Module 4F12: Computer Vision and Robotics

Examples Paper 4: Solutions

Straightforward questions are marked †
Tripos standard (but not necessarily Tripos length) questions are marked *

1. † Entropy and information

“Compute the information gained about which is the odd ball.”

let \(y \) represent the possible weighing outcomes (left pan heavier or right pan heavier) and \(x \) represent one of the 12 hypotheses about the identity of the odd ball. \(H(Y) = 1 \) bit and \(H(Y|X) = 1 \) bit so the mutual information is zero.

“Compute the information gained about which is the odd ball and whether it is heavy or light.”

let \(x \) now denote one of the 24 hypotheses (each ball may be heavier or lighter). \(H(Y) = 1 \) bit as before and \(H(Y|X) = 0 \) bits since knowing \(x \) renders the weighing outcome deterministic. The mutual information is 1 bit which accords with the intuition that half of the hypotheses have been ruled out by the weighing outcome.

2. * Decision Trees

“Compute the entropy of the class values, \(H(X) \), in each case. Explain your results.”

For all cases \(p_i(x = 1) = \frac{1}{2} \). (Since the class label distribution is independent from the query, \(p_i(x) \) does not vary.) The entropy of the class labels is therefore \(H(X) = 1 \) bit.

“Compute the entropy of the query values, \(H(Y) \), in each case. Comment on whether this entropy is a sensible criterion for selecting the best query.”

\[
p(y_1 = 1) = \frac{1}{2}. \text{ So } H(Y_1) = 1 \text{ bit.}
\]

\[
p(y_2 = 1) = \frac{1}{8}. \text{ Therefore } H(Y_2) = \frac{8}{8} \log_2 \frac{8}{7} + \frac{1}{8} \log_2 8 = 0.54 \text{ bits.}
\]

\[
p(y_2 = 1) = \frac{1}{2}. \text{ Therefore } H(Y_3) = 1 \text{ bit.}
\]
“Compute the conditional entropy, \(H(X|Y) \), and argue which query is the most informative.”

\[
\begin{array}{c|cc}
 y_1 & x = 0 & x = 1 \\
 \hline
 y_1 = 0 & 1/2 & 1/2 \\
 y_1 = 1 & 1/2 & 1/2 \\
\end{array}
\quad
\begin{array}{c|cc}
 y_2 & x = 0 & x = 1 \\
 \hline
 y_2 = 0 & 3/7 & 4/7 \\
 y_2 = 1 & 1 & 0 \\
\end{array}
\quad
\begin{array}{c|cc}
 y_3 & x = 0 & x = 1 \\
 \hline
 y_3 = 0 & 3/4 & 1/4 \\
 y_3 = 1 & 1/4 & 3/4 \\
\end{array}
\]

\[
H(Y_1|X) = 4 \times \frac{1}{4} \log_2 2 = 1 \text{ bit. Therefore } I(X;Y_1) = 0 \text{ bits}
\]

\[
H(Y_2|X) = \frac{3}{4} \log_2 \frac{7}{9} + \frac{1}{8} \log_2 1 + \frac{1}{2} \log_2 \frac{7}{4} = 0.86 \text{ bits. Therefore } I(X;Y_2) = 1 - 0.86 = 0.14 \text{ bits}
\]

\[
H(Y_3|X) = 2 \times \frac{3}{4} \log_2 \frac{4}{3} + 2 \times \frac{1}{8} \log_2 4 = 0.81 \text{ bits. Therefore } I(X;Y_3) = 1 - 0.81 = 0.19 \text{ bits}
\]

3. *Neural networks*

“Show that the derivatives of the cost function are :\[
\frac{d}{dw}G(w) = - \sum_n (t^{(n)} - x^{(n)})z^{(n)}
\]"

First note that application of the chain rule yields,

\[
\frac{d}{dw}G(w) = - \sum_n \frac{t^{(n)} - x^{(n)}}{x^{(n)}(1 - x^{(n)})} \frac{dx^{(n)}}{dw_k}.
\]

Then we find,

\[
\frac{dx^{(n)}}{dw_k} = x^{(n)}(1 - x^{(n)})z_k^{(n)}.
\]

Combining the above recovers the desired result.

“Interpreting the output of the network as \(x_i = p(t_i = 1|w, z) = \frac{\exp(w^T_i z)}{\sum_j \exp(w^T_j z)} \) write down a cost-function for training this network based on the log-probability of the training data given the weights \(w \) and inputs \(\{z^{(n)}\}_{n=1}^N \).”

A sensible cost function is given by the log-probability of the class labels given the inputs:

\[
G(w) = - \sum_n \sum_{i=1}^I t_i^{(n)} \log x_i(z^{(n)}; w).
\]

“What is the relationship between this network and the one described in the first part of this question?”
let the number of classes $I = 2$ we note that

$$x_1 = \frac{\exp(w_1^Tz)}{\exp(w_1^Tz) + \exp(w_2^Tz)} = \frac{1}{1 + \exp(-(w_1 - w_2)^Tz)} = 1 - x_2$$

which is identical to the above when $w = w_1 - w_2$

now check that the cost function we proposed is identical too

$$G(w) = -\sum_n \left[t_1^{(n)} \log x_1(z^{(n)}; w) + t_2^{(n)} \log x_2(z^{(n)}; w) \right]$$

$$= -\sum_n \left[t_1^{(n)} \log x_1(z^{(n)}; w) + (1 - t_1^{(n)}) \log(1 - x_1(z^{(n)}; w)) \right]$$

4. *Convolutional neural networks*

“Show that the derivatives of the objective function with respect to the convolutional weights, w_k, can themselves be computed efficiently using convolutions.”

First apply the chain and product rules:

$$\frac{d}{dw_k}G(w) = \sum_n \frac{dG(w)}{dx^{(n)}} \sum_j \frac{dx^{(n)}}{dy_j^{(n)}} \frac{dy_j^{(n)}}{da_j^{(n)}} \frac{da_j^{(n)}}{dw_k}$$

then compute the component parts:

$$\frac{dG(w)}{dx^{(n)}} = -\frac{t^{(n)} - x^{(n)}}{x^{(n)}(1 - x^{(n)})}, \quad \frac{dx^{(n)}}{da_j^{(n)}} = x^{(n)}(1 - x^{(n)})v_j.$$

$$\frac{dy_j^{(n)}}{da_j^{(n)}} = \frac{df(a_j^{(n)})}{da_j^{(n)}} = f'(a_j^{(n)}), \quad \frac{da_j^{(n)}}{dw_k} = z_{j-k}^{(n)}$$

finally combine everything together

$$\frac{dG(w)}{dx^{(n)}} = -\sum_n (t^{(n)} - x^{(n)}) \sum_j v_j f'(a_j^{(n)}) z_{j-k}^{(n)}$$

which involves convolutions between $v_j f'(a_j^{(n)})$ and a reversed version of $z_j^{(n)}$