

Shape from Profiles

Roberto Cipolla and Kenneth Wong Department of Engineering

Motivation

3D model acquisition

Perspective

- Review of reconstruction from profiles
 - Tracking with B-spline snakes
 - Epipolar geometry
- Review of recovery of motion from profiles
 - Epipolar geometry from frontiers
 - Circular or turntable motion
- Realtime practical system
 - Trivial initialization using circular motion
 - Addition of arbitrary uncalibrated views
 - Octree generation and voxel carving

Shape from Profile

Singular Profiles

Swallowtail visual event

Ray has 2-point contact with surface at contour generator

Swallowtail visual event

Ray has 4-point contact with surface at flecnodal point

Swallowtail visual event

Ray has 3-point contact with surface at cusps of apparent contours

Tracking profiles

Epipolar Parameterisation

Reconstruction of surfaces

Stereo vision

Stereo vision

Epipolar geometry

 $\begin{bmatrix} u & v & 1 \end{bmatrix} \begin{bmatrix} & F & \\ & F & \\ & & \end{bmatrix} \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = 0$

Epipolar geometry

Previous Work

- Epipolar Geometry F:
 - General motion (7 dof):
 - \geq 7 epipolar tangencies.

Previous Work

- Epipolar Geometry F:
 - Affine approximation (4 dof):
 - \geq 4 epipolar tangencies.

Previous Work

- Epipolar Geometry F:
 - Linear motion (2 dof):
 - \geq 2 epipolar tangencies.

Practical solution

- Epipolar Geometry F:
 - Circular Motion (6 dof):
 - \geq 2 epipolar tangencies.

Surfaces of Revolution

Symmetry Transformations

Epipolar Geometry

- For circular motion:
 - fixed entities:
 - image of screw axis, horizon, \mathbf{V}_{x} : 5 d.o.f.

– epipoles and epipolar lines related by ${\bf W}$

Geometric error of transferred epipolar lines:

Epipolar Geometry

- Correspondent epipolar tangents:
 - related by W,
 intersect at image
 of screw axis.
- Epipolar tangents in same image:
 - intersect at the epipole.

Reparameterization of F

relative scale factor

Epipolar Geometry

Circular motion

Space-carving

Reconstruction by carving

Circular motion is insufficient CAMBRIDGE

Add arbitrary views

General motion constraints

Estimate general motion

- Requires only silhouettes.
- Recovery of motion and shape.
- Trivial initialisations for all the optimisations.
- Low-dimension search space.
- Future work:
 - Use shading/stereo/texture to refine models.
 - Physics of reflectance
 - Statistical models for uncertainty