

Detecting and tracking faces and hands

Roberto Cipolla Department of Engineering

O. Williams and B. Stenger http://www.eng.cam.ac.uk/~cipolla

The Problem

1: Real-time face detection and tracking

Happy Face |

Robust Face Tracking

Creating a Training Set

• Select a few "seed" stills

 δX_2

- Simulate translation, scaling and rotation
 - \rightarrow labelled training set

 δX_3

Detecting frontal faces

Automatic Camera Management CAMBRIDGE

 Use position/scale information to control digital pan and zoom

Severe Illumination Change

2: Hand detection

3D hand model

3D hand model

- Used as generative model
- Constructed from 35 truncated quadrics (ellipsoids, cones)
- Efficient contour projection
- 27 degrees of freedom

Matching oriented edges

Input Image

Edge Detection

Robust Edge Matching

Using Chamfer Distance

3D Model

Projected Contours

Skin colour features

Input Image

Skin Colour Model

Efficient Template Matching

3D Model

Combining features

 Using Training Data to learn linear discriminant function: 2000 positive examples (hand in correct pose) 2000 negative examples (hand in different pose & background)

Matching cost for one template:

 $C = Carea + \lambda Cedge$

λ: weighting factor determinedfrom training data

Can also be adapted online to give different weight to features

Tree-based bayesian filtering

Template-based Detection

- Large number of templates are generated off-line to handle global motion and finger articulation.
- Need for
 - Inexpensive template-matching function
 - Distance Transform and Chamfer Matching
 - Efficient search structure
 - Bayesian Tree structure

Matching Multiple Templates

- Use tree structure to efficiently match many templates (>10,000)
- Arrange templates in tree based on their similarity
- Traverse tree using breadth-first search, several 'active' leaves possible

- The search-tree is brought into a Bayesian framework by adding the prior knowledge from previous frame.
- The Bayesian-Tree can be thought as approximating the posterior probability at different resolutions.

Tracking - 3D mouse

Rotating in clutter

Opening and closing

Hand detection system

Where am I?

