Module 4F12: Computer Vision

Solutions to Examples Paper 1

1. Images

Each frame requires $1920 \times 1080 \times 1 = 2.07 \times 10^6$ Bytes. A 25Hz stereo image stream requires $2.07 \times 10^6 \times 25 \times 2 = 1.04 \times 10^8$ Bytes/s. Assuming an average A4 page of text contains 50 lines, with about 80 characters on each line, and that a character is represented (using an ASCII code) as a single byte, a page of text requires $80 \times 50 \times 1 = 4000$ Bytes. So, instead of one second of stereo video, we could alternatively store $1.04 \times 10^8/4000 \approx 26000$ pages of text — enough for a large encyclopaedia!

2. Smoothing by convolution with a Gaussian

Consider smoothing an image, first with a Gaussian of standard deviation σ_1 , then with a Gaussian of standard deviation σ_2 :

$$s(x) = g_{\sigma 2}(x) * (g_{\sigma 1}(x) * I(x))$$

Since convolution is associative, we can write this as the convolution of the image with the kernel $g_{\sigma 2}(x) * g_{\sigma 1}(x)$:

$$s(x) = (g_{\sigma 2}(x) * g_{\sigma 1}(x)) * I(x)$$

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier transforms and then multiply the transforms in the frequency domain. If $g_{\sigma}(x) \leftrightarrow G_{\sigma}(\omega)$, then:

$$G_{\sigma}(\omega) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) e^{-j\omega x} dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\left(\frac{x^2}{2\sigma^2} + j\omega x\right)\right] dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2\sigma^2} \left(x^2 + 2j\omega\sigma^2 x\right)\right] dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2\sigma^2} \left((x + j\omega\sigma^2)^2 - j^2\omega^2\sigma^4\right)\right] dx$$

$$= \exp\left(-\frac{\omega^2\sigma^2}{2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{(x + j\omega\sigma^2)^2}{2\sigma^2}\right) dx$$

$$= \exp\left(-\frac{\omega^2\sigma^2}{2}\right) \quad \text{(since the integral is a standard Gaussian)}$$

Hence

$$g_{\sigma 2}(x) * g_{\sigma 1}(x) \leftrightarrow G_{\sigma 2}(\omega) \times G_{\sigma 1}(\omega) = \exp\left(-\frac{\omega^2 \sigma_2^2}{2}\right) \times \exp\left(-\frac{\omega^2 \sigma_1^2}{2}\right)$$

$$\Leftrightarrow g_{\sigma 2}(x) * g_{\sigma 1}(x) \leftrightarrow \exp\left(-\frac{\omega^2 (\sigma_2^2 + \sigma_1^2)}{2}\right)$$

The expression on the right is the Fourier transforms of a Gaussian with standard deviation $\sqrt{\sigma_2^2 + \sigma_1^2}$. So the convolution of two Gaussians with variances σ_1^2 and σ_2^2 is a Gaussian with variance $\sigma_1^2 + \sigma_2^2$. It follows that consecutive smoothing with a series of 1D Gaussians, each with a particular standard deviation σ_i , is equivalent to a single convolution with a Gaussian of variance $\sum_i \sigma_i^2$.

Spatial domain convolution

Alternatively, we can convolve in the spatial domain. The trick, once again, is to complete the square:

$$g_{\sigma 2}(x) * g_{\sigma 1}(x) = \frac{1}{2\pi\sigma_{1}\sigma_{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{u^{2}}{2\sigma_{2}^{2}}\right) \exp\left(-\frac{(x-u)^{2}}{2\sigma_{1}^{2}}\right) du$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \int_{-\infty}^{\infty} \exp\left(\frac{-u^{2}\sigma_{1}^{2} - x^{2}\sigma_{2}^{2} - u^{2}\sigma_{2}^{2} + 2ux\sigma_{2}^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}}\right) du$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \int_{-\infty}^{\infty} \exp\left(\frac{-(\sigma_{1}^{2} + \sigma_{2}^{2})\left(u - \frac{x\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2} + \frac{x^{2}\sigma_{2}^{4}}{\sigma_{1}^{2} + \sigma_{2}^{2}} - x^{2}\sigma_{2}^{2}}\right) du$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \int_{-\infty}^{\infty} \exp\left(\frac{-\left(u - \frac{x\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}}\right) \exp\left(\frac{-x^{2}\sigma_{1}^{2}\sigma_{2}^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})\sigma_{1}^{2}\sigma_{2}^{2}}\right) du$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(\frac{-x^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right) \int_{-\infty}^{\infty} \exp\left(\frac{-\left(u - \frac{x\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2}}{2\left(\frac{\sigma_{1}\sigma_{2}}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}}\right)^{2}}\right) du$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} \exp\left(\frac{-x^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right) \frac{1}{\sqrt{2\pi}\left(\frac{\sigma_{1}\sigma_{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)} \int_{-\infty}^{\infty} \exp\left(\frac{-\left(u - \frac{x\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2}}{2\left(\frac{\sigma_{1}\sigma_{2}}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}}\right)^{2}}\right) du$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} \exp\left(\frac{-x^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right) \text{ (since the integral is a standard Gaussian)}$$

This expression is a Gaussian with standard deviation $\sqrt{\sigma_2^2 + \sigma_1^2}$.

3. Generating the Gaussian filter kernel

In general, if we discard the sample (n + 1) pixels from the center of the kernel, the size of the kernel will be 2n + 1 pixels. We can find n by solving:

$$\exp\left[-\frac{(n+1)^2}{2\sigma^2}\right] < \frac{1}{1000}$$

$$\Leftrightarrow n > 3.7\sigma - 1$$

So n must be the nearest integer to $3.7\sigma - 0.5$.

- (a) Applying this formula for $\sigma = 1$ gives n = 3 and a kernel size of 2n + 1 = 7 pixels. The filter coefficients can be found by sampling the 1D Gaussian $g_1(x)$ at the points $x = \{-3, -2, -1, 0, 1, 2, 3\}$. The sum of the coefficients is one, so regions of uniform intensity are unaffected by smoothing.
- (b) For $\sigma = 5$ we get n = 18 and a kernel size of 37 pixels.
- (c) The choice of σ depends on the *scale* at which the image is to be analysed. Modest smoothing (a Gaussian kernel with small σ) brings out edges at a fine scale. More smoothing (larger σ) identifies edges at larger scales, suppressing the finer detail. There is no right or wrong size for the kernel: it all depends on the scale we're interested in. Another factor is image noise: the smoothing suppresses noise. It may be difficult to detect fine scale edges, since a kernel large enough to suppress the noise may also suppress the fine detail. Finally, computation time may be an issue: large σ means a large kernel and computationally expensive convolutions.

4. Discrete convolution

The image and filter kernels are discrete quantities and convolutions are performed as truncated summations:

$$s(x) = \sum_{u=-n}^{n} g_{\sigma}(u)I(x-u)$$

Applying this to the pixel with intensity 118, which is the 11th pixel in the row, we obtain

$$s(x) = \sum_{u=-3}^{3} g_{\sigma}(u)I(11-u)$$

$$= 0.004 \times 57 + 0.054 \times 77 + 0.242 \times 99 + 0.399 \times 118 \dots$$

$$+0.242 \times 130 + 0.054 \times 133 + 0.004 \times 134$$

$$= 115 \quad \text{(to the nearest integer)}$$

5. Derivative of convolution theorem

(a) This is easily proved by interchanging the order of differentiation and integration:

$$s'(x) = \frac{d}{dx} [g_{\sigma}(x) * I(x)] = \frac{d}{dx} \left[\int_{-\infty}^{\infty} g(x - u) I(u) du \right]$$
$$= \int_{-\infty}^{\infty} \frac{d}{dx} [g(x - u)] I(u) du$$
$$= \int_{-\infty}^{\infty} g'(x - u) I(u) du = g'_{\sigma}(x) * I(x)$$

(b) Edges are localised at the maxima and minima of $\frac{d}{dx}[g_{\sigma}(x)*I(x)]$. These occur when

$$\frac{d^2}{dx^2}[g_{\sigma}(x) * I(x)] = 0$$

The derivate of convolution theorem tells us that

$$\frac{d^2}{dx^2}[g_{\sigma}(x) * I(x)] = g_{\sigma}''(x) * I(x)$$

Hence edges can be localised at the zero-crossings of $g''_{\sigma}(x) * I(x)$.

6. Differentiation and 1D edge detection

An approximation to the first-order spatial derivative of I(x) mid-way between the nth and (n+1)th sample is I(n+1)-I(n). This can be computed by convolving with the kernel 1/2 0 -1/2 (remember that the kernel is flipped before the multiply and accumulate operation).

Applying this kernel to the smoothed row of pixels gives the approximation to the first-order spatial derivative:

The intensity discontinuity is at the maximum of the first-order spatial derivative. The maximum derivative (18) occurs at the tenth pixel - between the pixel with smoothed intensity 79 and the pixel with intensity 98¹.

7. Decomposition of 2D convolution

The 2D convolution can be decomposed into two 1D convolutions as follows:

$$G_{\sigma}(x,y) * I(x,y) = \frac{1}{2\pi\sigma^2} \int \int I(x-u,y-v) \exp{-\left(\frac{u^2+v^2}{2\sigma^2}\right)} du dv$$

¹If you want to be more precise, you can localise the discontinuity to sub-pixel accuracy by calculating the second order derivatives and then interpolating to find the zero-crossing.

$$= \frac{1}{\sqrt{2\pi}\sigma} \int \exp\left(-\frac{u^2}{2\sigma^2}\right) \left[\frac{1}{\sqrt{2\pi}\sigma} \int I(x-u,y-v) \exp\left(-\frac{v^2}{2\sigma^2}\right) dv\right] du$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int \exp\left(-\frac{u^2}{2\sigma^2}\right) \left[g_{\sigma}(y) * I(x-u,y)\right] du$$

$$= g_{\sigma}(x) * \left[g_{\sigma}(y) * I(x,y)\right]$$

Performing two 1D convolutions is much more efficient and quicker than performing a single 2D convolution. A discrete 1D convolution with a kernel of size N = 2n + 1 requires N multiply and add operations. A discrete 2D convolution with a kernel of size $N \times N$ requires N^2 multiply and add operations. The speed-up offered by decomposing the 2D convolution is $N^2/2N = N/2$.

8. Corner detection

This is taken from a previous tripos examination. See solutions for 4F12 examination Q1 in 2012 (or 2018).

9. Band-pass filtering using Image Pyramids

This question was taken from 4F12 examination Q1 (2021). See the examination solution and marking scheme (Crib).

10. Feature description and matching

This question was taken from a previous tripos examination. See solution and marking scheme for 4F12 examination Q1 (2021).

Roberto Cipolla October 2022