

Applications of Mobile Vision

Image registration, recognition and 3D reconstruction

Roberto Cipolla Department of Engineering

Computer vision has now found a place in consumer products

- Mobile phones and PDAs
- Cars
- Games

Smart erase and video mosacing

Smart erase and video mosacing

Realtime video mosacing

• Image registration and matching

Object recognition

Interfaces

3D reconstruction

Image-Based Localisation: Where am I? What am I looking at?

Johansson and Cipolla 2002 Cipolla, Tordoff and Robertson 2004

The goal – where am I?

User takes a picture of a nearby building. System tells you what you are looking at and exactly where you are on a map.

Where I am?

Determine pose from single image by matching

Extreme perspective distortion

Differences in colour / lighting conditions

Occlusion

3D reconstruction of streets

Trumpington Street Data

3D reconstruction

Reconstruction texture mapped

- Building façades are roughly planar
- They contain many horizontal and vertical features
- We can use this to get a "front view" (rectified image)
- Front-views are related by translation and scale only

Overview of solution

- 1 vanishing point detection
- 2 image rectification
- 3 database search
- 4 viewpoint determination

Rectification

Rectification by homography

Align horizon

Only difference is now scale + x translation

Matching

With only 2 params (s,t_x) , can search rather than RANSAC.

With only 2 params (s,t_x) , can search rather than RANSAC.

With only 2 params (s,t_x) , can search rather than RANSAC.

Camera pose estimation - localisation

Localisation

Register database view

First align database view to map

Knowing the rectifying homography (H_{\perp}), the alignment (H_A), and the database view registration, can work backwards to find user:

Rectifying rotation R_{\perp} gives the angle from perpendicular and focal length the distance to camera.

Localisation of query view

Evaluation
Evaluation

Evaluation

- Determine pose from single image
- Match to database
- Triangulate position

- Determine pose from single image
- Match to database
- Triangulate position

- Determine pose from single image
- Match to database
- Triangulate position

• Determine pose from single image

Match to database

Localisation

Triangulate position

- Effective wide baseline matching and image registration
- Mobile phone localisation:
 - Where am I?
 - What am I looking at?
- Scaling up to real applications?
- Technology is ripe for adaptation and exploitation

2. Image matching and registration

Evolution Robotics

Image matching

SIFT features and matching

Demo – visual inspection

Demo – visual inspection

3. Interaction

Stenger, Thayananthan, Torr and Cipolla 2003 Williams, Blake and Cipolla 2003 and 2005 Ramanan et al 2006

Hand detection system

People and pose detection

People and pose detection

Tracking - 3D mouse

4. 3D shape recovery from uncalibrated images

Cipolla and Giblin 1999 Mendonca, Wong and Cipolla 1999-2005 Vogiatzis, Hernandez and Cipolla 2007 Hernandez, Schmitt and Cipolla 2007

Digital Pygmalion project

3D Shape from Images

Image Camera acquisition calibration Geometry reconstruction

Texture map creation

Input Images

Input Images

Camera calibration

Camera calibration

Epipolar tangency points

Epipolar tangency points

Recovery of concavity

Refining the mesh

Texture mapping

83241 vertices, 166482 triangles

Input Images

Input images

Recovery of camera motion

Input images

Feature

extraction

Feature matching

Bundle adjustment

Refine with profiles

Recovery of surface geometry

Input data

Reconstruction from photometric normals

- Challenging objects
- Lack of features makes correspondences hard
- Silhouette and shading are only available cues

- Our strategy:
 - 1. Estimate light direction and intensity
 - 2. Evolve a surface using photometric stereo with approximate correspondences from the current surface (starting from visual hull)

 Three surface points with known surface normals and their image intensities are enough to estimate a directional light source

$$\mathbf{l} = [\mathbf{n_a} \ \mathbf{n_b} \ \mathbf{n_c}]^{-1} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$

• But where do you get these three points ?

Light estimation

• Recover contour generators by random sampling

Accuracy of light estimation

- Mesh with vertices x₁,...,x_M
- And faces f=1,...,F
- Define photometric normals v₁,...,v_F
- Minimise sum of two energies

-
$$E_m$$
 with respect to x_1, \dots, x_M

$$E_m(\mathbf{x_1},\ldots,\mathbf{x_M};\mathbf{v_1},\ldots,\mathbf{v_F}) = \sum_{f=1}^F \|\mathbf{n_f} - \mathbf{v_f}\|^2 A_f$$

$$E_{v}\left(\mathbf{v_{1}},\ldots,\mathbf{v_{F}};\mathbf{x_{1}},\ldots,\mathbf{x_{M}}\right) = \sum_{f=1}^{F}\sum_{k\in\mathcal{V}_{f}}\left(\mathbf{l_{k}}^{T}\mathbf{v_{f}}-i_{f,k}\right)^{2}$$

Multi-view photometric stereo

Reconstruction in the Round Using Photometric Normals

Paper ID #548

Mesh Evolution

Results

Results

Multi-view Dense Stereo

Multi-view Photometric Stereo

Multi-view Dense Stereo

Multi-view Photometric Stereo

5. Object recognition

Shotton, Blake and Cipolla 2005 Kim, Kittler and Cipolla 2006

Learning and Adaptability

Object Model

Visual Object Categorisation

Texture-based segmentation Suniversity of CAMBRIDGE

- Image registration and matching
- 3D shape from uncalibrated images.

• Object detection and tracking