

3D Model Acquisition from Uncalibrated Images

Roberto Cipolla Department of Engineering

Aim

Photorealistic models from uncalibrated images of architectural scenes

Model acquisition under circular motion

Vanishing points

Shape from profile

Aim

Photorealistic models from uncalibrated images of architectural scenes

Review: Projection matrix

$$\begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ R \\ T \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Review: Stereo vision and triangulation

$$\begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = C[R \quad T] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \qquad \begin{bmatrix} \lambda u' \\ \lambda v' \\ \lambda \end{bmatrix} = C'[R' \quad T'] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Review: Fundamental Matrix and Epipolar Geometry

$$\begin{bmatrix} u & v & 1 \end{bmatrix} \begin{bmatrix} F & \\ F & \\ 1 \end{bmatrix} = 0 \quad \text{where} \quad F = C^{-T}EC^{-T}EC^{-T}$$

Parallelism and orthogonality constraints

Vanishing Points

Vanishing Points

Vanishing Points

$$\begin{bmatrix} \lambda_{1}u_{1} & \lambda_{2}u_{2} & \lambda_{3}u_{3} \\ \lambda_{1}v_{1} & \lambda_{2}v_{2} & \lambda_{3}v_{3} \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \end{bmatrix} = \begin{bmatrix} P \\ P \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \lambda_{1}u_{1} & \lambda_{2}u_{2} & \lambda_{3}u_{3} & \lambda_{4}u_{4} \\ \lambda_{1}v_{1} & \lambda_{2}v_{2} & \lambda_{3}v_{3} & \lambda_{4}v_{4} \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{3} & \lambda_{4} \end{bmatrix} = \begin{bmatrix} P \\ P \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Calibration

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = C[R]$$

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \lambda_2^2 & 0 \\ 0 & 0 & \lambda_3^2 \end{bmatrix} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ 1 & 1 & 1 \end{bmatrix}^T = CC^T$$

 $x_i = \begin{pmatrix} u_i \\ v_i \end{pmatrix}$

Column orthonormality:

Row orthonormality:

$$(x_1 - x_0) \cdot (x_3 - x_2) = 0$$
$$\lambda_1^2 = \frac{(x_2 - x_3) \times (x_0 - x_3)}{(x_2 - x_3) \times (x_1 - x_3)}$$

 x_0 is ortho-centre λ_1^2 is normalised shaded area

$$P \qquad \qquad \left] = \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \lambda_3 u_3 & \lambda_4 u_4 \\ \lambda_1 v_1 & \lambda_2 v_2 & \lambda_3 v_3 & \lambda_4 v_4 \\ \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix}$$

Original uncalibrated images

Primitive definition and localisation

Vanishing point location

Location of corresponding polygons

Location of corresponding polygons

Wireframe reconstruction

Wireframe reconstruction

PhotoBuilder for Microsoft WindowsTM

Multiple views and ray bundle adjustment

PhotoBuilder for Microsoft WindowsTM

PhotoBuilder for Microsoft WindowsTM

Image matching and mosaicing

Image matching

Removing outliers

Raw matches (40% outliers)

MLS Filtered matches (16% outliers)

Mosaicing: Results

Mosaicing: Results

Summary (1)

Photorealistic models from uncalibrated images of architectural scenes

