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1 A grey scale image, I (x, y), is first low-pass filtered (smoothed) by convolving with
a 2-D Gaussian filter, Gσ (x, y), before gradients are computed as part of the feature
detection process.

(a) (i) Give an expression for computing the intensity of a smoothed pixel, Sσ (x, y),
using two discrete 1-D convolutions. [10%]

(ii) Why is smoothing necessary? By considering the Fourier transform of the
Gaussian, or otherwise, show that the Gaussian kernel is a suitable low-pass filter and
identify the relationship between the scale parameter, σ, and the cut-off frequency
of the low-pass filter. [10%]

(iii) How is low-pass filtering at multiple scales implemented efficiently using
an image pyramid to sample scale-space? Illustrate your answer by considering
an image pyramid of low-pass filtered images, Sσ0 . . . S64σ0 , with s = 3 distinct
images in each octave. How many different Gaussian filters are needed to build the
pyramid and what is the size of the images in each octave? [20%]

(b) Differentiation of the smoothed image, Sσ (x, y), can be implemented with discrete
convolutions.

(i) By first considering the Taylor series expansion of Sσ (x, y) show that
approximations for the second-order derivatives, ∂2Sσ/∂x2 and ∂2Sσ/∂y2, can
be computed by convolving Sσ (x, y) with discrete 1-D convolutions. Identify the
filter coefficients needed for each derivative. [15%]

(ii) Hence derive the 2-D filter needed to compute the Laplacian of the smoothed
image, ∇2Sσ (x, y). [5%]

(iii) Show that convolution with the Laplacian of the Gaussian, ∇2Gσ (x, y), can
be considered as band-pass filtering. [10%]

(c) The band-pass filtered images can be used for image edge and blob detection at
different scales.

(i) What is an image edge? How are edges detected in an image which has been
convolved with the Laplacian of a Gaussian, ∇2Sσ (x, y)? [10%]

(ii) What is an image blob and how are they detected? Show how to recover the
approximate scale and size of the blob. [10%]

(iii) How are edges and blobs used in object recognition? How do they achieve
geometric or photometric invariance? [10%]
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2 A camera is used to view a three dimensional object under perspective projection.
The image co-ordinates, (ui, vi), of the 3-D world point, (Xi,Yi, Zi), are given by:

ui =
p11Xi + p12Yi + p13Zi + p14
p31Xi + p32Yi + p33Zi + p34

vi =
p21Xi + p22Yi + p23Zi + p24
p31Xi + p32Yi + p33Zi + p34

(a) (i) By introducing homogeneous co-ordinates show how the mapping from world
to pixel co-ordinates can be expressed as a 3 × 4 projection matrix. [10%]

(ii) What is meant by a vanishing point? Find the vanishing point of lines which
are parallel to the Z-axis. [10%]

(iii) What is meant by the horizon? Derive the equation of the horizon of the X −Y
ground plane. [10%]

(b) A set of N known reference 3-D points, {(Xi,Yi, Zi)}Ni=1, and their corresponding
projections, {(ui, vi)}Ni=1, are to be used to calibrate the camera.

(i) What is meant by camera calibration? List the parameters that need to be
estimated. [10%]

(ii) How many reference points, N , are needed in practice and what are the
properties of a good calibration object? [10%]

(iii) Show how the unknown parameters can be estimated from the image
measurements of the projections of the known 3-D points. Include details of the
optimisation techniques used when the measurements are noisy. [20%]

(c) After calibration the known projection parameters can be used to recover 3-D scene
co-ordinates.

(i) Show how the visual ray from the optical centre that passes through an image
point, (ui, vi), can be defined by the intersection of two planes. Give algebraic
expressions for these two planes. [10%]

(ii) Show that there is an ambiguity in the recovery of the 3-D co-ordinates of a
visible point. How can this ambiguity be removed? Your answer should give details
of the algebraic equations that need to be solved and their geometrical interpretation. [20%]
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3 A five layer convolutional neural network (CNN) is used to extract features for a
face recognition application from a 32 × 32 resolution grey scale image.

Input image

CONV1 CONV2 CONV3 CONV4 FC1

Fig. 1

Its architecture is illustrated in Fig. 1 and details of each layer are provided below:

(CONV1, K = 5 × 5, S = 2, C = 16, P = 2, A = ReLU) → (CONV2, K = 3 × 3, S = 1,
C = 32, P = 1, A = ReLU)→ (CONV3, K = 5 × 5, S = 2, C = 64, P = 2, A = ReLU)→
(CONV4, K = 3 × 3, S = 1, C = 128, P = 1, A = ReLU)→ (FC1, C = 128, A = Linear)

Here K is the kernel size, S is the kernel stride, P is padding, A is the activation function
and C is the number of channels of a convolutional layer or the number of output units
of a fully connected layer. A bias term is used in both the fully connected (FC1) and
the convolutional layers (CONV1-4). The output of the convolutional layer CONV4 is
flattened into a vector before it is passed to the fully connected layer FC1.

(a) Explain the role of each layer in this network and provide a detailed calculation of
the total number of parameters used.

[20%]

(b) (i) A Siamese network setup with the contrastive loss is used to train this network.
Explain this setup in detail, including the precise mathematical definition of the
objective function used. You can ignore weight regularisation. [10%]

(ii) Obtain the expression of the derivative required to implement the gradient
descent update for the parameters, wc

i, j,c′, of the final convolutional layer, CONV4.
Here i, j correspond to the spatial output coordinates, c′ is the input channel index
and c is the output channel index respectively. Let yi, j,c′ be the output of the previous
layer, CONV3, and hence the input to CONV4. Simplify your answer. [25%]

(iii) When training the network described in Fig.1, poor performance was observed
when: images of people who were not represented in the training data and when
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darker or lighter images than typical images in the training data were used. What
two simple changes could be made to the proposed architecture in order to counter
the poor performance? Provide the details of these architectural changes. [15%]

(c) In order to perform face recognition on larger resolution images (e.g. 224 × 224)
on a modern phone, more powerful deep neural networks are needed such as ResNet
or Vision Transformer (ViT). Explain three advantages and/or disadvantages of using
transformer-based networks over convolutional neural networks. [10%]

(d) You are asked to re-purpose the network shown in Fig.1 to build an efficient solution
for joint segmentation and recognition of faces in group photos (resolution larger than
224 × 224) of people. The following constraints are placed on your solution:

•all faces in the group photos are of the same size and can be well recognised within
32 × 32 square of pixels;

•along with the original dataset of 32 × 32 images and corresponding face identity
labels (some identities can have more than one image available) used to train the
network in Fig.1, you are given an additional very small dataset of pairs of group
photos and corresponding per-pixel labels of the identities of faces.

Explain what changes to the architecture, training and testing procedure, data processing
and objective function you would make in order to achieve the desired objective. [20%]
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4 An object is viewed from two viewpoints with a mobile phone camera.

(a) The correspondences in the left and right images, (u, v) and (u′, v′), satisfy the
epipolar constraint :

[
u′ v′ 1

]

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

u
v

1


= 0

(i) Derive this constraint and identify the dependence of the matrix parameters
on the translation, T, and rotation, R, of the camera’s movement between images
and the camera internal parameters, K. [20%]

(ii) Hence derive an algebraic expression for the epipolar line corresponding to a
point in the left image with pixel coordinates (u, v). [10%]

(b) Under which viewing conditions (camera motion or scene geometry) will the
transformation between point correspondences in successive images be described by the
2-D projective transformation below? [20%]



u′

v′

1


=
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u
v

1



(c) The transformations in (a) and (b) above are to be estimated from point
correspondences.

(i) First a large number of keypoints are detected in each image and potential
matches from one image to the other are found by comparing their descriptors. How
are matches found in the presence of scale, orientation and lighting changes? [20%]

(ii) How are consistent matches obtained in the presence of incorrect or outlier
measurements? [10%]

(iii) Show how the transformations can be estimated and then used to recover the
camera motion if the camera internal parameters are known. [20%]

END OF PAPER
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