The Next Frontier in Embodied AI: Autonomous Vehicles

Engineering IB Paper 8 - Autonomous Driving | April 2022

Dr Alex Kendall, Co-Founder & CEO
1. Driving Intelligence
2. Sensors
3. Offboard software
4. Safety
Part 1: Driving Intelligence
2007 DARPA Urban Challenge

Commercial self driving car efforts

HD Maps
(brittle / slow to build / expensive to maintain)

LiDAR Sensors
(expensive / short lifespan)

Hand-Designed Rules
(rigid / clunky)
A PARADIGM SHIFT

Pioneering the next-generation AV architecture

- Solving self-driving with data
- End-to-end deep learning
- Lean sensors & compute
Deep learning has achieved superhuman performance in comparably complex settings to autonomous driving which are more accessible.
First wave of AI: virtual
Next wave of AI: physical
Autonomous driving is an embodied intelligence problem
Learning to drive in London

Autonomous driving from monocular cameras and end-to-end deep learning. No HD mapping, unnecessary sensors or hand-coded rules. Just pure intelligence.
AV 2.0: learning to drive with end-to-end deep learning and computer vision

Driving Input, 10^6 dimensions

- Cameras (6 @ 25 Hz)
- GNSS
- Goal conditioning from standard sat-nav Map
- Vehicle State
- + others where required

Driving Output, 10^1 dimensions

- Motion Plan
- Vehicle Controls

Representation signal

Learning signal for optimisation

Decoded human-interpretable intermediate representations

Semantics, geometry, motion prediction.
We first trained a driving model using only training data collected in London, UK. We then tested this model in five other UK cities, exposing it to diverse driving scenarios over a period of two months.

Unlocking new markets faster

MULTI-CITY GENERALISATION TEST
Quantifying driving domain differences between cities

Road Features Detected on New City Test Routes (indexed to a normal London routes)

- Traffic light
- Pedestrian crossing
- Bus lane
- Cycle lane

Road Density Detected on New City Test Routes (indexed to a normal London routes)

- Car detected
- Bus detected
- Pedestrian detected
- Cyclist detected
Learning to drive in London

First time driving in Coventry
Learning to drive in London

First time driving in Manchester
Part 2: Sensor Design on an Autonomous Vehicle
Sensing

The dominant sensor modalities used in robotics are:

Proprioceptive (internal state)
- Actuators (i.e., motor speed, position)
- Inertial Measurement Unit (IMU)

Exteroceptive (external state)
- Global Navigation Satellite System (GNSS)
- RADAR
- LiDAR (a.k.a. laser sensors)
- Cameras
Sensing: Actuators

Steering motor position (Electric Power Assisted Steering, EPAS)

Drive torque (motor current)

Wheel speed

Rotary speed/position encoders measure the motion of teeth past a sensor

Wheel speed

Pulse period
Sensing: Inertial Measurement

Microelectromechanical system (MEMS)
• Acceleration sensing (3D)
• Angular velocity sensing (3D)

IMUs are extremely useful, but suffer from drift over time
Sensing: Global Navigation Satellite System (GNSS)

Pros:
Global 2.5D positioning: [x, y, θ]

Cons:
~1-10m accuracy
Consumer-grade limited to ~5Hz
Requires 4+ satellites for a fix
Urban canyons hugely degrade GNSS performance: multipath effects + blocked signal
Sensing: Cameras

Typical camera:
~1-8MP, ~8-14 bit colour depth (Red, Green, Blue), 30-200Hz
Tradeoff: frame rate vs resolution – limited by serial data rate and compute

Monocular cameras

Optical flow, visual odometry, and localisation

Object detection, tracking, segmentation

Stereo Cameras

Depth sensing from a pair of images
Sensing: Radar

Pros:
Depth sensing robust to weather, lighting conditions, ~200m+ range, can ‘see through’

Cons:
Noisy, multipath effects

E.g., Continental ARS441

E.g., Waymo imaging radar visualisation
Sensing: LIDAR

Pros:
- Depth sensing robust to lighting conditions, very accurate with low noise
- 100-300m+ range pointcloud: [x, y, z]
- 0.3-10M points/second at 5-20Hz

Cons:
- Degraded by rain, snow
- Expensive (though improving)

E.g., Velodyne 3D lidar
Question: how much data does this autonomous vehicle collect per second?
Question: how much data does this autonomous vehicle collect per second?

6x forward facing cameras, 4x cameras per side: ~10MP images, 15Hz

= 150M pixels / sec / camera = 8,100 MB/s → 810 MB/s after compression

+ 6x 3D LiDAR: ~128 vertical * 3600 horizontal * 10Hz = 5M points / sec / lidar = 332 MB/s

+ 3x Radar: 256 channel * 512 depth * 30Hz = 4M points / sec / radar = 94 MB / s

Vehicle state (speed, location, etc) = minimal

= 1.2 GB / s ! (or 30+ PB / day !)
Computer Vision

3D geometric and semantic perception from surround vehicle monocular cameras
Part 3: Offboard Software

A large part of the complexity in developing an AV is off board the vehicle. AVs require substantial software platforms and tools:

- Data storage and log replay
- Machine learning training systems
- Validation and verification
- Fleet management
- Simulation
Simulation for Autonomous Driving

- Simulation is crucial to scale autonomy.
- Simulation offers limitless, realistic (visual, behavioural, and kinematic), unbiased, diverse training and evaluation samples.
- Simulation provides statistically significant insights at 1/10th the cost, 10x the speed, and 10x the repeatability compared to real-world testing.
- Simulation offers probably the only route to cost-effective deployment.
Visual Diversity
Part 4: Safety
Important Safety Concepts

- **Operational Design Domain (ODD):** the operating environment within which the autonomous vehicle can perform safely, described by the static elements, dynamic elements and environmental elements of the scene.

- **Safety Case:** a structured argument, supported by evidence, intended to justify that a system is acceptably safe for a specific application in a specific operational design domain.

- **Functional Safety:** Ensuring electronic failures will not cause unacceptable risks to human life.

- **Safety of the Intended Functionality (SOTIF):** Ensuring autonomous vehicle behaviour is absent of unacceptable risk.
Safety != perfect: Case study on human performance

<table>
<thead>
<tr>
<th>Metric</th>
<th>Method of calculation</th>
<th>UK Human-Level Performance</th>
<th>Notes / Method of estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention rate (km / intervention)</td>
<td>total autonomous distance driven divided by number of valid interventions (ignoring platform-fault and end-of-run success interventions)</td>
<td>95,400 km / intervention</td>
<td>13.1% of vehicles make motor insurance claims per year (source, 2016). Vehicles travel on average 12,500 km per year (source, 2016). Therefore we can estimate distance per accident for UK drivers as 95,400 km / accident.</td>
</tr>
<tr>
<td>Speed Limit Compliance (%)</td>
<td>% of time the vehicle drives in excess of the speed limit provided by our map API</td>
<td>97.993 %</td>
<td>calculated from 100 hours of expert human driving data</td>
</tr>
<tr>
<td>Lane Following (km / int)</td>
<td>total autonomous distance driven divided by number of valid, non-junction interventions</td>
<td>221,400 km / intervention</td>
<td>43.09 % of total accidents occur during lane following. Assuming the distance driven by a car is negligible in junctions, this value is overall Intervention rate divided by 43.1% (source).</td>
</tr>
<tr>
<td>Unprotected Intersections (%)</td>
<td>% of unsignalised intersections successfully navigated without any valid intervention within 10m before or after the junction</td>
<td>99.999238 % (every 130,000 intersections)</td>
<td>From the information about roundabouts below, and an estimate that roundabouts are ~40% safer than junctions (source), we estimate that humans are 99.999238% successful at junctions.</td>
</tr>
<tr>
<td>Protected Intersection (%)</td>
<td>% of traffic lights successfully navigated without any valid intervention within 10m before or after the junction</td>
<td>99.999543 % (every 220,000 intersections)</td>
<td>There are ~25,000 roundabouts in the UK (source) and 397,025 kms of road network (source) in GB. Assuming the number of roundabout in the UK is approximately equal to GB (NI only has 2% of UK’s roads (source)), there are 0.0629 roundabouts / km in UK. On average, vehicles encounter 2,533M roundabouts per year, considering 40,234M kms are driven per year (source). Therefore, humans have a 99.999543% success at roundabouts, considering total UK roundabout accidents is 11,571 per year (source).</td>
</tr>
<tr>
<td>Roundabouts (%)</td>
<td>% of roundabouts successfully navigated without any valid intervention within 10m before or after the junction</td>
<td>99.999543 % (every 220,000 intersections)</td>
<td></td>
</tr>
</tbody>
</table>
Swiss cheese model of Safety

Hazards

Losses prevented

Loss not prevented
Understanding epistemic model uncertainty: When and what we don’t know

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Measuring Uncertainty for Autonomous Driving

Real world closed-loop testing

High uncertainty, **no intervention**

Intervention during **high uncertainty**

Average uncertainty around interventions
Conclusions

- AVs are the space race of our generation that promises to save millions of lives, transform cities, and make mobility ever more accessible.
- Embodied autonomy - taking AI out of the lab into the physical world - will make this possible and is the next major frontier in artificial intelligence.
- AVs are an incredibly rich and fascinating source of hard technical challenges across on-board robotics/AI and off-board software/tooling.
Interested in tackling the space race of our generation with Wayve?
careers@wayve.ai
Further reading:

