Automatic Panoramic Image Stitching

Dr. Matthew Brown, University of Bath
Automatic 2D Stitching

• The old days: panoramic stitchers were limited to a 1-D sweep

• 2005: 2-D stitchers use object recognition for discovery of overlaps
AutoStitch iPhone

“Create gorgeous panoramic photos on your iPhone”
- Cult of Mac

“Raises the bar on iPhone panoramas”
- TUAW

“Magically combines the resulting shots”
- New York Times

Available on the iPhone App Store
Case study – Image mosaicing

Any two images of a general scene with the same camera centre are related by a planar projective transformation given by:

\[
\tilde{w}' = KRK^{-1}\tilde{w}
\]

where \(K \) represents the camera calibration matrix and \(R \) is the rotation between the views.

This projective transformation is also known as the homography induced by the plane at infinity. A minimum of four image correspondences can be used to estimate the homography and to warp the images onto a common image plane. This is known as mosaicing.
Meanwhile in 1999...

- David Lowe publishes “Scale Invariant Feature Transform”
- 11,572 citations on Google scholar
- A breakthrough solution to the correspondence problem
- SIFT is capable of operating over much wider baselines than previous methods

[Lowe ICCV 1999]
Local Feature Matching

- Given a point in the world...

...compute a description of that point that can be easily found in other images
Scale Invariant Feature Transform

- Start by detecting points of interest (blobs)

\[L(I(x)) = \nabla \cdot \nabla I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2} \]

- Find maxima of image Laplacian over scale and space
Scale Invariant Feature Transform

- Describe local region by distribution (over angle) of gradients

- Each descriptor: 4 x 4 grid x 8 orientations = 128 dimensions
Scale Invariant Feature Transform

- Extract SIFT features from an image

- Each image might generate 100’s or 1000’s of SIFT descriptors
Feature Matching

• Goal: Find all correspondences between a pair of images

• Extract and match all SIFT descriptors from both images
Feature Matching

- Each SIFT feature is represented by 128 numbers.
- Feature matching becomes task of finding a nearby 128-d vector.
- All nearest neighbours:

 \[\forall j \quad \text{NN}(j) = \arg \min_i \|x_i - x_j\|, \ i \neq j \]

- Solving this exactly is \(O(n^2)\), but good approximate algorithms exist.
- e.g., [Beis, Lowe ’97] Best-bin first k-d tree.
- Construct a binary tree in 128-d, splitting on the coordinate dimensions.
- Find approximate nearest neighbours by successively exploring nearby branches of the tree.
2-view Rotational Geometry

• Feature matching returns a set of noisy correspondences
• To get further, we will have to understand something about the geometry of the setup
2-view Rotational Geometry

• Recall the projection equation for a pinhole camera

\[\begin{bmatrix} \tilde{u} \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R & t \end{bmatrix} \begin{bmatrix} \tilde{X} \end{bmatrix} \]

\(\tilde{u} \sim [u, v, 1]^T \) : Homogeneous image position

\(\tilde{X} \sim [X, Y, Z, 1]^T \) : Homogeneous world coordinates

\(K \ (3 \times 3) \) : Intrinsic (calibration) matrix

\(R \ (3 \times 3) \) : Rotation matrix

\(t \ (3 \times 1) \) : Translation vector
2-view Rotational Geometry

- Consider two cameras at the same position (translation)
- WLOG we can put the origin of coordinates there

\[\tilde{u}_1 = K_1 [R_1 \mid t_1] \tilde{X} \]

- Set translation to 0

\[\tilde{u}_1 = K_1 [R_1 \mid 0] \tilde{X} \]

- Remember \(\tilde{X} \sim [X, Y, Z, 1]^T \) so

\[\tilde{u}_1 = K_1 R_1 X \]

(\text{where} \(X = [X, Y, Z]^T \))
2-view Rotational Geometry

- Add a second camera (same translation but different rotation and intrinsic matrix)

\[\tilde{u}_1 = K_1 R_1 X \]
\[\tilde{u}_2 = K_2 R_2 X \]

- Now eliminate \(X \)

\[X = R_1^T K_1^{-1} \tilde{u}_1 \]

- Substitute in equation 1

\[\tilde{u}_2 = K_2 R_2 R_1^T K_1^{-1} \tilde{u}_1 \]

This is a 3x3 matrix -- a (special form) of homography
Computing H: Quiz

\[
s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

- Each correspondence between 2 images generates ___ equations
- A homography has _____ degrees of freedom
- _____ point correspondences are needed to compute the homography
- Rearranging to make H the subject leads to an equation of the form

\[
Mh = 0
\]

- This can be solved by _____
Finding Consistent Matches

- Raw SIFT correspondences (contains outliers)
Finding Consistent Matches

- SIFT matches consistent with a rotational homography
Finding Consistent Matches

- Warp images to common coordinate frame
RANSAC

- **RAndom SAmple Consensus** [Fischler-Bolles ‘81]
- Allows us to robustly estimate the best fitting homography despite noisy correspondences
- **Basic principle:** select the smallest random subset that can be used to compute H
- Calculate the support for this hypothesis, by counting the number of *inliers* to the transformation
- Repeat sampling, choosing H that maximises # inliers
RANSAC

H = eye(3,3); nBest = 0;

for (int i = 0; i < nIterations; i++)
{
 P4 = SelectRandomSubset(P);
 Hi = ComputeHomography(P4);
 nInliers = ComputeInliers(Hi);
 if (nInliers > nBest)
 {
 H = Hi;
 nBest = nInliers;
 }
}
Recognising Panoramas

[Brown, Lowe ICCV’03]
Global Alignment

- The pairwise image relationships are given by **homographies**
- But over time multiple pairwise mappings will accumulate errors
- Notice: gap in panorama before it is closed...
Gap Closing
Bundle Adjustment
Bundle Adjustment

• Minimise sum of robustified residuals

\[\sum_{i=1}^{n_p} \sum_{j \in \mathcal{V}(i)} f(u_{ij}(\Theta) - m_{ij}) \]

- \(u_{ij} \) = projected position of point \(i \) in image \(j \)
- \(m_{ij} \) = measured position of point \(i \) in image \(j \)
- \(\mathcal{V}(i) \) = set of images where point \(i \) is visible
- \(n_p \) = # points/tracks (mutual feature matches across images)
- \(\Theta \) = camera parameters

• Robust error function (Huber)

\[f(x) = \begin{cases}
|x|^2, & |x| < \sigma \\
2\sigma|x| - \sigma^2, & |x| \geq \sigma
\end{cases} \]
Aerial Image Stitching

[Images: SenseFly, Zufferey, Beleyer EPFL]
Endoscopy Imaging

[E. Seibel, J. Wong (U. Washington)]
Other topics

• **Blending/Gain compensation/HDR** -- how to combine multiple images to give a consistent, seamless result
• **Gravity direction** estimate -- how do we know which way is up?
• **Different projections** -- rectilinear, spherical, cylindrical, fisheye...

More details http://cs.bath.ac.uk/brown
iPhone Computer Vision Apps

Also good: Kooaba Déjà vu, Photosynth, Word Lens
Aardman, Disney, Double Negative, EA, Frontier, BBC, Buro Happold, Smoke and Mirrors...

PhD and EngD positions starting September 2012

m.brown@bath.ac.uk