1. † Images

Images are stored as pixel arrays of quantised intensity values. Typically each pixel has a brightness value in the range 0 (black) to 255 (white), and is stored as a single byte (8 bits). Compute the storage requirements (in bytes per second) for a stereo pair of cameras grabbing grey-level images of size 512 × 512 pixels at 25 frames per second. Approximately how many pages of text require the same amount of storage as one second of stereo video?

2. * Smoothing by convolution with a Gaussian

A commonly used 1D smoothing filter is the Gaussian:

\[g_\sigma(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{x^2}{2\sigma^2} \right) \]

where \(\sigma \) determines the size of the filter. Show that repeated convolutions with a series of 1D Gaussians, each with a particular standard deviation \(\sigma_i \), is equivalent to a single convolution with a Gaussian of variance \(\sum_i \sigma_i^2 \).

3. Generating the Gaussian filter kernel

A discrete approximation to a 1D Gaussian can be obtained by sampling the function \(g_\sigma(x) \). In practice, samples are taken uniformly until the truncated values at the tails of the distribution are less than 1/1000 of the peak value.

(a) For \(\sigma = 1 \), show that the filter obtained in this way has a size of 7 pixels and coefficients given by:

\[
\begin{align*}
0.004 & & 0.054 & & 0.242 & & 0.399 & & 0.242 & & 0.054 & & 0.004 \\
\end{align*}
\]

What property of the coefficients ensures that regions of uniform intensity are unaffected by smoothing?

(b) Using the same truncation criterion, what would be the size of the discrete filter kernel for \(\sigma = 5 \)? Show that, in general, the size of the kernel can be approximated as \(2n + 1 \) pixels, where \(n \) is the nearest integer to \(3.7\sigma - 0.5 \).

(c) The filter is used to smooth an image as part of an edge detection procedure. What factors affect the choice of an appropriate value for \(\sigma \)?
4. † Discrete convolution

The following row of pixels is smoothed with the discrete 1D Gaussian kernel given in question 3(a) ($\sigma = 1$). Calculate the smoothed value of the pixel with intensity 118.

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>45</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>53</td>
<td>55</td>
<td>57</td>
<td>77</td>
<td>99</td>
<td>118</td>
<td>130</td>
<td>133</td>
<td>134</td>
</tr>
</tbody>
</table>

5. Differentiation and 1D edge detection

Show how an approximation to the first-order spatial derivative of $I(x)$ can be obtained by convolving samples of $I(x)$ with the kernel $\begin{bmatrix} 1/2 & 0 & -1/2 \end{bmatrix}$.

The smoothed row of pixels in question 4 is shown below.

| x | x | x | 48 | 50 | 53 | 56 | 64 | 79 | 98 | 115 | 126 | 132 | 133 |

Find the first order derivatives and localise the intensity discontinuity.

6. Decomposition of 2D convolution

Smoothing a 2D image involves a 2D convolution with a 2D Gaussian:

$$G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right)$$

Show that this can be performed by two 1D convolutions: i.e.

$$G_\sigma(x, y) * I(x, y) = g_\sigma(x) * [g_\sigma(y) * I(x, y)]$$

What is the advantage of performing two 1D convolutions instead of a 2D convolution?

7. Correlation and Convolution

The correlation of a template $g(x, y)$ (perhaps taken from a different image) and the image $I(x, y)$, we may use the cross-correlation which is defined by:

$$c(x, y) = \int \int I(u + x, v + y)g(u, v)dudv$$

This is usually normalised (by the root-mean-square intensities of each region) so that the cross-correlation will take its maximum value of 1.0 when the 2 signals are identical.

Both cross-correlation and convolution involve shifting, multiplication and summation operations. Write down the equation describing the convolution of two signals, $I(x, y)$ and $g(x, y)$. What are the differences between the cross-correlation and convolution of two signals?
8. *Feature detection and scale space* (2018 IB Tripos Paper 8)

Consider an algorithm to detect interest points (features of interest) in a 2-D image for use in matching.

(a) Show how different resolutions of the image can be represented efficiently in an *image pyramid*. Your answer should include details of the implementation of smoothing within an octave and subsampling of the image between octaves.

(b) How can *band-pass* filtering at different scales be implemented efficiently using the image pyramid? Show how image features such as *blob-like* shapes can be localized in both position and scale using band-pass filtering.

The SIFT (Scale-Invariant Feature Transform) descriptor is used for matching keypoints and is computed from a 16×16 patch of pixels around each feature.

(a) How is the 16×16 patch of pixels sampled at an appropriate scale and orientation?

(b) Describe the main steps in computing this descriptor.

(c) How does it achieve its invariance to lighting, image and viewpoint changes?

(d) What are its limitations?

In computer vision point correspondences over different viewpoints are often used to recover an objects pose (registration) and 3-D shape (reconstruction).

Keypoints are first detected in each image and then matched to features in the other viewpoints by comparing their descriptors.

How are these descriptors used to find correspondences in images from different viewpoints?
Answers

1. 1.3×10^7 Bytes/s; ≈ 3000 pages

3. (b) 37 pixels.

4. 115 (to the nearest integer)

5. Between the pixel with intensity 79 and the pixel with intensity 98. More precisely, two-thirds of the way.

Suitable past Tripos questions: Q16 on Paper 8 (section F) all exams 2010-2021

Roberto Cipolla
April 2022