3D Model Acquisition from Uncalibrated Images

Roberto Cipolla
Department of Engineering

Aim

Photorealistic models from uncalibrated images of architectural scenes

Model acquisition under circular motion

Vanishing points

Shape from profile

Aim

Photorealistic models from uncalibrated images of architectural scenes

Review: Projection matrix

Review: Stereo vision and triangulation

Review: Fundamental Matrix and

 Epipolar Geometry

Review: Self-calibration experiments

Review: Self-calibration experiments

Review: Self-calibration experiments

Parallelism and orthogonality constraints

Vanishing Points

Vanishing Points

Vanishing Points

Projection Matrix from vanishing points

$$
\left[\begin{array}{c}
\lambda_{1} u_{1} \\
\lambda_{1} v_{1} \\
\lambda_{1}
\end{array}\right]=[
$$

Projection Matrix from vanishing points

$$
\left[\begin{array}{cc}
\lambda_{1} u_{1} & \lambda_{2} u_{2} \\
\lambda_{1} v_{1} & \lambda_{2} v_{2} \\
\lambda_{1} & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Projection Matrix from vanishing points

$$
\left[\begin{array}{ccc}
\lambda_{1} u_{1} & \lambda_{2} u_{2} & \lambda_{3} u_{3} \\
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \lambda_{3} v_{3} \\
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]=[
$$

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

The camera position

$$
\left[\begin{array}{cccc}
\lambda_{1} u_{1} & \lambda_{2} u_{2} & \lambda_{3} u_{3} & \lambda_{4} u_{4} \\
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \lambda_{3} v_{3} & \lambda_{4} v_{4} \\
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right]=[
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Calibration

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]=C[R]} \\
& {\left[\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1}^{2} & 0 & 0 \\
0 & \lambda_{2}^{2} & 0 \\
0 & 0 & \lambda_{3}^{2}
\end{array}\right]\left[\begin{array}{lcc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & 1 & 1
\end{array}\right]=C C^{T}}
\end{aligned}
$$

Computing the optical centre

$x_{i}=\binom{u_{i}}{v_{i}}$
Column orthonormality:

$$
\left(x_{1}-x_{0}\right) \cdot\left(x_{3}-x_{2}\right)=0
$$

Row orthonormality:

$$
\lambda_{1}^{2}=\frac{\left(x_{2}-x_{3}\right) \times\left(x_{0}-x_{3}\right)}{\left(x_{2}-x_{3}\right) \times\left(x_{1}-x_{3}\right)}
$$

x_{0} is ortho-centre
$\lambda_{1}{ }^{2}$ is normalised shaded area

Fixing the camera positions and epipoles

$$
\left[\begin{array}{c}
\\
P
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} u_{1} & \lambda_{2} u_{2} & \lambda_{3} u_{3} & \lambda_{4} u_{4} \\
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \lambda_{3} v_{3} & \lambda_{4} v_{4} \\
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right]
$$

Original uncalibrated images

Primitive definition and localisation

Vanishing point location

Location of corresponding polygons

Location of corresponding polygons

Wireframe reconstruction

Wireframe reconstruction

PhotoBuilder for Microsoft Windows ${ }^{\text {TM }}$

Multiple views and ray bundle adjustment

PhotoBuilder for Microsoft Windows ${ }^{\text {TM }}$

PhotoBuilder for Microsoft Windows ${ }^{\text {TM }}$

Image matching and mosaicing

Image matching

Removing outliers

Raw matches (40\% outliers)

MLS Filtered matches (16\% outliers)

Mosaicing: Results

Mosaicing: Results

Summary (1)

Photorealistic models from uncalibrated images of architectural scenes

