
inferred future trajectories of the ego-agent from expert demonstrations, and conditioned on some
specified goal to perform new tasks. [36] extended their work to jointly model the future trajectories
of moving agents as well as of the ego-agent.

Our proposed model jointly models the motion of other dynamics agents, the behaviour of the
ego-agent, as well as the static scene. Contrary to prior work, we do not assume access to ground
truth physical states (position, velocity) or to an offline HD map for scene context. Our approach is
the first camera-only method that models static scene, dynamic scene, and ego-behaviour in an urban
driving environment.

3 MILE: Model-based Imitation LEarning

In this section, we present MILE: our method that learns to jointly control an autonomous vehicle and
model the world and its dynamics. An overview of the architecture is presented in Figure 1 and the full
description of the network can be found in Appendix C. We begin by defining the generative model
(Section 3.1), and then derive the inference model (Section 3.2). Section 3.3 and Section 3.4 describe
the neural networks that parametrise the inference and generative models respectively. Finally, in
Section 3.5 we show how our model can predict future states and actions to drive in imagination.

3.1 Probabilistic Generative Model

Let o1:T be a sequence of T video frames with associated expert actions a1:T and ground truth BeV
semantic segmentation labels y1:T . We model their evolution by introducing latent variables s1:T
that govern the temporal dynamics. The initial distribution is parameterised as s1 ∼ N (0, I), and
we additionally introduce a variable h1 ∼ δ(0) that serves as a deterministic history. The transition
consists of (i) a deterministic update ht+1 = fθ(ht, st) that depends on the past history ht and
past state st, followed by (ii) a stochastic update st+1 ∼ N (µθ(ht+1,at), σθ(ht+1,at)I), where
we parameterised st as a normal distribution with diagonal covariance. We model these transitions
with neural networks: fθ is a gated recurrent cell, and (µθ, σθ) are multi-layer perceptrons. The full
probabilistic model is given by Equation (1).
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Figure 1: Architecture of MILE.
(i) The goal is to infer the latent dynamics (h1:T , s1:T ) that generated the observations o1:T ,

the expert actions a1:T and the bird’s-eye view labels y1:T . The latent dynamics contains a
deterministic history ht and a stochastic state st.

(ii) The inference model, with parameters φ, estimates the posterior distribution of the stochas-
tic state q(st|o≤t,a<t) ∼ N (µφ(ht,at−1,xt), σφ(ht,at−1,xt)I) with xt = eφ(ot). eφ
is the observation encoder that lifts image features to 3D, pools them to bird’s-eye view, and
compresses to a 1D vector.

(iii) The generative model, with parameters θ, estimates the prior distribution of the stochastic
state p(st|ht−1, st−1) ∼ N (µθ(ht, ât−1), σθ(ht, ât−1)I), with ht = fθ(ht−1, st−1) the
deterministic transition, and ât−1 = πθ(ht−1, st−1) the predicted action. It additionally
estimates the distributions of the observation p(ot|ht, st) ∼ N (gθ(ht, st), I), the bird’s-eye
view segmentation p(yt|ht, st) ∼ Categorical(lθ(ht, st)), and the action p(at|ht, st) ∼
Laplace(πθ(ht, st),1).

(iv) In the diagram, we represented our model observing inputs for T = 2 timesteps, and then
imagining future latent states and actions for one step.



h1 ∼ δ(0)
s1 ∼ N (0, I)

ht+1 = fθ(ht, st)

st+1 ∼ N (µθ(ht+1,at), σθ(ht+1,at)I)

ot ∼ N (gθ(ht, st), I)

yt ∼ Categorical(lθ(ht, st))

at ∼ Laplace(πθ(ht, st),1)

(1)

with δ the Dirac delta function, gθ the image decoder, lθ the BeV decoder, and πθ the policy, which
will be described in Section 3.4.

3.2 Variational Inference

Following the generative model described in Equation (1), we can factorise the joint probability as:

p(o1:T ,y1:T ,a1:T ,h1:T , s1:T ) =

T∏
t=1

p(ht, st|ht−1, st−1,at−1)p(ot,yt,at|ht, st) (2)
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with

p(ht, st|ht−1, st−1,at−1) = p(ht|ht−1, st−1)p(st|ht,at−1) (3)
p(ot,yt,at|ht, st) = p(ot|ht, st)p(yt|ht, st)p(at|ht, st) (4)

Given that ht is deterministic according to Equation (1), we have p(ht|ht−1, st−1) = δ(ht −
fθ(ht−1, st−1)). Therefore, in order to maximise the marginal likelihood of the observed data
p(o1:T ,y1:T ,a1:T ), we need to infer the latent variables s1:T . We do this through deep variational
inference by introducing a variational distribution qH,S defined and factorised as follows:

qH,S , q(h1:T , s1:T |o1:T ,a1:T−1) =

T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t) (5)

with q(ht|ht−1, st−1) = p(ht|ht−1, st−1), the Delta dirac function defined above, and q(h1) = δ(0).
We parameterise this variational distribution with a neural network with weights φ. By applying
Jensen’s inequality, we can obtain a variational lower bound on the log evidence:

log p(o1:T ,y1:T ,a1:T ) ≥ L(o1:T ,y1:T ,a1:T ; θ, φ)

,
T∑
t=1

Eq(h1:t,s1:t|o≤t,a<t)

[
log p(ot|ht, st)︸ ︷︷ ︸
image reconstruction

+ log p(yt|ht, st)︸ ︷︷ ︸
bird’s-eye segmentation

+ log p(at|ht, st)︸ ︷︷ ︸
action

]

−
T∑
t=1

Eq(h1:t−1,s1:t−1|o≤t−1,a<t−1)

[
DKL

(
q(st|o≤t,a<t) || p(st|ht−1, st−1)

)
︸ ︷︷ ︸

posterior and prior matching

]
(6)

Please refer to Appendix B for the full derivation. We model q(st|o≤t,a<t) as a Gaussian distribution
so that the Kullback-Leibler (KL) divergence can be computed in closed-form. Given that the image
observations ot are modelled as Gaussian distributions with unit variance, the resulting loss is the
mean-squared error. Similarly, the action being modelled as a Laplace distribution and the BeV
labels as a categorical distribution, the resulting losses are, respectively, L1 and cross-entropy. The
expectations over the variational distribution can be efficiently approximated with a single sequence
sample from qH,S , and backpropagating gradients with the reparametrisation trick [40].

3.3 Inference Network φ

The inference network, parameterised by φ, models q(st|o≤t,a<t), which approximates the true
posterior p(st|o≤t,a<t). It is constituted of two elements: the observation encoder eφ, that embeds
input images, route map and vehicle control sensor data to a low-dimensional vector, and the posterior
network (µφ, σφ), that estimates the probability distribution of the Gaussian posterior.

3.3.1 Observation Encoder

The state of our model should be compact and low-dimensional in order to effectively learn dynamics.
Therefore, we need to embed the high resolution input images to a low-dimensional vector. Naively
encoding this image to a 1D vector similarly to an image classification task results in poor performance
as shown in Section 5.2. Instead, we explicitly encode 3D geometric inductive biases in the model.

Lifting image features to 3D. Since autonomous driving is a geometric problem where it is necessary
to reason on the static scene and dynamic agents in 3D, we first lift the image features to 3D. More
precisely, we encode the image inputs ot ∈ R3×H×W with an image encoder to extract features
ut ∈ RCe×He×We . Then similarly to Philion and Fidler [21], we predict a depth probability
distribution for each image feature along a predefined grid of depth bins dt ∈ RD×He,×We . Using
the depth probability distribution, the camera intrinsics K and extrinsics M , we can lift the image
features to 3D: Lift(ut,dt,K−1,M)) ∈ RCe×D×He×De×3.

Pooling to BeV. The 3D feature voxels are then sum-pooled to BeV space using a predefined grid
with spatial extent Hb ×Wb and spatial resolution bres. The resulting feature is bt ∈ RCe×Hb×Wb .
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Mapping to a 1D vector. In traditional computer vision tasks (e.g. semantic segmentation [41],
depth prediction [42]), the bottleneck feature is usually a spatial tensor, in the order of 105 − 106

features. Such high dimensionality is prohibitive for a world model that has to match the distribution
of the priors (what it thinks will happen given the executed action) to the posteriors (what actually
happened by observing the image input). Therefore, using a convolutional backbone, we compress
the BeV feature bt to a single vector x′t ∈ RC′ . As shown in Section 5.2, we found it critical to
compress in BeV space rather than directly in image space.

Route map and speed. We provide the agent with a goal in the form of a route map [9], which is a
small grayscale image indicating to the agent where to navigate at intersections. The route map is
encoded using a convolutional module resulting in a 1D feature rt. The current speed is encoded with
fully connected layers as mt. At each timestep t, the observation embedding xt is the concatenation
of the image feature, route map feature and speed feature: xt = [x′t, rt,mt] ∈ RC , with C = 512

3.3.2 Posterior Network

The posterior network (µφ, σφ) estimates the parameters of the variational distribution
q(st|o≤t,a<t) ∼ N (µφ(ht,at−1, eφ(ot)), σφ(ht,at−1, eφ(ot))I) with ht = fθ(ht−1, st−1).
Note that ht was inferred using fθ because we have assumed that ht is deterministic, meaning
that q(ht|ht−1, st−1) = p(ht|ht−1, st−1) = δ(ht − fθ(ht−1, st−1)). The dimension of the Gaus-
sian distribution is equal to 512.

3.4 Generative Network θ

The generative network, parameterised by θ, models the latent dynamics (h1:T , s1:T ) as well as
the generative process of (o1:T ,y1:T ,a1:T ). It comprises a gated recurrent cell fθ, a prior network
(µθ, σθ), an image decoder gθ, a BeV decoder lθ, and a policy πθ.

The prior network estimates the parameters of the Gaussian distribution
p(st|ht−1, st−1) ∼ N (µθ(ht, ât−1), σθ(ht, ât−1)I) with ht = fθ(ht−1, st−1) and ât−1 =
πθ(ht−1, st−1). Since the prior does not have access to the ground truth action at−1, the latter
is estimated with the learned policy ât−1 = πθ(ht−1, st−1).

The Kullback-Leibler divergence loss between the prior and posterior distributions can be interpreted
as follows. Given the past state (ht−1, st−1), the objective is to predict the distribution of the next
state st. As we model an active agent, this transition is decomposed into (i) action prediction and
(ii) next state prediction. This transition estimation is compared to the posterior distribution that has
access to the ground truth action at−1, and the image observation ot. The prior distribution tries to
match the posterior distribution. This divergence matching framework ensures the model predicts
actions and future states that explain the observed data. The divergence of the posterior from the prior
measures how many nats of information were missing from the prior when observing the posterior.
At training convergence, the prior distribution should be able to model all action-state transitions
from the expert dataset.

The image and BeV decoders have an architecture similar to StyleGAN [43]. The prediction starts as
a learned constant tensor, and is progressively upsampled to the final resolution. At each resolution,
the latent state is injected in the network with adaptive instance normalisation. This allows the latent
states to modulate the predictions at different resolutions. The policy is a multi-layer perceptron.
Please refer to Appendix C for a full description of the neural networks.

3.5 Imagining Future States and Actions

Our model can imagine future latent states by using the learned policy to infer actions âT+i =
πθ(hT+i, sT+i), predicting the next deterministic state hT+i+1 = fθ(hT+i, sT+i) and sampling
from the prior distribution sT+i+1 ∼ N (µθ(hT+i+1, âT+i), σθ(hT+i+1, âT+i)I), for i ≥ 0. This
process can be iteratively applied to generate sequences of longer futures in latent space, and the
predicted futures can be visualised through the decoders.
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Table 1: Driving performance on a new town and new weather conditions in CARLA. Metrics are
averaged across three runs. We include reward signals from past work where available.

Driving Score Route Infraction Reward Norm. Reward

CILRS [17] 7.8 ± 0.3 10.3 ± 0.0 76.2 ± 0.5 - -
LBC [47] 12.3 ± 2.0 31.9 ± 2.2 66.0 ± 1.7 - -
TransFuser [48] 31.0 ± 3.6 47.5 ± 5.3 76.8 ± 3.9 - -
Roach [9] 41.6 ± 1.8 96.4 ± 2.1 43.3 ± 2.8 4236 ± 468 0.34 ± 0.05
LAV [10] 46.5 ± 3.0 69.8 ± 2.3 73.4 ± 2.2 - -
MILE 61.1 ± 3.2 97.4 ± 0.8 63.0 ± 3.0 7621 ± 460 0.67 ± 0.02

Expert 88.4 ± 0.9 97.6 ± 1.2 90.5 ± 1.2 8694 ± 88 0.70 ± 0.01

4 Experimental Setting

Dataset. The training data was collected in the CARLA simulator with an expert reinforcement
learning (RL) agent [9] that was trained using privileged information as input (BeV semantic
segmentations and vehicle measurements). This RL agent generates more diverse runs and has greater
driving performance than CARLA’s in-built autopilot [9].

We collect data at 25Hz in four different training towns (Town01, Town03, Town04, Town06) and four
weather conditions (ClearNoon, WetNoon, HardRainNoon, ClearSunset) for a total of 2.9M frames,
or 32 hours of driving data. At each timestep, we save a tuple (ot, routet, speedt,at,yt), with
ot ∈ R3×600×960 the forward camera RGB image, routet ∈ R1×64×64 the route map (visualized
as an inset on the top right of the RGB images in Figure 2), speedt ∈ R the current velocity of the
vehicle, at ∈ R2 the action executed by the expert (acceleration and steering), and yt ∈ RCb×192×192
the BeV semantic segmentation. There are Cb = 8 semantic classes: background, road, lane marking,
vehicles, pedestrians, and traffic light states (red, yellow, green). In urban driving environments, the
dynamics of the scene do not contain high frequency components, which allows us to subsample
frames at 5Hz in our sequence model.

Training. Our model was trained for 50, 000 iterations on a batch size of 64 on 8 V100 GPUs, with
training sequence length T = 12. We used the AdamW optimiser [44] with learning rate 10−4 and
weight decay 0.01.

Metrics. We report metrics from the CARLA challenge [45] to measure on-road performance:
route completion, infraction penalty, and driving score. These metrics are however very coarse, as
they only give a sense of how well the agent performs with hard penalties (such as hitting virtual
pedestrians). Core driving competencies such as lane keeping and driving at an appropriate speed are
obscured. Therefore we also report the cumulative reward of the agent. At each timestep the reward
[46] penalises the agent for deviating from the lane center, for driving too slowly/fast, or for causing
infractions. It measures how well the agent drives at the timestep level. In order to account for the
length of the simulation (due to various stochastic events, it can be longer or shorter), we also report
the normalised cumulative reward. More details on the experimental setting is given in Appendix D.

5 Results

5.1 Driving Performance

We evaluate our model inside the CARLA simulator on a town and weather conditions never seen
during training. We picked Town05 as it is the most complex testing town, and use the 10 routes
of Town05 as specified in the CARLA challenge [45], in four different weather conditions. Table 1
shows the comparison against prior state-of-the-art methods: CILRS [17], LBC [47], TransFuser
[48], Roach [9], and LAV [10]. We evaluate these methods using their publicly available pre-trained
weights.

MILE outperforms previous works on all metrics, with a 31% relative improvement in driving score
with respect to LAV. Even though some methods have access to additional sensor information such as
LiDAR (TransFuser [48], LAV [10]), our approach demonstates superior performance while only
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Table 2: Ablation studies. We report driving performance on a new town and new weather conditions
in CARLA. Results are averaged across three runs.

Driving Score Route Infraction Reward Norm. Reward

Single frame, no 3D 51.8 ± 3.0 78.3 ± 3.0 68.3 ± 2.8 1878 ± 296 0.20 ± 0.04
Single frame 59.6 ± 3.6 94.5 ± 0.6 64.7 ± 3.3 6630 ± 168 0.60 ± 0.01

No 3D 63.0 ± 1.5 91.5 ± 5.5 69.1 ± 2.8 4564 ± 1791 0.40 ± 0.15
No prior/post. matching 63.3 ± 2.2 91.5 ± 5.0 68.7 ± 1.8 6084 ± 1429 0.55 ± 0.07
No segmentation 55.0 ± 3.3 92.5 ± 2.4 60.9 ± 3.9 7183 ± 107 0.64 ± 0.02
MILE 61.1 ± 3.2 97.4 ± 0.8 63.0 ± 3.0 7621 ± 460 0.67 ± 0.02

Expert 88.4 ± 0.9 97.6 ± 1.2 90.5 ± 1.2 8694 ± 88 0.70 ± 0.01

using RGB images from the front camera. Moreover, we observe that our method almost doubles the
cumulative reward of Roach (which was trained on the same dataset) and approaches the performance
of the privileged expert.

5.2 Ablation Studies

We next examine the effect of various design decisions in our approach.

3D geometry. We compare our model to the following baselines. Single frame that predicts the
action and BeV segmentation from a single image observation. Single frame, no 3D which is the
same model but without the 3D lifting step. And finally, No 3D which is MILE without 3D lifting.
As shown in Table 2, in both cases, there is a significant drop in performance when not modelling 3D
geometry. For the single frame model, the cumulative reward drops from 6084 to 1878. For MILE,
the reward goes from 7621 to 4564. These results highlights the importance of the 3D geometry
inductive bias.

Probabilistic modelling. At any given time while driving, there exist multiple possible valid
behaviours. For example, the driver can slightly adjust its speed, decide to change lane, or decide
what is a safe distance to follow behind a vehicle. A deterministic driving policy cannot model
these subtleties. In ambiguous situations where multiple choices are possible, it will often learn the
mean behaviour, which is valid in certain situations (e.g. the mean safety distance and mean cruising
speed are reasonable choices), but unsafe in others (e.g. in lane changing: the expert can change lane
early, or late; the mean behaviour is to drive on the lane marking). We compare MILE with a No
prior/post. matching baseline that does not have a Kullback-Leibler divergence loss between the prior
and posterior distributions, and observe this results in a drop in cumulative reward from 7621 to 6084.

5.3 Fully Recurrent Inference in Closed-Loop Driving

We compare the closed-loop performance of our model with two different strategies:

(i) Reset state: for every new observation, we re-initialise the latent state and recompute the
new state [hT , sT ], with T matching the training sequence length.

(ii) Fully recurrent: the latent state is initialised at the beginning of the evaluation, and is
recursively updated with new observations. It is never reset, and instead, the model must
have learned a representation that generalises to integrating information for orders of
magnitude more steps than the T used during training.

Table 3 shows that our model can be deployed with recurrent updates, matching the performance of
the Reset state approach, while being much more computationally efficient (7× faster from 6.2Hz
with T = 12 of fixed context to 43.0Hz with a fully recurrent approach). A hypothesis that could
explain why the Fully recurrent deployment method works well is because the world model has
learned to always discard all past information and rely solely on the present input. To test this
hypothesis, we add Gaussian noise to the past latent state during deployment. If the recurrent network
is simply discarding all past information, its performance should not be affected. However in Table 3,
we see that the cumulative reward significantly decreases, showing our model does not simply discard
all past context, but actively makes use of it.
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Table 3: Comparison of two deployment methods. (i) Reset state: for each new observation a
fresh state is computed from a zero-initialised latent state using the last T observations, and (ii)
Fully recurrent: the latent state is recurrently updated with new observations. We report driving
performance on an unseen town and unseen weather conditions in CARLA. Frequency is in Hertz.

Driving Score Route Infraction Reward Norm. Reward Freq.

Reset state 61.1 ± 3.2 97.4 ± 0.8 63.0 ± 3.0 7621 ± 460 0.67 ± 0.02 6.2
Fully recurrent 62.1 ± 0.5 93.5 ± 4.8 66.6 ± 3.4 7532 ± 1122 0.67 ± 0.04 43.0

Recurrent+noise 48.8 ± 1.8 81.1 ± 7.0 61.5 ± 6.4 3603 ± 780 0.35 ± 0.07 43.0

5.4 Long Horizon, Diverse Future Predictions

Our model can imagine diverse futures in the latent space, which can be decoded to BeV semantic
segmentation for interpretability. Figure 2 shows examples of multi-modal futures predicted by
MILE.

Figure 2: Qualitative example of multi-modal predictions, for 8 seconds in the future. BeV segmenta-
tion legend: black = ego-vehicle, white = background, gray = road, dark gray=lane marking, blue
= vehicles, cyan = pedestrians, green/yellow/red = traffic lights. Ground truth labels (GT) outside
the field-of-view of the front camera are masked out. In this example, we visualise two distinct
futures predicted by the model: 1) (top row) driving through the green light, 2) (bottom row) stopping
because the model imagines the traffic light turning red. Note the light transition from green, to
yellow, to red, and also at the last frame t+ 8.0s how the traffic light in the left lane turns green.

6 Insights from the World Model

6.1 Latent State Dimension

In our model, we have set the latent state to be a low-dimensional 1D vector of size 512. In dense
image reconstruction however, the bottleneck feature is often a 3D spatial tensor of dimension
(channel, height, width). We test whether it is possible to have a 3D tensor as a latent probabilistic
state instead of a 1D vector. We change the latent state to have dimension 256 × 12 × 12 (40k
distributions), 128× 24× 24 (80k distributions), and 64× 48× 48 (160k distributions, which is the
typical bottleneck size in dense image prediction). Since the latent state is now a spatial tensor, we
adapt the recurrent network to be convolutional by switching the fully-connected operations with
convolutions. We evaluate the model in the reset state and fully recurrent setting and report the results
in Figure 3.

512× 1× 1 256× 12× 12 128× 24× 24 64× 48× 48
0

2,500

5,000

7,500
7,621 7,465

6,407
5,637

7,532
6,998

4,596
3,794

Latent state dimension

R
ew

ar
d

Reset state Fully recurrent

Figure 3: Analysis on the latent state dimension. We report closed-loop driving performance in a new
town and new weather in CARLA.
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In the reset state setting, performance decreases as the dimensionality of the latent state increases.
Surprisingly, even though the latent space is larger and has more capacity, driving performance is
negatively impacted. This seems to indicate that optimising the prior and posterior distributions in
the latent space is difficult, and especially more so as dimensionality increases. The prior, which
is a multivariate Gaussian distribution needs to match the posterior, another multivariate Gaussian
distribution. What makes this optimisation tricky is that the two distributions are non-stationary and
change over time during the course of training. The posterior needs to extract the relevant information
from the high-resolution images and incorporate it in the latent state in order to reconstruct BeV
segmentation and regress the expert action. The prior has to predict the transition that matches the
distribution of the posterior.

Even more intriguing is when we look at the results in the fully recurrent deployment setting. When
deployed in a fully recurrent manner in the simulator, without resetting the latent state, the model
needs to discard information that is no longer relevant and continuously update its internal state
with new knowledge coming from image observations. In our original latent state dimension of
512, there is almost no different in driving performance between the two deployment modes. The
picture is dramatically different when using a higher dimensional spatial latent state. For all the
tested dimensions, there is a large gap between the two deployment settings. This result seems to
indicate that the world model operating on high-dimensional spatial states has not optimally learned
this behaviour, contrarily to the one operating on low-dimensional vector states.

6.2 Driving in Imagination

Humans are believed to build an internal model of the world in order to navigate in it [49, 50, 51].
Since the stream of information they perceive is often incomplete and noisy, their brains fill missing
information through imagination. This explains why it is possible for them to continue driving
when blinded by sunlight for example. Even if no visual observations are available for a brief
moment, they can still reliably predict their next states and actions to exhibit a safe driving behaviour.
We demonstrate that similarly, MILE can execute accurate driving plans entirely predicted from
imagination, without having access to image observations. We qualitatively show that it can perform
complex driving maneuvers such as navigating a roundabout, marking a pause a stop sign, or swerving
to avoid a motorcyclist, using an imagined plan from the model (see supplementary material).

Quantitatively, we measure how accurate the predicted plans are by operating in the fully recurrent
setting. We alternate between the observing mode where the model can see image observations, and
the imagining mode where the model has to imagine the next states and actions, similarly to a driver
that temporarily loses sight due to sun glare. In Appendix A.1 we show that our model can retain
the same driving performance with up to 30% of the drive in imagining mode. This demonstrates
that the model can imagine driving plans that are accurate enough for closed loop driving. Further,
it shows that the latent state of the world model can seamlessly switch between the observing and
imagining modes. The evolution of the latent state is predicted from imagination when observations
are not available, and updated with image observations when they become accessible.

7 Conclusion

We presented MILE: a Model-based Imitation LEarning approach for urban driving, that jointly learns
a driving policy and a world model from offline expert demonstrations alone. Our approach exploits
geometric inductive biases, operates on high-dimensional visual inputs, and sets a new state-of-the-art
on the CARLA simulator. MILE can predict diverse and plausible future states and actions, allowing
the model to drive from a plan entirely predicted from imagination.

An open problem is how to infer the driving reward function from expert data, as this would enable
explicit planning in the world model. Another exciting avenue is self-supervision in order to relax
the dependency on the bird’s-eye view segmentation labels. Self-supervision could fully unlock the
potential of world models for real-world driving and other robotics tasks.

Acknowledgements. We would like to thank Vijay Badrinarayanan, Przemyslaw Mazur, and
Oleg Sinavski for insightful research discussions. We are also grateful to Lorenzo Bertoni, Lloyd
Russell, Juba Nait Saada, Thomas Uriot, and the anonymous reviewers for their helpful feedback and
comments on the paper.
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A Additional Results

A.1 Driving in Imagination

We deploy the model in the fully recurrent setting, and at fixed intervals: (i) we let the model imagine
future states and actions, without observing new images, and execute those actions in the simulator.
(ii) We then let the model update its knowledge of the world by observing new image frames. More
precisely, we set the fixed interval to a two-second window, and set a ratio of imagining vs. observing.
If for example that ratio is set to 0.5, we make the model imagine by sampling from the prior
distribution for 1.0s, then sample from the posterior distribution for 1.0s, and alternate between these
two settings during the whole evaluation run.

We make the ratio of imagining vs. observing vary from 0 (always observing each image frame,
which is the default behaviour) to 0.6 (imagining for 60% of the time). We report both the driving
performance and perception accuracy in Figure 4. The driving performance is measured with the
driving score, and the perception accuracy using the intersection-over-union with the ground truth
BeV semantic segmentation. We compare MILE with a one-frame baseline which has no memory
and only uses a single image frame for inference.

Figure 4a shows that our model can imagine for up to 30% of the time without any significant drop in
driving performance. After this point, the driving score starts decreasing but remains much higher
than its one-frame counterpart. In Figure 4b, we see that the predicted states remain fairly accurate
(by decoding to BeV segmentation), even with an important amount of imagining. These results
demonstrate that our model can predict plausible future states and actions, accurate enough to control
a vehicle in closed-loop.

Figure 5 illustrates an example of the model driving in imagination and successfully negotiating a
roundabout.
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Figure 4: Driving in imagination. We report the closed-loop driving performance and perception
accuracy in CARLA when the model imagines future states and actions and does not observe a
proportion of the images.
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Figure 5: An example of the model imagining and accurately predicting future states and actions to
negotiate a roundabout. When imagining, the model does not observe the image frames, but predicts
the future states and actions from its current latent state.
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A.2 Image Resolution

In urban driving, small elements in the scene can have an important role in decision making. One
typical example is traffic lights, which only occupy a small portion of the image, but dictate whether
a vehicle can continue driving forward or needs to stop at a red light. Figure 6 and Figure 7 illustrate
how traffic lights and pedestrians become much harder to distinguish in lower image resolutions.

We evaluate the importance of image resolution by training MILE at different resolutions: 75× 120,
150× 240, 300× 480, and 600× 960 (our proposed resolution). We report the results in Table 4 and
observe a significant decrease in both driving score and cumulative reward. The performance drop
is most severe in the infraction penalty metric. To get a better understanding of what is happening,
we detail in Table 5 the breakdown of the infractions. We report the number of red lights run, the
number of vehicle collisions, and the number of pedestrian collisions, all per kilometre driven. As
the resolution of the image lowers, the number of infractions increases across all modalities (red
lights, vehicles, and pedestrians). These results highlight the importance of high resolution images to
reliably detect traffic lights, vehicles, and pedestrians.

Table 4: Analysis on the image resolution. We report driving performance on a new town and new
weather conditions in CARLA.

Image resolution Driving Score Route Infraction Reward Norm. Reward

75× 120 20.9 ± 0.0 87.5 ± 0.0 25.3 ± 0.0 5674 ± 0.0 0.65 ± 0.0
150× 240 27.9 ± 0.0 81.8 ± 0.0 40.4 ± 0.0 5017 ± 0.0 0.65 ± 0.0
300× 480 43.3 ± 0.0 96.1 ± 0.0 44.4 ± 0.0 5814 ± 0.0 0.55 ± 0.0
600× 960 61.1 ± 3.2 97.4 ± 0.8 63.0 ± 3.0 7621 ± 460 0.67 ± 0.02

Expert 88.4 ± 0.9 97.6 ± 1.2 90.5 ± 1.2 8694 ± 88 0.70 ± 0.01

Table 5: Analysis on the image resolution. We report the breakdown of infraction penalties on a new
town and new weather conditions in CARLA. The metrics are: number of red lights run, number of
vehicle collisions, and number of pedestrian collisions. They are normalised per kilometre driven.
Lower is better.

Image resolution Red lights (↓) Vehicles (↓) Pedestrians (↓)
75× 120 3.07 ± 0.0 0.77 ± 0.0 0.07 ± 0.0
150× 240 2.39 ± 0.0 0.35 ± 0.0 0.03 ± 0.0
300× 480 0.99 ± 0.0 0.31 ± 0.0 0.05 ± 0.0
600× 960 0.13 ± 0.04 0.24 ± 0.05 0.01 ± 0.01
Expert 0.04 ± 0.01 0.15 ± 0.01 0.02 ± 0.00

A.3 Training Town Evaluation

We also evaluate our method on towns and weather conditions seen during training. As reported in
Table 6, our model shows a 21% relative improvement in driving score with respect to Roach. Note
that the RL expert has a lower performance than in test town Town05, because Town03 was designed
as the most complex town [52].

Table 6: Driving performance in CARLA on a town and weather conditions seen during training.
Metrics are averaged across three runs.

Driving Score Route Infraction Reward Norm. Reward
Roach [9] 50.6 ± 1.9 91.0 ± 0.7 56.9 ± 1.2 4419 ± 487 0.38 ± 0.04
MILE 61.4 ± 0.3 89.3 ± 2.5 69.4 ± 1.3 7627 ± 190 0.71 ± 0.01
Expert 81.5 ± 2.8 95.1 ± 1.2 85.6 ± 1.7 7740 ± 220 0.69 ± 0.03
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(a) Resolution 600× 960.

(b) Resolution 300× 480. (c) Resolution 150× 240. (d) Resolution 75× 120.

Figure 6: Input image observation at different resolutions. The red traffic light becomes almost
indistinguishable in lower resolutions.

A.4 Evaluation in the Settings of Past Works

We also evaluated our model in the evaluation settings of:

• TransFuser [48]: the full 10 test routes of Town05 in ClearNoon weather and no scenarios
(Table 7);

• LAV [10]: 2 test routes from Town02 and 2 test routes in Town05 in weathers [SoftRainSun-
set, WetSunset, CloudyNoon, MidRainSunset] and no scenarios (Table 8).

Table 7: Driving performance in CARLA in the TransFuser [48] evaluation setting.
Driving Score Route Infraction Reward Norm. Reward

TransFuser [48] 43.7 ± 2.4 79.6 ± 8.5 - - -
MILE 69.9 ± 7.0 98.3 ± 2.1 70.9 ± 6.8 7792 ± 663 0.69 ± 0.03

Table 8: Driving performance in CARLA in the LAV [10] evaluation setting.
Driving Score Route Infraction Reward Norm. Reward

LAV [10] 54.2 ± 8.0 78.7 ± 5.8 73.0 ± 4.9 - -
MILE 64.3 ± 5.2 99.1 ± 1.5 64.6 ± 5.4 9631 ± 341 0.72 ± 0.01
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(a) Resolution 600× 960.

(b) Resolution 300× 480. (c) Resolution 150× 240. (d) Resolution 75× 120.

Figure 7: Input image observation at different resolutions. It becomes increasingly harder to see the
pedestrian as the resolution decreases.
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B Lower Bound Derivation

Proof. Let qH,S , q(h1:T , s1:T |o1:T ,y1:T ,a1:T ) = q(h1:T , s1:T |o1:T ,a1:T−1) be the variational
distribution (where we have assumed independence of (y1:T ,aT ) given (o1:T ,a1:T−1)), and
p(h1:T , s1:T |o1:T ,y1:T ,a1:T ) be the posterior distribution. The Kullback-Leibler divergence be-
tween these two distributions writes as:

DKL (q(h1:T , s1:T |o1:T ,y1:T ,a1:T ) || p(h1:T , s1:T |o1:T ,y1:T ,a1:T ))

=Eh1:T ,s1:T∼qH,S

[
log

q(h1:T , s1:T |o1:T ,y1:T ,a1:T )

p(h1:T , s1:T |o1:T ,y1:T ,a1:T )

]
=Eh1:T ,s1:T∼qH,S

[
log

q(h1:T , s1:T |o1:T ,y1:T ,a1:T )p(o1:T ,y1:T ,a1:T )

p(h1:T , s1:T )p(o1:T ,y1:T ,a1:T |h1:T , s1:T )

]
= log p(o1:T ,y1:T ,a1:T )− Eh1:T ,s1:T∼qH,S [log p(o1:T ,y1:T ,a1:T |h1:T , s1:T )]

+DKL(q(h1:T , s1:T |o1:T ,y1:T ,a1:T ) || p(h1:T , s1:T ))

Since DKL (q(h1:T , s1:T |o1:T ,y1:T ,a1:T ) || p(h1:T , s1:T |o1:T ,y1:T ,a1:T )) ≥ 0, we obtain the fol-
lowing evidence lower bound:

log p(o1:T ,y1:T ,a1:T ) ≥Eh1:T ,s1:T∼qH,S [log p(o1:T ,y1:T ,a1:T |h1:T , s1:T )]

−DKL(q(h1:T , s1:T |o1:T ,a1:T−1) || p(h1:T , s1:T )) (7)

Let us now calculate the two terms of this lower bound separately. On the one hand:

Eh1:T ,s1:T∼qH,S [log p(o1:T ,y1:T ,a1:T |h1:T , s1:T )]

= Eh1:T ,s1:T∼qH,S

[
log

T∏
t=1

p(ot|ht, st)p(yt|ht, st)p(at|ht, st)

]
(8)

=

T∑
t=1

Eh1:t,s1:t∼q(h1:t,s1:t|o≤t,a<t) [log p(ot|ht, st) + log p(yt|ht, st) + log p(at|ht, st)] (9)

where Equation (8) follows from Equation (2), and Equation (9) was obtained by integrating over
remaining latent variables (ht+1:T , st+1:T ).

On the other hand:

DKL(q(h1:T , s1:T |o1:T ,a1:T−1) || p(h1:T , s1:T ))

= Eh1:T ,s1:T∼qH,S

[
log

q(h1:T , s1:T |o1:T ,a1:T−1)

p(h1:T , s1:T )

]
=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T ,a1:T−1) log
q(h1:T , s1:T |o1:T ,a1:T−1)

p(h1:T , s1:T )
dh1:T ds1:T

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T ,a1:T−1) log

[
T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t)
p(ht|ht−1, st−1)p(st|ht−1, st−1)

]
dh1:T ds1:T

(10)

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T ,a1:T−1) log

[
T∏
t=1

q(st|o≤t,a<t)
p(st|ht−1, st−1)

]
dh1:T ds1:T (11)

(12)

where:

• Equation (10) follows from the factorisations defined in Equation (2) and Equation (5).

• The simplification in Equation (11) results of q(ht|ht−1, st−1) = p(ht|ht−1, st−1) .
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Thus:

DKL(q(h1:T , s1:T |o1:T ,a1:T−1) || p(h1:T , s1:T ))

=

∫
h1:T ,s1:T

(
T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t)

)(
T∑
t=1

log
q(st|o≤t,a<t)
p(st|ht−1, st−1)

)
dh1:T ds1:T

=

∫
h1:T ,s1:T

(
T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t)

)(
log

q(s1|o1)

p(s1)

+

T∑
t=2

log
q(st|o≤t,a<t)
p(st|ht−1, st−1)

)
dh1:T ds1:T

= Es1∼q(s1|o1)

[
log

q(s1|o1)

p(s1)

]
+

∫
h1:T ,s1:T

(
T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t)

)(
T∑
t=2

log
q(st|o≤t,a<t)
p(st|ht−1, st−1)

)
dh1:T ds1:T

(13)
= DKL(q(s1|o1) || p(s1))

+

∫
h1:T ,s1:T

(
T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t)

)(
log

q(s2|o1:2,a1)

p(s2|h1, s1)

+

T∑
t=3

log
q(st|o≤t,a<t)
p(st|ht−1, st−1)

)
dh1:T ds1:T

= DKL(q(s1|o1) || p(s1)) + Eh1,s1∼q(h1,s1|o1) [DKL(q(s2|o1:2,a1) || p(s2|h1, s1))]

+

∫
h1:T ,s1:T

(
T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t,a<t)

)(
T∑
t=3

log
q(st|o≤t,a<t)
p(st|ht−1, st−1)

)
dh1:T ds1:T

(14)

where Equation (13) and Equation (14) were obtained by splitting the integral in two and integrating
over remaining latent variables. By recursively applying this process on the sum of logarithms
indexed by t, we get:

DKL(q(h1:T , s1:T |o1:T ,a1:T−1) || p(h1:T , s1:T ))

=

T∑
t=1

Eh1:t−1,s1:t−1∼q(h1:t−1,s1:t−1|o≤t−1,a<t−1) [DKL(q(st|o≤t,a<t) || p(st|ht−1, st−1))] (15)

Finally, we inject Equation (9) and Equation (15) in Equation (7) to obtain the desired lower bound:

log p(o1:T ,y1:T ,a1:T )

≥
T∑
t=1

Eh1:t,s1:t∼q(h1:t,s1:t|o≤t,a<t) [log p(ot|ht, st) + log p(yt|ht, st) + log p(at|ht, st)]

−
T∑
t=1

Eh1:t−1,s1:t−1∼q(h1:t−1,s1:t−1|o≤t−1,a<t−1) [DKL(q(st|o≤t,a<t) || p(st|ht−1, st−1))]
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C Model Description

We give a full description of MILE. The graphical models of the generative and inference models
are depicted in Figure 8. Table 9 shows the number of parameters of each component of the model,
and Table 10 contains all the hyperparameters used during training. Table 11 describes the inference
network, and Table 12 the generative network.

C.1 Graphical Models

h1 h2 h3

s1

o1,y1

a1

s2

o2,y2

a2

...

(a) Generative model.

h1 h2 h3

s1

o1,y1

a1

s2

o2,y2

a2

...

(b) Inference model.

Figure 8: Graphical models representing the conditional dependence between states. Deterministic
and stochastic states are represented by, respectively, squares and circles. Observed states are in gray.

C.2 Network Description

Table 9: Parameters of the model.
Name Parameters

Inference model φ Observation encoder eφ 34.9M
Posterior network (µφ, σφ) 3.9M

Generative model θ

Prior network (µθ, σθ) 2.1M
Recurrent cell fθ 6.9M
BeV decoder lθ 34.2M
Policy πθ 5.9M

C.3 Details on the Network and on Training.

Lifting to 3D. The Lift operation can be detailed as follows: (i) Using the inverse intrinsics K−1
and predicted depth, the features in the pixel image space are lifted to 3D in camera coordinates with
a pinhole camera model, (ii) the rigid body motion M transforms the 3D camera coordinates to 3D
vehicle coordinates (center of inertia of the ego-vehicle).

Observation dropout. At training time the priors are trained to match posteriors through the KL
divergence, however they are not necessarily optimised for robust long term future prediction. Hafner
et al. [4] optimised states for robust multi-step predictions by iteratively applying the transition
model and integrating out intermediate states. In our case, we supervise priors unrolled with random
temporal horizons (i.e. predict states at t + k with k ≥ 1). More precisely, during training, with
probability pdrop we sample the stochastic state st from the prior instead of the posterior. We call this
observation dropout. If we denote X the random variable representing the k number of times a prior
is unrolled, X follows a geometric distribution with probability of success (1− pdrop). Observation
dropout resembles z-dropout from Henaff et al. [53], where the posterior distribution is modelled
as a mixture of two Gaussians, one of which comes from the prior. During training, some posterior
variables are randomly dropped out, forcing other posterior variables to maximise their information
extraction from input images. Observation dropout can be seen as a global variant of z-dropout since
it drops out all posterior variables together.
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Table 10: Hyperparameters.
Category Name Value

Training

GPUs 8 Tesla V100
batch size 64
precision Mixed precision (16-bit)
iterations 5× 104

Optimiser

name AdamW
learning rate 1× 10−4

weight decay 1× 10−2

β1 0.9
β2 0.999
ε 1× 10−8

scheduler OneCycleLR
pct start 0.2

Input image

size 600× 960
crop [64, 138, 896, 458] (left, top, right, bottom)
field of view 100°
camera position [−1.5, 0.0, 2.0] (forward, right, up)
camera rotation [0.0, 0.0, 0.0] (pitch, yaw, roll)

BeV label size Hb ×Wb 192× 192
resolution bres 0.2m/pixel

Sequence
length T 12
frequency 5Hz
observation dropout pdrop 0.25

Loss

action weight 1.0
image weight 0.0
segmentation weight 0.1
segmentation top-k 0.25
instance weight 0.1
instance center weight 200.0
instance offset weight 0.1
image weight 0.0
kl weight 1× 10−3

kl balancing 0.75

Additional details The action space is in R2 with the first component being the acceleration in
[−1, 1]. Negative values correspond to braking, and positive values to throttle. The second component
is steering in [−1, 1], with negative values corresponding to turning left, and positive values to turning
right. For simplicity, we have set the weight parameter of the image reconstruction to 0. In order to
improve reconstruction of the bird’s-eye view vehicles and pedestrians, we also include an instance
segmentation loss [54]. Finally, we use the KL balancing technique from [5].
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Table 11: Inference model φ.
Category Layer Output size Parameters

Image encoder eφ

Input 3× 320× 832 = ot 0
ResNet18 [55] [128× 40× 104, 256× 20× 52, 512× 10× 26] 11.2M
Feature aggregation 64× 40× 104 = ut 0.5M
Depth 37× 40× 104 = dt 0.5M
Lifting to 3D 64× 37× 40× 104 0
Pooling to BeV 64× 48× 48 = bt 0

Route map encoder eφ
Input 3× 64× 64 = routet 0
ResNet18 [55] 16 = rt 11.2M

Speed encoder eφ
Input 1 = speedt 0
Dense layers 16 = mt 304

Compressing to 1D eφ
Input [64× 48× 48, 16, 16] = [bt, rt,mt] 0
ResNet18 [55] 512 = xt 11.5M

Posterior network (µφ, σφ)
Input [1024, 512] = [ht,xt] 0
Dense layers [512, 512] 3.9M

Table 12: Generative model θ.
Category Layer Output size Parameters

Prior network (µθ, σθ)
Input 1024 = ht 0
Dense layers [512, 512] 2.1M

Recurrent cell fθ
Input [1024, 512, 2] = [ht, st, at] 0
Action layer 64 192
Pre GRU layer 1024 0.6M
GRU cell 1024 = ht+1 6.3M

BeV decoder lθ

Input [512× 3× 3, 1024, 512] = [constant,ht, st] 0
Adaptive instance norm 512× 3× 3 1.6M
Conv. instance norm 512× 3× 3 3.9M
Upsample conv. instance norm 512× 6× 6 7.9M
Upsample conv. instance norm 512× 12× 12 7.9M
Upsample conv. instance norm 512× 24× 24 7.9M
Upsample conv. instance norm 256× 48× 48 3.3M
Upsample conv. instance norm 128× 96× 96 1.2M
Upsample conv. instance norm 64× 192× 192 0.5M
Output layer [8× 192× 192, 1× 192× 192, 2× 192× 192] 715

Policy πθ
Input [1024, 512] = [ht, st] 0
Dense layers 2 5.9M
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D Experimental Setting

D.1 Dataset

Each run was randomised with a different start and end position, as well as with traffic agents [9]. A
random number of vehicles and pedestrians were spawned in the environment as specified in Table 13.

Table 13: Uniform sampling intervals of spawned vehicles and pedestrians in each town during
training.

Town Number of vehicles Number of pedestrians
Town01 [80, 160] [80, 160]
Town03 [40, 100] [40, 100]
Town04 [100, 200] [40, 120]
Town06 [80, 160] [40, 120]

D.2 Metrics

We report metrics from the CARLA challenge [45] to measure on-road performance: route completion,
infraction penalty, and driving score.

• Route completion Rcompletion ∈ [0, 1]: for a given simulation scenario, the percentage of
route completed by the driving agent. The simulation can end early if the agent deviates
from the desired route by more than 30m, or does not take any action for 180s.

• Infraction penalty Ipenalty: multiplicative penalty due to various infractions from the agent
(collision with pedestrians/vehicles/static objects, running red lights etc.). Ipenalty ∈ [0, 1],
with Ipenalty = 1 meaning no infraction was observed.

• Driving score D: measures both how far the agent drives on the given route, but also
how well it drives. D is defined as D = Rcompletion × Ipenalty ∈ [0, 1], with D = 1
corresponding perfect driving. For a full description of these metrics, please refer to [45].

We now define how the normalised cumulative reward is defined. At every timestep, the environment
computes a reward r ∈ [Rmin, 1] [46] for the driving agent. If N is the number of timesteps
the agent was deployed for without hitting a termination criteria, then the cumulative reward
R ∈ [N ×Rmin, N ]. In order to account for the length of the simulation (due to various stochastic
events, it can be longer or shorter), we also report the normalised cumulative reward R = R/N .

We also wanted to highlight the limitations of the driving score as it is obtained by multiplying the
route completion with the infraction penalty. The route completion (in [0, 1]) can be understood as the
recall: how far the agent has travelled along the specified route. The infraction penalty (also in [0, 1])
starts at 1.0 and decreases with each infraction with multiplicative penalties. It can be understood as
the precision: how many infractions has the agent successfully avoided. Therefore, two models are
only comparable at a given recall (or route completion), as the more miles are driven, the more likely
the agent risks causing infractions. We instead suggest reporting the cumulative reward in future, that
overcomes the limitations of the driving score by being measured at the timestep level. The more
route is driven, the more rewards are accumulated along the way. This reward is however modulated
by the driving abilities of the model (and can be negative when encountering hard penalties).

D.3 Evaluation Settings

We measure the performance of our model on two settings. Each evaluation is repeated three times.

• New town, new weathers: the 10 test scenarios in Town05 [45], on 4 unseen weather
conditions: SoftRainSunset, WetSunset, CloudyNoon, MidRainSunset.

• Train town, train weathers: the 20 train scenarios in Town03 [45], on 4 train weather
conditions: ClearNoon, WetNoon, HardRainNoon, ClearSunset.
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