2-view Alignment and RANSAC

CSE P576

Dr. Matthew Brown

AutoStitch iPhone

"Create gorgeous panoramic photos on your iPhone"

- Cult of Mac
"Raises the bar on iPhone panoramas" - TUAW
"Magically combines the resulting shots"
- New York Times

\square App Store

4F12 class of '99

Case study - Image mosaicing

Any two images of a general scene with the same camera centre are related by a planar projective transformation given by:

$$
\tilde{\mathbf{w}}^{\prime}=\mathbf{K} R \mathbf{K}^{-1} \tilde{\mathbf{w}}
$$

where \mathbf{K} represents the camera calibration matrix and R is the rotation between the views.

This projective transformation is also known as the homography induced by the plane at infinity. A minimum of four image correspondences can be used to estimate the homography and to warp the images onto a common image plane. This is known as mosaicing.

Scale Invariant Feature Transform

- Extract SIFT features from an image

- Each image might generate 100's or 1000's of SIFT descriptors

Feature Matching

- Each SIFT feature is represented by 128 numbers
- Feature matching becomes task of finding a nearby $128-\mathrm{d}$ vector
- All nearest neighbours:

$$
\forall j N N(j)=\arg \min _{i}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|, i \neq j
$$

- Solving this exactly is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, but good approximate algorithms exist
- e.g., [Beis, Lowe '97] Best-bin first k-d tree
- Construct a binary tree in 128-d, splitting on the coordinate dimensions
- Find approximate nearest neighbours by successively exploring nearby branches of the tree

2-view Rotational Geometry

- Feature matching returns a set of noisy correspondences
- To get further, we will have to understand something about the geometry of the setup

2-view Rotational Geometry

- Recall the projection equation for a pinhole camera

$$
\tilde{\mathbf{u}}=\left[\begin{array}{l}
\mathbf{K}
\end{array}\right]\left[\begin{array}{l:l}
\mathbf{R} & \mathbf{t} \\
&
\end{array}\right]
$$

$\tilde{\mathbf{u}} \sim[u, v, 1]^{T} \quad:$ Homogeneous image position
$\tilde{\mathbf{X}} \sim[X, Y, Z, 1]^{T} \quad:$ Homogeneous world coordinates
$\mathbf{K}(3 \times 3) \quad:$ Intrinsic (calibration) matrix
$\mathbf{R}(3 \times 3)$
t (3×1)
: Rotation matrix
: Translation vector

2-view Rotational Geometry

- Consider two cameras at the same position (translation)
- WLOG we can put the origin of coordinates there

$$
\tilde{\mathbf{u}}_{1}=\mathbf{K}_{1}\left[\mathbf{R}_{1} \mid \mathbf{t}_{1}\right] \tilde{\mathbf{X}}
$$

- Set translation to 0

$$
\tilde{\mathbf{u}}_{1}=\mathbf{K}_{1}\left[\mathbf{R}_{1} \mid \mathbf{0}\right] \tilde{\mathbf{X}}
$$

- Remember $\tilde{\mathbf{X}} \sim[X, Y, Z, 1]^{T}$ so

$$
\tilde{\mathbf{u}}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{X}
$$

(where $\mathbf{X}=[X, Y, Z]^{T}$)

2-view Rotational Geometry

- Add a second camera (same translation but different rotation and intrinsic matrix)

$$
\begin{aligned}
\tilde{\mathbf{u}}_{1} & =\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{X} \\
\tilde{\mathbf{u}}_{2} & =\mathbf{K}_{2} \mathbf{R}_{2} \mathbf{X}
\end{aligned}
$$

- Now eliminate \mathbf{X}

$$
\mathbf{X}=\mathbf{R}_{1}^{T} \mathbf{K}_{1}^{-1} \tilde{\mathbf{u}}_{1}
$$

- Substitute in equation 1

$$
\tilde{\mathbf{u}}_{2}=\mathbf{K}_{2} \mathbf{R}_{2} \mathbf{R}_{1}^{T} \mathbf{K}_{1}^{-1} \tilde{\mathbf{u}}_{1}
$$

This is a 3×3 matrix -- a (special form) of homography

Computing H: Quiz
 $$
s\left[\begin{array}{l} u \\ v \\ 1 \end{array}\right]=\left[\begin{array}{lll} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]
$$

- Each correspondence between 2 images generates equations
- A homography has ___ degrees of freedom
- ___ point correspondences are needed to compute the homography
- Rearranging to make H the subject leads to an equation of the form

$$
\mathbf{M h}=\mathbf{0}
$$

- This can be solved by \qquad

Computing H: Quiz
 $$
s\left[\begin{array}{l} u \\ v \\ 1 \end{array}\right]=\left[\begin{array}{lll} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]
$$

- Each correspondence between 2 images generates equations
- A homography has ___ degrees of freedom
- ___ point correspondences are needed to compute the homography
- Rearranging to make H the subject leads to an equation of the form

$$
\mathbf{M h}=\mathbf{0}
$$

- This can be solved by \qquad

Finding Consistent Matches

- Raw SIFT correspondences (contains outliers)

Finding Consistent Matches

- SIFT matches consistent with a rotational homography

Finding Consistent Matches

- Warp images to common coordinate frame

2-view Alignment + RANSAC

- 2-view alignment: linear equations
- Least squares and outliers
- Robust estimation via sampling

Image Alignment

- Find corresponding (matching) points between the images

$\mathbf{u}=\mathbf{H x}$
2 points for Similarity
3 for Affine
4 for Homography

Image Alignment

- In practice we have many noisy correspondences + outliers

RANSAC algorithm

I. Match feature points between 2 views
2. Select minimal subset of matches*
3. Compute transformation T using minimal subset
4. Check consistency of all points with T - compute projected position and count \#inliers with distance < threshold
5. Repeat steps 2-4 to maximise \#inliers

* Similarity transform = 2 points, Affine $=3$, Homography $=4$

2-view Rotation Estimation

- Find features + raw matches, use RANSAC to find Similarity

2-view Rotation Estimation

- Remove outliers, can now solve for R using least squares

2-view Rotation Estimation

- Final rotation estimation

