
University of Cambridge
Engineering Part IIB

Module 4F12: Computer Vision

Handout 5: Deep Learning for
Computer Vision

Matthew Johnson
November 2023

Deep Learning for Computer Vision 1

Artificial Intelligence

Complex, interconnected networks of neurons, like the human
brain, are the only known way of achieving general intelli-
gence. Because of this, many efforts in the area of Artificial
Intelligence attempt to recreate the different structures of the
brain. Systems called deep neural nets (DNNs) have proven
helpful for more targeted AI tasks, like image understanding:

https://aka.ms/densecaptions

DNNs can seem intelligent because they do things we usually
associate with human intelligence, like scene understanding
and object recognition. In reality, they are highly specialised,
trained from vast corpora of data, and constructed from ele-
ments that mimic biological neural networks in useful yet in-
complete ways. We will explore the underlying mathematics
behind DNNs, analyse their structures and design principles,
and study state-of-the-art architectures and techniques.

Deep Learning for Computer Vision 2

Neurons

Before we dive into the maths, let us perform an (extremely
brief) overview of neurons and how they work. Below is a
diagram of a synapse:

The ways in which neurons work together involve complex in-
teractions between electrical signals and neurochemistry that
are very much outside the scope of this lecture. That said,
for our purposes it is important to understand three key con-
cepts:

• A neuron has both dendrites (inputs) and axons (out-
puts) which connect it to other neurons

• A neuron will produce an exciting or inhibiting signal
along its axons based upon activations from its dendrites
in a non-linear way

• Each dendrite contributes to whether a signal is produced
in different proportions, which change over time

We will focus on these three principles and how to use them
to build a simple mathematical model of a neuron.

Deep Learning for Computer Vision 3

Perceptrons

Figure 1: Frank Rosenblatt

The perceptron algorithm was in-
vented in 1957 at the Cornell
Aeronautical Laboratory by Frank
Rosenblatt [14]. It was designed to
be implemented in hardware for the
purpose of image recognition, and
was the marvel of the age. The
New York Times reported the per-
ceptron to be “the embryo of an
electronic computer that [the Navy]
expects will be able to walk, talk,
see, write, reproduce itself and be
conscious of its existence.” [12].

Figure 2: The Mark 1 perceptron

Rosenblatt based his designs upon
earlier theoretical work by War-
ren McCulloch and Walter Pitts
in 1943 on the Threshold Logic
Unit [11], arguably the first artifi-
cial neuron. The idea in both cases
was to create a simple mathemati-
cal model of a neuron. In the case
of the perceptron, this model was
then expressed in hardware. The
entire machine represented a single
neuron, with 400 inputs taken from
a 20x20 image sense to create a bi-

nary output.

Deep Learning for Computer Vision 4

Perceptrons, cont.

x0

w0
x1

w1
x2

w2

xn

wn

Σ f y

Figure 3: A perceptron. There is one
weight per input, and a single output.

Given an input x, the math-
ematical model for the out-
put y of a perceptron is cal-
culated as:

y(x) = f (wTx)

where w are the weights on
the input vector x and f is a
step function of the form:

f (xi) =

{
+1 xi ≥ 0

−1 xi < 0

The fundamental problem at hand is how to learn the values
of w. For this, we use the perceptron criterion:

EP(w) = −
∑
n∈M

wTxntn

where tn ∈ {−1,+1} for negative and positive examples and
M is the set of misclassified examples.

We can use the gradient of this function to update the
weights on a per-example basis:

wτ+1 = wτ − η∇EP(w) = wτ + ηxntn

where η is the learning rate parameter and τ is an integer
that indexes the steps of the algorithm.

Deep Learning for Computer Vision 5

Binary Classification

Perceptrons can be used to predict the membership between
two classes. Take, for example, the two sets of points below.
We can train a perceptron to separate these two classes:

Initial 1

2 Final

The perceptron only needs to be shown two examples to find
a separating decision boundary.

Deep Learning for Computer Vision 6

Combining Perceptrons

As originally proposed, perceptrons can only answer yes/no
questions. However, we can combine perceptrons to tackle
multi-class problems using 1 versus all. Instead of a single
vector, each perceptron is now a column in a matrix:

y = f (Wx)

where W are the weights on the input vector x and f is
the same step function, applied on a per-index basis on the
output vector:

f (xi) =

{
+1 xi ≥ 0

−1 xi < 0

Each perceptron focuses on a single question: is this input a
member of my class, or not? We can then look at multiple
outputs and choose the class that corresponds to the classifier
that has a positive result. The maths stay much the same,
though we are going to change the formulation slightly. In-
stead of including the bias as an extra dimension in the data,
we are going to use a common convention in modern neural
net architectures and separate it out as a separate bias term,
b, as follows:

y = f (Wx + b)

Deep Learning for Computer Vision 7

Activation Functions

Compute the y0 and y1 given the following inputs:

x =

[
0.3

−0.5

]
W =

[
0.55 −0.12
−0.32 0.5

]
b =

[
0.4

−0.2

]

h0 = 0.55× 0.3 +−0.12×−0.5 + 0.4 = 0.625

h1 = −0.32× 0.3 + 0.5×−0.5− 0.2 = −0.546
y0 = 1

y1 = −1

Try the exercise again with x =

[
−0.4
1

]
:

h0 = 0.55×−0.4 +−0.12× 1 + 0.4 = 0.06

h1 = −0.32×−0.4 + 0.5× 1− 0.2 = 0.428

y0 = 1

y1 = 1

Can you see the issue?

Deep Learning for Computer Vision 8

Activation Functions, cont.

As you discovered in these two examples, the step function the
perceptron uses cannot distinguish between different positive
results, which is a requirement for classifying more than two
classes. Thankfully, it is just one example of an activation
function, and there are many others. One which is a close
approximation to the step function is the hyperbolic tangent:

f (x) = tanh(x) = ex−e−x
ex+e−x

5 0 5
1.0

0.5

0.0

0.5

1.0

we now have a new formulation for the perceptron:

y = tanh(Wx + b)

This new formulation, which we will call a multiperceptron,
has several advantages. The hyperbolic tangent, in addition
to being roughly linear from -1 to 1, saturates to 1 or -1 as
well, thus providing a useful non-linearity, which was the
driving force behind the use of the step function in the orig-
inal perceptron. It also creates a function that is fully dif-
ferentiable, which means we can learn the values of W via
gradient descent.

Deep Learning for Computer Vision 9

Gradient Descent

As you may recall, gradient descent is the practice of using the
gradient of a function to find the input values that correspond
to its minimum. Take for example the parabola defined by:

y(x) = x2 − 5x + 2

This can be thought of as an objective function of x. We
can use its gradient:

y′(x) = 2x− 5

to find the value of x that minimises y(x). A step size or
learning rate η is used to control how far we move in the
direction of the gradient.

2.5 0.0 2.5 5.0 7.5

0

10

20

0

2.5 0.0 2.5 5.0 7.5

0

10

20

1

2.5 0.0 2.5 5.0 7.5

0

10

20

2

2.5 0.0 2.5 5.0 7.5

0

10

20

3

Deep Learning for Computer Vision 10

Backpropagation

The use of gradient descent to discover the parameters of a
network of perceptrons is called backpropagation, and was
discovered by Paul J. Werbos, who described it in his 1974
thesis Beyond regression: New tools for prediction and
analysis in the behavioural sciences[16]. In order to use
backpropagation here we need two things: a (differentiable)
way of producing a desired output value, and an (also differ-
entiable) objective function for scoring that value.

The task we are currently interested in performing is classi-
fication, where we label an input as being a member of one
of several classes C. One way of achieving this is by gen-
erating a probability distribution P (c | x), which defines a
distribution over C such that

∑
c∈C P (c | x) = 1 and where

the magnitude of P (c | x) corresponds to the classifier’s con-
fidence that x belongs to class c. A typical choice to produce
P (c | x) for a multiperceptron is the Softmax function s:

P (c = i | x) = s(yi)

s(yi) =
eyi∑
j e

yj

y = tanh(Wx + b)

Deep Learning for Computer Vision 11

Cross Entropy

Now that we have a way of generating an output (P (c | x))
we need a way of scoring it, i.e. telling whether it is a good or
bad output. For this we can use the cross entropy function:

H(P,Q) = −
∑
c

P (c) logQ(c)

where P is the target distribution and Q is P (c | x).

The cross entropy consists of two components:

H(P,Q) = H(P) +DKL(P || Q)

for discrete distributions P and Q, where H is the Shannon
entropy:

H(P) = −
∑
c

P (c) logP (c)

Entropy measures the information content of a distribution,
or how much we learn from sampling. The Kullback-Leibler
divergence DKL measures how much one distribution diverges
from another:

DKL(P || Q) =
∑
c

P (c) log
P (c)

Q(c)

The intuition here is that if P and Q are the same, then the
term log P (c)

Q(c) will be zero and thus the divergence is also zero.

Deep Learning for Computer Vision 12

Optimisation

We can now write the objective function for a multipercep-
tron:

L(D,W,b) =
1

|D|
∑
d∈D

H(td, P (c | xd))

P (c | xd) = s(Wxd + b)

where D is our dataset and ti is a one-hot vector correspond-
ing to the correct label for that data point. In words, we want
to minimise the expected cross entropy between the output
and the target distribution. Now that we have an objective,
we can compute gradients for W and b and optimize them
directly.

At first glance the task of computing partial derivatives of L
with respect to W and b seems daunting. However, we have
chosen our functions very carefully. Using the chain rule, we
first look at partial derivatives with respect to the softmax
function, but immediately run into a problem, in that yi is in
both the numerator and denominator of s. As such we need
to index the derivative:

∂si
∂yi

= si(1− si)

∂sj
∂yi

= −sisj, j 6= i

Deep Learning for Computer Vision 13

Optimisation, cont.

Breaking things out in this way, we can now look at our first
partial derivatives for L (for a single data point):

L = H(t, P (c | x))
L = −

∑
i

ti log si

∂L

∂si
= −

∑
k

tk
∂ log sk
∂yk

= −
∑
k

tk
1

sk

∂sk
∂yk

= −ti(1− si)−
∑
k 6=i

tk
1

sk
(−sksi)

= −ti + tisi +
∑
k 6=i

tksi

= si

(∑
k

tk

)
− ti

Remember that t is a one-hot vector, and so we get the final
result:

∂L

∂si
= si − ti

Deep Learning for Computer Vision 14

Optimisation, cont.

Continuing with the chain rule, we can now look at the partial
derivatives for the hyperbolic tangent:

yi = tanh(hi)

hi = Wxi + b

∂yi
∂hi

= 1− y2i

As we are performing matrix calculus, is it helpful to think
about vectors of partial derivatives moving forward, which
we will denote δ =

{
∂L
∂hi

, ∀i
}

. Using δ we can compute the
partial derivatives for the weights and biases:

∂L

∂W
= xδT

∂L

∂b
=
∑
i

δi

By subtracting these values from the current values of W and
b, we can perform gradient descent to update the weights and
biases and minimise our objective function, with the aim that
P (c | xd) ≈ td for all d ∈ D.

Deep Learning for Computer Vision 15

Batching

In the previous slides we looked at the equations for only
a single data point x and its target t. However, we really
want to subtract the value for the full definition of L which
incorporates an expectation over all data points:

∂L

∂W
=

1

|D|
∑
d∈D

xdδ
T
d

∂L

∂b
=

1

|D|
∑
d∈D

∑
i

δdi

This is a problem, as we need to compute the full gradient
before we can update the weights and biases. This is compu-
tationally expensive, and so we instead use a technique called
batching, where we compute the gradient for a subset of the
data points, and then update the weights and biases.

∂L

∂W
=

1

|DB|
∑
d∈DB

xdδ
T
d

∂L

∂b
=

1

|DB|
∑
d∈DB

∑
i

δdi

DB ⊆ D

This is repeated until we have processed all the data points
in the dataset. If these subsets are chosen at random, this is
called stochastic gradient descent.

Deep Learning for Computer Vision 16

Datasets

At this point, we will briefly discuss the correct usage of data.
Data should be divided into three sets:

1. Training – Fitting the model

2. Validation – Determining hyperparameters

3. Test – Held out for evaluation.

The two commandments of data science can be written in
terms of these three sets:

1. Thou shalt not train on the test data

2. Thou shalt not determine hyperparameters on test data

These both derive from the central goal of machine learning:
generalisation. When we train a model, we want to ensure
that it can make reasonable predictions when shown new,
unseen data. This is why we take a portion of our labelled
data and set it aside for use as test data. If we use the test
data to train our model, we have no way of knowing if our
model will generalise to that test data, and thus the results
are meaningless.

The same is true for hyperparameters. If we use the test data
to determine hyperparameters, we have no way of knowing
if our model will generalise to that test data, and thus the
results are meaningless. Thus, we set aside validation data
for this purpose. However, we can safely incorporate the val-
idation data when we train the final model as we still have
the held-out test data to evaluate the model’s performance.

Deep Learning for Computer Vision 17

N-ary Classification

Our multiperceptron is capable of predicting labels for any
number of classes, not just the two classes that a generic
perceptron can handle. Below we see a dataset containing
three classes. We can train our multiperceptron to classify
them:

Dataset
Acc: 0.33

Initial

Acc: 0.96
10

Acc: 0.98
1200

Deep Learning for Computer Vision 18

Uncertainty

Aside from the ability to handle multiple classes, the mul-
tiperceptron also provides us with a measure of uncertainty.
As a point moves closer to or farther away from the decision
boundary, the model becomes less or more certain. See what
happens as the square moves from the top to the bottom:

p = [0.88, 0.12] p = [0.66, 0.34]

p = [0.38, 0.62] p = [0.12, 0.88]

Deep Learning for Computer Vision 19

The Linearity Problem

The multiperceptron is a powerful tool, but it has a major
flaw: it can only be used on linearly separable data. Below
you can see one example of data which cannot be modeled
by the multiperceptron. Can you think of others?

10 0 10
10

5

0

5

10

10 5 0 5 1010

5

0

5

10

10 5 0 5 1010

5

0

5

10

10 5 0 5 1010

5

0

5

10

Make no mistake, there is no way to change the multipercep-
tron to overcome this problem. We will need to change the
input data itself.

Deep Learning for Computer Vision 20

Feature Engineering

One way to overcome this problem is via feature engineering,
whereby we engineer a feature transform that takes as input
the original data and produces new data which is linearly
separable and can be used as input to a multiperceptron.
Take a moment to return to your examples from the previous
slide and see if you can engineer a feature transform that
would make the data linearly separable.

50 0 50
75

50

25

0

25

50

75

10 5 0 5 1010

5

0

5

10

f(x, y) = (x, xy)

10 5 0 5 1010

5

0

5

10

10 5 0 5 1010

5

0

5

10

Deep Learning for Computer Vision 21

Multi-layer Perceptrons (MLPs)

Feature engineering is an incredibly useful tool, but requires
human expertise. For low-dimensional datasets like these it
can be straightforward, but as data becomes more complex,
engineering features becomes increasingly difficult. Ideally,
we want to be able to learn the feature transform from the
data itself. This is the idea behind multi-layer perceptrons.

We will add a multiperceptron as an intermediary step be-
tween the input data and our classifier. This multiperceptron
has a different task: to learn a feature transform that makes
the data linearly separable. When used in this way, we will
refer to a multiperceptron as a hidden fully-connected layer.
The output of one or more hidden layers is fed into the clas-
sifier, which is now called the output layer. The resulting
network is called a multi-layer perceptron.

Input Latent Space

0.0

0.2

0.4

0.6

0.8

1.0

Loss/Accuracy

0.2

0.4

0.6

Accuracy
Loss

Input Latent Space

0.0

0.2

0.4

0.6

0.8

1.0

Loss/Accuracy

0.2

0.4

0.6

Accuracy
Loss

Deep Learning for Computer Vision 22

Understanding the Latent Space

The latent spaces learned by MLPs can be difficult to un-
derstand. However, one useful technique is to see how values
change when we use the differential nature of the network
explore how input changes cause output changes. Instead of
computing partial derivatives with respect to the weights and
biases of the network, we compute them with respect to the
input data itself. By changing the target class and then up-
dating the input data to minimise this new objective (while
keeping the model fixed) we can get a sense for how the model
makes its decisions.

Input Latent Space

0.0

0.2

0.4

0.6

0.8

1.0 Prediction

Input Latent Space

0.0

0.2

0.4

0.6

0.8

1.0 Prediction

Input Latent Space

0.0

0.2

0.4

0.6

0.8

1.0 Prediction

Deep Learning for Computer Vision 23

Classifying Images

The original perceptron system took as input 20×20 images,
which were flattened into a 400-dimensional vector. Let us
look at a similar problem: handwritten digit classification
using the MNIST dataset.

The images above were gathered from employees of the US
Census Bureau and Secondary School students, consisting of
approximately 250 individuals. There are 60,000 training im-
ages and 10,000 test images (sampled in a disjoint manner
from the two sample groups). The images themselves are
28 × 28 unregistered greyscale images. Research has been
performed on the dataset since the 1980s and has continued
to the present day, where it is often used for debugging net-
work architectures.

Deep Learning for Computer Vision 24

MNIST: Perceptron

We will begin by looking at how a perceptron predicts whether
an image is 1 or 0. Because the weight vector w of a per-
ceptron is the same size as its input, we can visualize these
weights as an image.

Input
Weights

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

Input
Weights

1.0

0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

Input
Weights

2

0

2

4

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

Note how the weights are being set by subtracting or adding
images, so that we can see afterimages of specific 1 and 0
images in the early weights. Note also how the weight mag-
nitude increases over time.

Deep Learning for Computer Vision 25

MNIST: Multiperceptron

Now we will look at training a multiperceptron on a harder
problem: all ten classes. We can still view the weights as
images, with one weight image per row of the W matrix.

Input Weights

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy / Loss

Accuracy
Loss

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Input Weights

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy / Loss

Accuracy
Loss

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Input Weights

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy / Loss

Accuracy
Loss

1.0

1.2

1.4

1.6

1.8

2.0

2.2

As training progresses the weights for each class become pos-
itive where that class has pixels, and negative elsewhere.

Deep Learning for Computer Vision 26

MNIST: Multi-layer Perceptron

Finally, we will look at training a multi-layer perceptron on
the same problem. This network has a hidden layer dimension
of 64, meaning that first the 784-dimensional image is embed-
ded in a 64-dimensional space, and then the multiperceptron
determines the classification boundary as a hyperplane in 64
dimensions. We can view the weights in the first layer the
same way we have done so far, and can view the weights in
the second layer as a 5× 2 grid of 8x8 images.

W0 W1

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy / Loss

Accuracy
Loss

0.0

0.5

1.0

1.5

2.0

2.5

W0 W1

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy / Loss

Accuracy
Loss

0.0

0.5

1.0

1.5

2.0

2.5

W0 W1

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy / Loss

Accuracy
Loss

0.0

0.5

1.0

1.5

2.0

2.5

Deep Learning for Computer Vision 27

Attacking an MLP Model

As we did before, we can see how an input image needs to
change to cause the network to predict a different class. How-
ever, unlike the previous example where the input and latent
spaces were low dimensional, these images are embedded in
a 784-dimensional space. If we alter the objective function to
additionally minimise the distance in the input space:

L′(W,b) = L(d,W,b) + λ
∑
d∈D

‖xd − x′d‖
2

where x′d is the current altered image, can we turn this 4 into
a 9?

Altered Image Difference

0.0

0.2

0.4

0.6

0.8

1.0 Prediction

4
9

Altered Image Difference

0.0

0.2

0.4

0.6

0.8

1.0 Prediction

4
9

Altered Image Difference

0.0

0.2

0.4

0.6

0.8

1.0 Prediction

4
9

Deep Learning for Computer Vision 28

Vanishing Gradients

There are limits to the level of transformation that can be per-
formed by a single layer of an MLP. As such, it is tempting
to add more layers to the network to increase its expressive
power. However, as we add more layers, we run into a prob-
lem: the gradients become very small, and thus the weights
are not updated. This is called the vanishing gradient prob-
lem. Here are the derivatives of the most common activation
functions from early neural nets: the hyperbolic tangent and
sigmoid functions:

tanh(x) =
ex − e−x

ex + e−x

∂ tanh(x)

∂x
= 1− tanh2(x)

s(x) =
1

1 + e−x

∂s(x)

∂x
= s(x)(1− s(x))

The derivative of both is always less than 1, and thus the
gradient magnitude will decrease as we add more layers, as
can be seen with the gradient for the sigmoid function:

0 2 4 6 8 10 12 14 16 18 20

Layer

10 10

10 6

10 2

Gr
ad

ie
nt

 M
ag

ni
tu

de

Deep Learning for Computer Vision 29

Rectified Linear Unit (ReLU)

One alternative to these activation functions is the rectified
linear unit or ReLU:

f (xi) =

{
xi xi ≥ 0

0 xi < 0

5.0 2.5 0.0 2.5 5.0

4

2

0

2

4

Aside from the discontinuity at zero it is trivially differen-
tiable and, importantly, does not saturate. This means that
the gradient will not vanish as we add more layers.

0 2 4 6 8 10 12 14 16 18 20

Layer
2

4

6

Gr
ad

ie
nt

 M
ag

ni
tu

de

Deep Learning for Computer Vision 30

Momentum

Before we move on to more complex deep learning structures,
we will look at a few tricks of the trade. The first is a concept
called momentum. A typical update in gradient descent is:

Wτ ←Wτ−1 − η
∂L

∂Wτ−1

where η is the learning rate and τ is the current training step.
During learning it is often the case that there is a clear gradi-
ent direction, and we can move quickly along it. Conversely, if
there is disagreement between subsequent gradients, we may
want to move more slowly. We can achieve this by adding a
momentum term:

∇Wτ =
∂L

∂Wτ−1 + ε∇Wτ−1

Wτ ←Wτ−1 − η∇Wτ

where ε is the momentum parameter.

2.5 0.0 2.5 5.0 7.5

0

10

20

0
dx
dx+mom

2.5 0.0 2.5 5.0 7.5

0

10

20

1
dx
dx+mom

2.5 0.0 2.5 5.0 7.5

0

10

20

2
dx
dx+mom

2.5 0.0 2.5 5.0 7.5

0

10

20

3
dx
dx+mom

Deep Learning for Computer Vision 31

Learning Rate Updates

As the network converges to a local minimum, it is often
necessary to make smaller adjustments in the weight values,
which translates to smaller step sizes during weight updates.
A simple way of doing this is by using a learning rate that
changes over time in a stepped fashion:

ητ = η0γbτ/σc

where the initial learning rate η0 is multiplied by γ every σ

steps.

Another method is to continuously alter the learning rate in
inverse proportion to the number of steps:

ητ =
η0

(1 + γτ)ρ

where γ and ρ control the speed of learning rate decay.

Another option is the popular Adam algorithm [5], which uses
a running average of the gradient and its square to compute
the learning rate:

mτ = β1m
τ−1 + (1− β1)

∂L

∂Wτ−1

vτ = β2v
τ−1 + (1− β2)

(
∂L

∂Wτ−1

)2

m̂τ =
mτ

1− βτ
1

v̂τ =
vτ

1− βτ
2

Wτ ←Wτ−1 − αm̂τ

√
v̂τ + ε

Deep Learning for Computer Vision 32

Reducing Model Capacity

At the moment our input transformations are performed by a
fully connected layer, where each neuron in the output is con-
nected to every input. While these layers are very expressive
and can handle a wide range of potential inputs, they also re-
quire many parameters. In our example network from earlier
trained on MNIST, the first layer (from the 784 pixels to the
64 dimensional latent space) required 50,240 parameters.

As a rule, the more parameters you have, the more capacity
your network has to overfit to a dataset through memorisa-
tion. This hurts our overarching goal of generalisation. As
such, we want to reduce the number of parameters in our
network (if possible). One way of doing this is by taking
advantage of known structure in the input data.

Sample Structured Unstructured

Above we see a random sample from the space of all images,
a natural image, and the same image with its pixels randomly
reordered. To an MLP, the image in the middle looks like the
version on the right. Ideally, we would like to find a way to
exploit the structure of natural images to reduce the number
of model parameters.

Deep Learning for Computer Vision 33

Convolution

Let us briefly revisit the topic of convolution.

Blur Edge Bar Blob

Filters are applied to an image by computing the dot product
of a kernel patch and the image patch at each pixel location.
This process is referred to as convolution, or more accurately
cross-correlation.

There is evidence in biological vision for the existence of these
filters in the visual cortex at different orientations and sizes,
similar to this commonly used set of filters:

Deep Learning for Computer Vision 34

Learning Filter Kernels

Edge, bar, blur, and blob filters are examples of feature en-
gineering. They transform an input image in much the same
way as a neuron in an MLP, but requiring far fewer param-
eters. For example, a 5 × 5 filter has 25 parameters but
can process an image of any size, whereas an MLP needs
one weight per input pixel. However, these filters are hand-
crafted, and thus require human expertise. Ideally, we want
to learn these filters from the data itself.

To enable this, we need to introduce an embedding function,
E , which extracts image patches in row column order and
embeds them as columns in a matrix:

x =

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

 X =

a b . . . g . . . m

b c . . . h . . . n

c d . . . i . . . o

f g . . . l . . . r

g h . . . m . . . s

h i . . . n . . . t

k l . . . q . . . w

l m . . . r . . . x

m n . . . s . . . y

We can then store the filter kernel weights in a matrix and
use matrix multiplication to perform the convolution:

Wi =

[
w000 w001 w002 w010 w011 . . . w021 w022

w100 w101 w102 w110 w111 . . . w121 w122

]
C(x) = WX

Deep Learning for Computer Vision 35

CNN

Convolution Neural Nets (CNNs) use trainable filter banks
in exactly this way as a replacement for the initial fully con-
nected layers in an MLP. We will begin by taking the MLP
we trained on MNIST and replacing its initial layer with a
convolutional layer with 9 filters.

7 (1.0)
3 (0.0)

2 (1.0)
6 (0.0)

1 (0.99)
2 (0.0)

0 (1.0)
2 (0.0)

4 (1.0)
9 (0.0)

1 (1.0)
7 (0.0) 0.0

0.2

0.4

0.6

0.8

1.0

0.06

0.08

0.10

0.12

Accuracy
Loss

These learned filters are recognisable to us as oriented bars,
edges, and corners, but have been tailored to the dataset and
object. A different objective function or dataset may result in
different features. However, we have created a new problem.
In the original MLP the final layer had 64×10 = 640 weights.
Since each convolution produces an image, the final layer here
has 9 × 24 × 24 × 10 = 51, 840 weights. We need a way to
reduce the dimensionality of the filter layer output.

Deep Learning for Computer Vision 36

Subsampling

One way we can reduce the dimensionality of our convolu-
tional layer is by subsampling the image in space. Layers
that perform this subsampling are called pooling layers. One
approach is average pooling, where we use the average value
in a window:

i

o

As can be seen above a filter of size 3 is applied at a stride of 2,
though the size and stride can be altered in practice as needed
by the data. This pooling acts as a non-parameterised layer
in the neural network, much like non-linearities. An output
value is computed as follows:

o[r, c] =
1

9

2∑
k=0

2∑
l=0

i[2r + k − 1, 2c + l − 1]

This is equivalent to using the embedding function E and
then multiply by a uniform weight matrix where every value
is equal to 1

9.

Deep Learning for Computer Vision 37

Subsampling, cont.

An alternative to average pooling is maximum, or max, pool-
ing. As with average pooling, the max pooling operator has
a set size and is applied at a predetermined stride. However,
instead of taking the average value of all of the pixel values
it selects only the maximum as its output value:

i

o

This creates a slight difficulty during backpropagation, as the
partial derivatives passing backwards through the operator
only apply to a single input pixel. As such, we need to keep
track of which pixel was the maximum in the forward pass
and only apply the gradient to that pixel in the backward
pass.

Deep Learning for Computer Vision 38

CNN with Pooling

When we incorporate max pooling with a window size of 2
into our CNN we reduce the dimensionality of the filter layer
output by a factor of 4.

7 (1.0)
3 (0.0)

2 (1.0)
6 (0.0)

1 (0.99)
7 (0.0)

0 (1.0)
6 (0.0)

4 (1.0)
9 (0.0)

1 (1.0)
7 (0.0) 0.0

0.2

0.4

0.6

0.8

1.0

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Accuracy
Loss

Output

The max pooling reduces the output image size of the filter
layer from 24 × 24 to 12 × 12 but preserves the spatial fea-
ture information in the image. We are outgrowing MNIST,
however, and need to move on to a more complex dataset.

Deep Learning for Computer Vision 39

CIFAR-10

CIFAR-10, while it has many of the same characteristics as
MNIST, is a considerable step up in difficulty. It is drawn
from the “80 million tiny images” dataset which consists of
(almost) 80 million 32×32 RGB images downloaded from the
internet and labeled with one of 75,062 non-abstract nouns
in English.

Named after the Canadian Institute for Advanced Research,
it consists of 60,000 images gathered from this larger set by
Alex Krizhevsky, Vinod Nair and Geoffrey Hinton. These
images belong to 10 classes: (in order from left to right above)
aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck. As can be seen, the dataset contains a lot of intra-
class variance, in addition to complications brought about by
colour and the much larger variety inherent in non-curated
natural images.

Deep Learning for Computer Vision 40

DNN Architecture

Before we begin to create more complex DNNs architectures
we need a way to diagram and visualize them. Here is a
diagram of our first MLP:

in
pu
t

784

F1[64]

64

F2[10]

10

Note how we denote the output size in each layer at the bot-
tom, and use a circle to indicate that they are perceptrons,
i.e. fully connected, with the number of neurons in brackets.
Also note how we depict the activation function. Here is the
CNN we just trained:

in
pu
t

1x28x28

C1[5x5]

9x24x24

m
ax

P2[2x2@2]

9x12x12

F3[10]

10

Here, note the use of squares to indicate that it is a convo-
lutional neuron. Also note the named pooling layers, and
the patch notation above the convolutional layers. We will
use this notation moving forward as we discuss more complex
DNN architectures.

Deep Learning for Computer Vision 41

Anatomy of a CNN

This is a diagram of a CNN we will train on the CIFAR-10
dataset:

in
pu
t

3x32x32

C1[5x5]

32x32x32

m
ax

P2[3x3@2]

32x16x16

C3[5x5]

32x16x16

av
e

P4[3x3@2]

32x8x8

C5[5x5]

64x8x8

av
e

P6[3x3@2]

64x4x4

F7[64]

64

F8[10]

10

C1 Extracts low-level features in the image.
P2 Provides some flexibility of location
C3 Looks for parts that are combinations of features
P4 Smooths the part responses before subsampling
C5 Finds structures that are built from parts
P6 Smooths and subsamples the structural responses.
F7 Sub-category latent space
F8 Final classifier

The dashed border around the final activation indicates that
it incorporates dropout. Dropout is a technique for regu-
larising the network by randomly dropping neurons during
training. It applies the following transform:

y = x�m

m ∼ Bernoulli(p)

where m is a binary mask with probability p of being 1.
This forces the network to learn redundant representations,
which in turn makes it more robust to noise and overfitting.
Dropout is only used during training, and is turned off during
testing (p = 1).

Deep Learning for Computer Vision 42

CIFAR-10: DNN

cat (0.82)
dog (0.1)

ship (0.99)
automobile (0.0)

ship (0.8)
airplane (0.18)

airplane (0.73)
ship (0.23)

frog (0.68)
deer (0.23)

frog (0.88)
cat (0.08) 1 2 3 4 5 6 7 8 9 1011121314151617181920

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

The DNN does a fairly good job of classifying these images,
though CIFAR-10 and its big brother CIFAR-100 are not
easy. Visualising what this network is learning is difficult,
but we will pick it apart layer by layer.

Deep Learning for Computer Vision 43

CIFAR-10: C1

The first layer learns low-level image features such as those
you have seen before, but across three feature channels (as
these are colour images):

Note how some filters are pulling out a particular colour, while
others are looking at structure.

Deep Learning for Computer Vision 44

CIFAR-10: P2 → C3

C3 receives the output of P2 as input. Note how the max
pooling creates pinpoints of high activation. At this point
visualising the filters themselves becomes less helpful, as they
are defined over all 32 feature channels. However, we can still
look at the filter responses:

We can definitely see here similar localized pinpoints of ac-
tivation, but instead of localizing texture or colour we are
locating combinations of low-level features.

Deep Learning for Computer Vision 45

CIFAR-10: P4 → C5

As we move along, images get smaller but each pixel stores
an increasing amount of semantic information. P4 smooths
and subsamples the part responses, and then C5 is looking
for structures that are built from those parts.

Deep Learning for Computer Vision 46

Deep CNN Training

The following is a typical procedure for training a deep CNN
on a dataset:

1. Divide the dataset into training D, validation V , and
test T partitions.

2. Compute the “mean” image of D, and subtract it from
all images.

3. Scale all images so that pixel values are in the range
[−1, 1].

4. Design a network architecture, or adapt a known good
architecture to the dataset.

5. Select an optimisation algorithm (i.e. a version of SGD)

6. For a pre-determined set of epochs, do the following:

(a) Randomly sample (without replacement) B images
from D.

(b) Compute ∇Wτ for all W in the model
(c) Update all Wτ →Wτ+1

(d) Once all images in D have been seen (i.e. when an
epoch is complete), evaluate the network on D and
V to monitor changes in the loss

7. Evaluate final performance on V, and repeat the above
with different optimisation hyperparameters as necessary

8. Retrain the network using D ∪V with the final hyper-
parameters, and evaluate on T

Deep Learning for Computer Vision 47

Data Augmentation

When it comes to deep networks, the only thing better than
a lot of data is even more data. However, gathering super-
vised data is very expensive. One way to get more data on
the cheap, however, is via data augmentation, whereby on
each epoch each training image is turned into several addi-
tional images by way of translation, cropping, and horizontal
reflection:

In this way, one training image can become ten. Another
common usage of data augmentation is during the testing
phase, whereby instead of simply computing P (c|x) from a
single image, x is altered as shown above and then each ver-
sion of x is presented to the network. In this scenario, the
predicted class is then:

c = argmax
i

∣∣∣∣{xa | i = argmax
j

P (j | xa)

}∣∣∣∣
This can result in a significant improvement in performance
regardless of the network architecture.

Deep Learning for Computer Vision 48

Batch Normalisation

Batch normalisation [4] is a technique that is essential to
training the deepest neural net architectures, but also useful
in general for stabilising and accelerating the training pro-
cess in all circumstances. The concept is straightforward: if
we knew the statistics of each layer’s output over the entire
dataset, we could normalise those outputs so that all output
vectors had zero mean and unit variance. In mathematical
terms, we want to do the following:

µi
D =

1

|D|
∑
d∈D

yi
d

σi
D =

√
1

|D|
∑
d∈D

(yi
d − µi

D)
2

ŷi
d =

yi
d − µi

D

σi
D + ε

where i indexes the layers of the DNN.

The problem is that the values of µi
D and σi

D change during
training as the network changes. We overcome this by using
batching to estimate these values i.e. by computing them per
batch during training. Once the network is trained, we can
then compute the true values and use those during testing.
We can even learn training parameters for scaling and shifting
the normalised vectors:

zi = γiŷi + βi

Deep Learning for Computer Vision 49

ImageNet

Now we will look at the first truly large-scale classification
dataset: ImageNet. It consists of over 14 million images
mapped to around 20,000 labels. The images are extremely
varied, coming from a variety of difference sources all over the
internet, and have each been hand-labelled by one or more
human labellers.

For classification tasks, the ILSVRC 2012 subset is the most
commonly used. It consists of 1.2 million images, with 1,000
object classes. The dataset is split into training, validation,
and test sets, with 1000, 50, and 100 training, validation, and
test images per class, respectively. Performance is measured
using top-1 and top-5 error rates, where the top-5 error rate
is the percentage of test images where the correct label is not
in the top 5 predicted labels (lower is better).

Here are some samples from the “Handheld computer”, “Dandie
Dinmont Terrier”, and “Teapot” classes. Note the extreme
variability in viewpoint, lighting, and background.

Deep Learning for Computer Vision 50

AlexNet

When ImageNet was first introduced, it was prohibitively ex-
pensive to train a neural network on it. However, in 2012 Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton introduced
AlexNet [7], a CNN architecture that was able to achieve a
top-5 error rate of 15.3% on the ILSVRC 2012 dataset, a
10.8% improvement over the previous state-of-the-art. To
achieve this they harnessed a new technology for use in train-
ing DNNs.

in
pu
t

3x224x224

C1[11x11@4]

64x55x55

m
ax

P2[3x3@2]

64x27x27

C3[5x5]

192x27x27

m
ax

P4[3x3@2]

192x13x13

C5[3x3]

384x13x13

C6[3x3]

256x13x13

C7[3x3]

256x13x13

m
ax

P8[3x3@2]

256x6x6

F9[4096]

4096

F10[4096]

4096

F11[1000]

1000

Graphical Processing Units, or GPUs, were originally de-
signed for graphically intensive workflows, like video games.
In particular, they are specialised towards the execution of
per-pixel code in which linear algebra is used to project 3D
model information to the camera plane. One can coerce
the hardware into performing other computationally inten-
sive image tasks, e.g. those in computer vision. As a demon-
strator, see this implementation of Canny edge detection as
using GPU shaders:

https://matajoh.github.io/canny/

Krizhevsky et al. realised that this same hardware could be
used to perform the matrix multiplications required by CNNs,
and that the parallel nature of GPUs would allow them to
train much faster than on CPUs.

Deep Learning for Computer Vision 51

Residual Networks

Even with all the tricks we have introduced so far, very deep
networks fail to train due to a version of the vanishing gradi-
ent problem. In 2015, Kaiming He et al. introduced Residual
Networks [2], a new architecture that was able to achieve a
top-5 error rate of 3.57% on the ILSVRC 2012 dataset despite
being 152 layers deep. Here is the 34-layer configuration:

in
pu
t

3x224x224

C1[7x7@2]

64x112x112

bn

B2

64x112x112

m
ax

P3[2x2@2]

64x56x56

ad
d

I

I

R4

64x56x56

ad
d

I

I

R5

64x56x56

ad
d

I

I

R6

64x56x56

ad
d

I

I

R7@2

128x28x28

ad
d

I

I

R8

128x28x28

ad
d

I

I

R9

128x28x28

ad
d

I

I

R10

128x28x28

ad
d

I

I

R11@2

256x14x14

ad
d

I

I

R12

256x14x14

ad
d

I

I

R13

256x14x14

ad
d

I

I

R14

256x14x14

ad
d

I

I

R15

256x14x14

ad
d

I

I

R16

256x14x14

ad
d

I

I

R17@2

512x7x7

ad
d

I

I

R18

512x7x7
ad
d

I

I

R19

512x7x7

av
e

P20[7x7]

512x1x1

F21[1000]

1000

The key contribution is the repeating residual block within
this diagram. It has two branches: an identity branch which
copies the input, and the following miniature network:

C0[3x3]

64x56x56

bn

B1

64x56x56

C2[3x3]

64x56x56

bn

B3

64x56x56

The identity branch acts as a shortcut, allowing the network
to ignore large blocks of its capacity if they are not needed. In
essence, the network grows deeper each time a residual block
saturates during training.

Deep Learning for Computer Vision 52

ImageNet: ResNet

Here are some top 5 predictions on the ILSVRC 2012 val-
idation set for a trained ResNet model with a depth of 50:

1. tractor
2. harvester
3. thresher
4. snowplow
5. lawn
 mower

1. tiger
2. tiger
 cat
3. jaguar
4. consomme
5. platypus

1. barn
2. alp
3. birdhouse
4. stone
 wall
5. black
 grouse

1. web
 site
2. castle
3. analog
 clock
4. book
 jacket
5. comic
 book

1. stage
2. dock
3. toyshop
4. balance
 beam
5. lifeboat

1. macaw
2. sulphur-crested
 cockatoo
3. African
 grey
4. lorikeet
5. screen

1. punching
 bag
2. oxygen
 mask
3. cash
 machine
4. turnstile
5. stretcher

1. laptop
2. notebook
3. computer
 keyboard
4. desktop
 computer
5. space
 bar

Deep Learning for Computer Vision 53

Reducing Parameters, redux

One feature the CNNs we have examined so far share is one
or more fully connected layers at the end which perform the
desired task. In this paradigm, the convolutional layers are
purely for latent space embedding. As such, the final con-
volution layer gets flattened into a 1D vector, resulting in
a phenomenon where the penultimate layer of a CNN often
has more trainable parameters than the rest of the network
combined.

Recall that we want, wherever possible, to reduce the number
of parameters in order to increase generalisation. One way
we can do this is to embed a miniature fully connected layer
into the convolutional layers themselves using a technique
called Network in Network [8] or 1× 1 convolution. Here is a
sample NiN unit which can be used to replace the final fully
connected layers of the DNN we trained previously:

C0[1x1]

128x4x4

C1[1x1]

10x4x4

av
e

P2[4x4]

10x1x1

Since the kernel is applied to a single pixel at a time, two
or more of these layers in sequence act as if a small MLP
was applied across the filter channels. By pooling the result
we can build a system which predicts classes for the image
without any fully connected layers at all, which is called a
Fully Convolutional Network [10].

Deep Learning for Computer Vision 54

Semantic Segmentation

We can modify our original DNN to use Network in Network
instead of fully connected layers:

in
pu
t

3x32x32

C1[5x5]

32x32x32

m
ax

P2[3x3@2]

32x16x16

C3[5x5]

32x16x16

av
e

P4[3x3@2]

32x8x8

C5[5x5]

64x8x8

av
e

P6[3x3@2]

64x4x4

C7[1x1]

128x4x4

C8[1x1]

10x4x4

av
e

P9[4x4]

10x1x1

For a particular input image, we can visualise the outputs of
the layers like so:

While the network uses a global average pooling layer to make
a single prediction, if we replace this pooling layer with an
interpolation layer we can get a prediction for each pixel in
the image. This new task is called semantic segmentation.

Deep Learning for Computer Vision 55

COCO

As is often the case, a new task means a new dataset. An im-
portant benchmark here is the Common Objects in Context
Dataset, or COCO [9].

It consists of 330K images which contain 1.5 million object
instances. They depict scenes of stuff drawn from 91 classes
co-occurring in typical ways. In particular, the stuff in the
images has been hand segmented such that there are pixel-
level ground truth labels that can be used during training.
Here is a sample image with its segmentation and objects:

Image Segmentation Objects

Deep Learning for Computer Vision 56

FCN

One way to use an FCN to perform semantic segmentation is
to replace the final convolutional layers of a typical classifier
with convolutional layers, and then scale the result back up
to the original resolution using bilinear interpolation. Here is
a sample FCN architecture:

R
es
N
et
-5
0

BB0

2048x87x65

C1[3x3]

512x87x65

bn

B2

512x87x65

C3[1x1]

21x87x65

bi
lin
ea
r

I4

21x224x224

Note that we are using ResNET-50 as a backbone network,
meaning that its weights are pretrained (in this case on Im-
ageNet) and either fine-tuned or left alone during training.
Additionally, we have removed striding from a few convolu-
tions in the residual blocks so that we do not lose too much
resolution. The result is a network that can produce a seg-
mentation mask for an image:

Image Segmentation Ground truth

Deep Learning for Computer Vision 57

Autoencoding

Autoencoding is a method of encoding and decoding images
to a latent space. During training, we use the image as both
input to an encoder network and as target for a decoder net-
work, with a latent space bottleneck in between.

in
pu
t

1x32x32

C1[3x3@2]

32x16x16

bn

B2

32x16x16

C3[3x3@2]

64x8x8
bn

B4

64x8x8

C5[3x3@2]

128x4x4

bn

B6

128x4x4

C7[3x3@2]

256x2x2

bn

B8

256x2x2

μ

σ sa
m
pl
e

N9[2]

Normal

F10[1024]

1024

T11[3x3@2]

128x4x4

bn

B12

128x4x4

T13[3x3@2]

64x8x8

bn

B14

64x8x8

T15[3x3@2]

32x16x16

bn

B16

32x16x16

T17[3x3@2]

32x32x32

bn

B18

32x32x32

C19[3x3]

1x32x32

The architecture above depicts a variational autoencoder [6].
The final layer of the encoder outputs two vectors, µ and
σ. The system samples from N (µ, σ) and uses the result
as the latent space input to the decoder. The decoder uses
transposed convolution to scale up the image (denoted as T).
This requires a new loss: Evidence Lower Bound, or ELBO:

L = min
(
Ez∼q(z|x) [log p(x|z)]−DKL (q(z|x)||p(z))

)
The first term is a reconstruction loss, which will train the
generative distribution p(x|z) (i.e. our decoder) to transform
the latent vector z into our image x. The second term is
a regularisation loss, which trains the q(z|x) distribution
(i.e. our encoder) to generate z that resemble samples from
p(z), which in this case is normal.

Deep Learning for Computer Vision 58

Transposed Convolution

In CNNs, each convolutional layer with a stride greater than
1 trades spatial information (i.e. resolution) for semantic
information (i.e. channels). In an autoencoder, we want to
reverse this process, that is to trade semantic information for
spatial information so that we can arrive back at the resolu-
tion and pixel depth of the original image. Layers that do this
are said to perform transposed convolution. Whereas a con-
volution takes the dot product of a filter and an image patch
to produce a single value, a transposed convolution scales a
filter by a value and then adds it to a patch of the output
image.

input

0 1

2 3

transposed

convolution

kernel

3 1

0 2

=

0 0

0 0 +

3 1

0 2 + 6 2

0 4

+ 9 3

0 6

=

output

0 3 1

6 11 5

0 4 6

Here we see a 2 × 2 filter being applied with a stride of 1
to a 2x2 image. The result is a 3 × 3 image. The colors
correspond to the image pixel which is being used to scale
the filter. The resulting images are added together to create
the final upscaled image.

Deep Learning for Computer Vision 59

Transposed Convolution, cont.

Now we will take a look at this in practice. First, we have a
convolutional layer with 2 3 × 3 filter kernels being applied
to an image with padding of 1 and stride of 2.

Input

C0

C1

Z0

Z1

Note how each channel of the z contains different informa-
tion. We can then scale back up to the original image using
a transposed convolution with a single 2× 3× 3 kernel:

Z0

Z1

T0

T1 Output

Deep Learning for Computer Vision 60

Sampling the Latent Space

This is the first task we have considered that does not re-
quire supervision, i.e. human-provided labels. Instead, we
can train this system in an unsupervised manner, since the
image is both the input and output of the network. Here is
an example of some images, their latent points, and recon-
structions:

Because we have constrained samples from q(z|x) to resemble
p(z), we can sample from p instead and generate never-before-
seen images:

Deep Learning for Computer Vision 61

Object Detection

We saw with semantic segmentation how a CNN could label
each pixel with a distribution over classes. One drawback of
this approach is that if there are multiple members of a class,
e.g. people, they will all be given the same label:

If we want to give them different labels, this is called instance
segmentation or more generally, object detection:

The COCO dataset, in addition to having per-pixel labels,
also contains bounding boxes around each object instance.
This allows us to train a CNN to perform object detection.

Deep Learning for Computer Vision 62

Salience

One way to detect objects in an image is to train a classifi-
cation network and then find which pixels contribute to each
output class. This is called salience or attribution. While
this is not a perfect method, it is fast and can be used to
explain the network’s predictions. For example, here is an
image of a steam locomotive and its salience mask:

This shows which pixels activated the most for the predicted
class. We can also get the salience mask for the “stone wall”
class, which was not predicted:

Deep Learning for Computer Vision 63

YOLO

Salience is a useful debugging tool, but it is not precise enough
for practical use. You Only Look Once (YOLO) [13] is a net-
work which predicts both bounding boxes and class labels for
each object instance in an image. It does this by dividing the
image into a grid of cells, and for each cell predicting a set
of bounding boxes and a class label for each box. The net-
work is trained using a loss function that penalises incorrect
predictions of both the bounding boxes and the class labels.

The architecture uses a simplified version of ResNet as its
backbone and then directly regresses to the bounding boxes
and class labels. The loss function is a combination of the
sum of squared errors for the bounding boxes and the cross-
entropy loss for the class labels. Here is an example of YOLO
running on an image:

Deep Learning for Computer Vision 64

YOLO, cont.

YOLO is so fast that it can be run in real time on a GPU,
even on mobile devices. Here is an example of the results of
running YOLO on the COCO example image from earlier:

The number provided with each prediction is YOLO’s confi-
dence in that bounding box and class label. Note how it is
able to handle partially occluded objects, multiple instances
of the same class (including people from behind), and small
objects like the water bottle.

Deep Learning for Computer Vision 65

Recognition

We have seen how we can use a CNN to detect distinct in-
stances of a class in an image, but sometimes what we need is
to identify whether a particular instance is one we have seen
before.

Above, we see a group photo including a large number of peo-
ple. One useful task would be to automatically label known
people in the image. We can slide a window over the image,
and detect people in the window, like below:

However, we need to use a different network to find people
we have seen before. This task is called recognition.

Deep Learning for Computer Vision 66

LFW Dataset

The problem we have just described is an example of face
recognition, where we want to detect that there is a face in
the image, and then recognise which person it is. This is a
much harder task than detection, as it requires the network
to learn to recognise the same person’s face in different poses,
lighting conditions, and so on, not to mention appearance
changes like makeup and facial hair.

The Labelled Faces in the Wild (LFW) dataset [3] contains
13K images of faces collected from the internet. Each face
has been labelled with the name of the person pictured. Here
are some examples:

We can use this dataset to train a CNN to perform face recog-
nition.

Deep Learning for Computer Vision 67

Feature Embedding

When we trained a variational auto encoder, we learned a la-
tent space embedding for images. We can do the same thing
for faces, and then use this embedding to perform face recog-
nition, which is the key idea behind FaceNet [15]. Specifically,
we want to learn a latent space embedding such that the dis-
tance between two images of the same person is small, and
the distance between two images of different people is large.
We can do this by introducing a new loss, called the triplet
loss:

L =

N∑
i=1

[∥∥zia − zip
∥∥2
2
−
∥∥zia − zin

∥∥2
2
+ α
]
+

n

a

p pull

push

Figure 4: Triplet Loss

(NB the []+ notation means that
we only apply the loss if the value
inside the brackets is positive). One
final element is that the learned em-
bedding is constrained to have unit
length. We construct triplets, like
the one seen to the left, with an an-
chor point (a), a positive point (p),
and a negative point (n). When
the negative point is closer to the
anchor than the positive point, we

want to push it farther away while pulling the positive point
closer. Face recognition can then be performed by embed-
ding an image and computing its cosine difference to other
face embeddings.

Deep Learning for Computer Vision 68

FaceNet

Here is a CNN architecture which uses ResNet-50 as its back-
bone and learns how to embed its final features into a 2D
latent space:

R
es
N
et
-5
0

BB0

2048x1x1

F1[128]

128

F2[2]

2

Here we can see the results of training this network on a
dataset of 8 faces. Note how the loss is very noisy due to the
selection of incorrect triplets changing from batch to batch.

Metric Space

0 200 400 600 800
0

1000

2000

3000

4000

5000

6000

7000

Triplet Loss

Metric Space

0 200 400 600 800
0

1000

2000

3000

4000

5000

6000

7000

Triplet Loss

Deep Learning for Computer Vision 69

Adversarial Attacks

We have looked at a few examples of how we can use back-
propagation to manipulate inputs so that they produce unex-
pected outputs. This is called an adversarial attack, and it
is a serious concern to keep in mind when building a system
that incorporates a DNN as a component. In particular, as
inputs grow in size, the distance to the nearest decision hy-
perplane decreases (due to the curse of dimensionality). For
example, let us see what changes are needed to convince a
state-of-the-art image classifier (ResNet-50) that a picture of
a panda is actually a football:

Altered Image Difference

0 50 100 1500.0

0.2

0.4

0.6

0.8

1.0 Prediction
panda
football

Altered Image Difference

0 50 100 1500.0

0.2

0.4

0.6

0.8

1.0 Prediction
panda
football

Altered Image Difference

0 50 100 1500.0

0.2

0.4

0.6

0.8

1.0 Prediction
panda
football

Deep Learning for Computer Vision 70

Adversarial Attacks, cont.

As you can see, the images are visually identical, but the net-
work is now as certain it is a football as it was previously that
it was a panda. More worrying still, these principles can be
applied in the real world. In 2017, researchers demonstrated
that they could use stickers to fool a DNN into thinking a
stop sign was a 40mph speed limit sign from a wide variety
of distances, angles, and lighting conditions [1]:

Learned Noise Stickers [40mph sign]

This cautionary note aside, it is an exciting time in which we
are discovering many new uses and applications for DNNs.
We should be aware of their limitations, understand how they
work, and engineer systems which interact with them accord-
ingly.

Deep Learning for Computer Vision 71

References

References

[1] K. I. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rah-
mati, C. Xiao, A. Prakash, T. Kohno, and D. Song. Ro-
bust physical-world attacks on deep learning visual clas-
sification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[3] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts,
Amherst, October 2007.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, 2015.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of the 3rd In-
ternational Conference on Learning Representations,
2015.

[6] Diederik P. Kingma and Max Welling. Auto-encoding
variational bayes. In Proceedings of the 2nd Interna-
tional Conference on Learning Representations, 2013.

Deep Learning for Computer Vision 72

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems 25, 2012.

[8] Min Lin, Qiang Chen, and Shuicheng Yan. Network in
network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013.

[9] T-Y. Lin, M Maire, S Belongie, L Bourdev, R Girshick,
J Hays, P Perona, D Ramanan, C. L. Zitnick, and P Dol-
lár. Microsoft coco: Common objects in context. In Pro-
ceedings of the European Conference on Computer
Vision, 2014.

[10] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmentation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):640–651, 2017.

[11] Warren S. McCulloch and Walter Pitts. A logical calculus
of the ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics, 5:115–133, 1943.

[12] Mikel Olazaran. A sociological study of the official his-
tory of the perceptrons controversy. Social Studies of
Science, 26(3):611–659, 1996.

[13] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
779–788, 2016.

[14] Frank Rosenblatt. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65:386–408, 1958.

Deep Learning for Computer Vision 73

[15] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2015.

[16] Paul Werbos. Beyond Regression: New Tools for Pre-
diction and Analysis in the Behavioral Sciences. PhD
thesis, Harvard University, 1974.

