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1. The stereo correspondence problem

The difficult task of matching features between left and right images can be simplified
using the following constraints:

Epipolar constraint: the stereo camera geometry constrains each point feature
identified in one image to lie on a corresponding epipolar line in the other im-
age. If the cameras are calibrated, then the equation of the epipolar line can
be derived from the essential matrix. For uncalibrated cameras, it is possible to
estimate the fundamental matrix from point correspondences and derive epipo-
lar lines from the fundamental matrix. Epipolar lines meet at the epipole: this
is the image of one camera’s optical centre in the other camera’s image plane.
There are two epipoles, one for each image.

Uniqueness: For scenes containing only opaque objects, each point in the left image
has at most one match in the right image.

Ordering: Corresponding points lying on the surface of an opaque object will be
ordered identically in left and right images. The ordering constraint will not
necessarily hold if the points do not lie on the surface of the same opaque object.

Figural continuity: When distinguished points lie on image contours, we can some-
times use figural continuity as a matching constraint.

Disparity gradient: If surfaces are smooth, then point disparities (differences in
location between left and right images) must be locally smooth. So a further
constraint comes from imposing a limit on the allowable spatial derivatives of
disparity.

2. Stereo and orthographic projection

The architecture student is clearly used to orthographic projections and not perspec-
tive projections. Let’s assume that the left camera’s coordinate system is aligned
with the world coordinate system.

Under perspective projection we use the left image to find a ray along which the point
must lie, but this ray is not necessarily normal to the image plane and therefore does
not fix the X and Y world coordinates of the point. We then use the right image to
find where on the ray the point lies.

Under orthographic projection the ray would be normal to the left image plane and
would fix the X and Y world coordinates of the point. Observing the point in the
right image would fix the Z coordinate.

1



3. Epipolar geometry
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The epipolar lines will pass through the epipoles pe and p′

e, which are the images of
the other camera’s optical centre. We can find pe and p′

e by simple trigonometry:

p̂e = [ cos(π/8) 0 sin(π/8) ]T ⇒ pe = (f/ sin(π/8))[ cos(π/8) 0 sin(π/8) ]T

= [ 2.414f 0 f ]T

Similarly, the epipole in the right image is

p′

e = [ −2.414f 0 f ]T

So the epipolar lines look like this:
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(b) By inspection of the figure in (a), the transformation between the left and right
coordinate systems is X′

c = RXc +T, where
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
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
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Adopting the shorthand s ≡ sin(π/8) and c ≡ cos(π/8), the essential matrix is

E = T×R =






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√
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√
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


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and the epipolar constraints are

[

x′ y′ f
]
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√
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or equivalently √
2y(sx′ + cf) = y′((s− c)x+ (s+ c)f)

This equation defines the epipolar lines. Given a point (x′, y′) in the right image, the
equation describes a line in the left image on which the corresponding point (x, y)
must lie, and vice-versa.

The epipolar lines in the left image will pass through the epipole pe, which lies in
the null space of E. We can find the epipole as follows:

Epe =
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⇒ y = 0 , x(c− s) = f(s+ c)

Hence pe = [ f(s+ c)/(c− s) 0 f ]T = [ 2.414f 0 f ]T .

Similarly, the epipolar lines in the right image will pass through the epipole p′

e,
which lies in the null space of ET . By symmetry, we can conclude that p′

e =
[ −2.414f 0 f ]T .

4. Triangulation using rays
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Ray vectors p and world positions Xc are related via the unknown depth Zc:
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Since X′

c and p′ are parallel, we have

X′

c × p′ = 0 ⇔ (RXc +T)× p′ = 0

⇔

(

Zc

f
Rp+T

)

× p′ = 0

Let’s consider the case when the image planes of the two cameras are aligned and
the cameras have the same focal length:

R = I , T = [ −d 0 0 ]T

The triangulation equations reduce to:

Zc

f
(p× p′) = −T× p′

⇔ Zc(p× p′) = f







d
0
0





× p′

⇔ Zc

∣

∣

∣

∣

∣

∣

∣

i j k

x y f
x′ y′ f

∣

∣

∣

∣

∣

∣

∣

= f

∣

∣

∣

∣

∣

∣

∣

i j k

d 0 0
x′ y′ f

∣

∣

∣

∣

∣

∣

∣

Equating coefficients in i, j and k:

Zcf(y − y′) = 0 (1)

Zcf(x− x′) = df 2 (2)

Zc(xy
′ − yx′) = fdy′ (3)

(3) is not independent of (1) and (2). (2) allows us to recover the depth from the
horizontal disparity (x − x′): Zc = df/(x − x′). This result is intuitively correct:
distant objects have smaller disparities than nearby objects.

5. Uncalibrated stereo and the fundamental matrix

Pixel coordinates and image plane coordinates are related by the CCD calibration
matrix:
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We can modify this to derive a relationship between pixel coordinates and rays:
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
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
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So w̃ = Kp, and the epipolar constraint becomes

p′TEp = 0 ⇔ w̃′TK′−TEK−1w̃ = 0

⇔ w̃′TFw̃ = 0 , where F = K′−TEK−1

F is a 3× 3 matrix known as the fundamental matrix. By decomposing E we can
see how F is related to the isometry between the two camera coordinate systems and
the intrinsic camera parameters:

F = K′−TT×RK
−1

The intrinsic parameters are represented by the matrix K and the isometry by R
and T.

The locations of the epipoles w̃e and w̃′

e (in pixels) are given by

Epe = 0 ⇔ EK−1w̃e = 0

⇔ K′−TEK−1w̃e = 0 ⇔ Fw̃e = 0 and likewise FT w̃′

e = 0

It follows that F is not invertible (otherwise we could say w̃e = F−10 = 0, which is
a contradiction) and therefore has maximum rank 2.

We can estimate F from point correspondences. Each correspondence w̃ ↔ w̃′ gen-
erates one linear constraint on the elements of F:

[

u′ v′ 1
]







f11 f12 f13
f21 f22 f23
f31 f32 f33






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
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v
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



 = 0

Given 8 or more perfect correspondences (image points in general position, no noise),
F can be determined uniquely up to scale. In practice, we may have more than 8
correspondences and the image measurements will be noisy. The system of equations
is then solved by least squares (cf. camera calibration).

Note that we have not made any attempt to enforce the constraint that det F = 0. If
the 8 image points are noisy, then we will find that our estimate of F does not have
zero determinant and the epipolar lines do not meet at a point. Advanced nonlinear
techniques exist to estimate F from 7 point correspondences, enforcing the rank 2
constraint.
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6. Affine fundamental matrix

The weak perspective camera model is w̃ = PwpX̃, where

Pwp = PcPpllPr =







ku 0 u0

0 kv v0
0 0 1













f 0 0 0
0 f 0 0
0 0 0 Zav

c

















R T

0 0 0 1











=







fkur11 fkur12 fkur13 fkuTx + u0Z
av
c

fkvr21 fkvr22 fkvr23 fkvTy + v0Z
av
c

0 0 0 Zav
c







If we assume, without loss of generality, that the left camera is aligned with the world
coordinate system (so that R=I), then the camera matrix reduces to







fkur11 0 0 fkuTx + u0Z
av
c

0 fkvr22 0 fkvTy + v0Z
av
c

0 0 0 Zav
c







Discarding the nonlinear constraints, we obtain affine models for the left and right
cameras:

Left:

[

u
v

]

=

[

p11 0 0 p14
0 p22 0 p24

]











X
Y
Z
1


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





Right:

[

u′

v′

]

=

[

p′
11

p′
12

p′
13

p′
14

p′
21

p′
22

p′
23

p′
24

]











X
Y
Z
1











Eliminating X and Y from the above equations gives

u′ = p′
11

(u− p14)

p11
+ p′

12

(v − p24)

p22
+ p′

13
Z + p′

14

v′ = p′
21

(u− p14)

p11
+ p′

22

(v − p24)

p22
+ p′

23
Z + p′

24

Eliminating Z we obtain

u′ = p′
11

(u− p14)

p11
+ p′

12

(v − p24)

p22
+ p′

14
+

p′
13

p′23

(

v′ − p′
21

(u− p14)

p11
− p′

22

(v − p24)

p22
− p′

24

)

or alternatively
au′ + bv′ + cu+ dv + 1 = 0
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We can rewrite this in matrix form:

[ u′ v′ 1 ]FA







u
v
1






= 0

where FA is the affine fundamental matrix:

FA =







0 0 a
0 0 b
c d 1







By inspection, FA has zero determinant and therefore maximum rank 2. The epipolar
lines in the right image are given by

v′ = −
a

b
u′ −

(cu+ dv + 1)

b

Since the epipolar lines all have slope −a/b they are parallel. A similar argument
holds for the epipolar lines in the left image.

Roberto Cipolla
October 2020
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