Paper 8 Information Engineering Part A: Image Features and Matching

Solutions to Examples Paper

1. Images

Each frame requires $512 \times 512 \times 1=2.62 \times 10^{5}$ Bytes. A 25 Hz stereo image stream requires $2.62 \times 10^{5} \times 25 \times 2=1.3 \times 10^{7}$ Bytes/s. Assuming an average A4 page of text contains 50 lines, with about 80 characters on each line, and that a character is represented (using an ASCII code) as a single byte, a page of text requires $80 \times 50 \times 1$ $=4000$ Bytes. So, instead of one second of stereo video, we could alternatively store $1.3 \times 10^{7} / 4000 \approx 3000$ pages of text - enough for a small encyclopaedia!
2. Smoothing by convolution with a Gaussian

Consider smoothing an image, first with a Gaussian of standard deviation σ_{1}, then with a Gaussian of standard deviation σ_{2} :

$$
s(x)=g_{\sigma 2}(x) *\left(g_{\sigma 1}(x) * I(x)\right)
$$

Since convolution is associative, we can write this as the convolution of the image with the kernel $g_{\sigma 2}(x) * g_{\sigma 1}(x)$:

$$
s(x)=\left(g_{\sigma 2}(x) * g_{\sigma 1}(x)\right) * I(x)
$$

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier transforms and then multiply the transforms in the frequency domain. If $g_{\sigma}(x) \leftrightarrow$ $G_{\sigma}(\omega)$, then:

$$
\begin{aligned}
G_{\sigma}(\omega) & =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) e^{-j \omega x} d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-\left(\frac{x^{2}}{2 \sigma^{2}}+j \omega x\right)\right] d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2 \sigma^{2}}\left(x^{2}+2 j \omega \sigma^{2} x\right)\right] d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2 \sigma^{2}}\left(\left(x+j \omega \sigma^{2}\right)^{2}-j^{2} \omega^{2} \sigma^{4}\right)\right] d x \\
& =\exp \left(-\frac{\omega^{2} \sigma^{2}}{2}\right) \times \frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{\left(x+j \omega \sigma^{2}\right)^{2}}{2 \sigma^{2}}\right) d x \\
& =\exp \left(-\frac{\omega^{2} \sigma^{2}}{2}\right) \quad \text { (since the integral is a standard Gaussian) }
\end{aligned}
$$

Hence

$$
\begin{aligned}
& g_{\sigma 2}(x) * g_{\sigma 1}(x)
\end{aligned} \leftrightarrow G_{\sigma 2}(\omega) \times G_{\sigma 1}(\omega)=\exp \left(-\frac{\omega^{2} \sigma_{2}^{2}}{2}\right) \times \exp \left(-\frac{\omega^{2} \sigma_{1}^{2}}{2}\right)
$$

The expression on the right is the Fourier transforms of a Gaussian with standard deviation $\sqrt{\sigma_{2}^{2}+\sigma_{1}^{2}}$. So the convolution of two Gaussians with variances σ_{1}^{2} and σ_{2}^{2} is a Gaussian with variance $\sigma_{1}^{2}+\sigma_{2}^{2}$. It follows that consecutive smoothing with a series of 1D Gaussians, each with a particular standard deviation σ_{i}, is equivalent to a single convolution with a Gaussian of variance $\sum_{i} \sigma_{i}^{2}$.

Spatial domain convolution

Alternatively, we can convolve in the spatial domain. The trick, once again, is to complete the square:

$$
\begin{aligned}
& g_{\sigma 2}(x) * g_{\sigma 1}(x)=\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(-\frac{u^{2}}{2 \sigma_{2}^{2}}\right) \exp \left(-\frac{(x-u)^{2}}{2 \sigma_{1}^{2}}\right) d u \\
&= \frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(\frac{-u^{2} \sigma_{1}^{2}-x^{2} \sigma_{2}^{2}-u^{2} \sigma_{2}^{2}+2 u x \sigma_{2}^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\right) d u \\
&= \frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\left(u-\frac{x \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}+\frac{x^{2} \sigma_{2}^{4}}{\sigma_{1}^{2}+\sigma_{2}^{2}}-x^{2} \sigma_{2}^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\right) d u \\
&= \frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(u-\frac{x \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}}{\frac{2 \sigma_{2}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right) \exp \left(\frac{-x^{2} \sigma_{1}^{2} \sigma_{2}^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \sigma_{1}^{2} \sigma_{2}^{2}}\right) d u \\
&= \frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left(\frac{-x^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right) \int_{-\infty}^{\infty} \exp \left(\frac{-\left(u-\frac{x \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}}{2\left(\frac{\sigma_{1} \sigma_{2}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right)^{2}}\right) d u \\
&= \frac{1}{\sqrt{2 \pi} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}} \exp \left(\frac{-x^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right) \frac{1}{\sqrt{2 \pi}\left(\frac{\sigma_{1} \sigma_{2}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right)} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(u-\frac{x \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}}{2\left(\frac{\sigma_{1} \sigma_{2}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right)^{2}}\right) d u \\
&= \frac{1}{\sqrt{2 \pi} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}} \exp \left(\frac{-x^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right) \\
&(\text { since the integral is a standard Gaussian) }
\end{aligned}
$$

This expression is a Gaussian with standard deviation $\sqrt{\sigma_{2}^{2}+\sigma_{1}^{2}}$.

3. Generating the Gaussian filter kernel

In general, if we discard the sample $(n+1)$ pixels from the center of the kernel, the size of the kernel will be $2 n+1$ pixels. We can find n by solving:

$$
\begin{aligned}
\exp \left[-\frac{(n+1)^{2}}{2 \sigma^{2}}\right] & <\frac{1}{1000} \\
\Leftrightarrow n & >3.7 \sigma-1
\end{aligned}
$$

So n must be the nearest integer to $3.7 \sigma-0.5$.
(a) Applying this formula for $\sigma=1$ gives $n=3$ and a kernel size of $2 n+1=7$ pixels. The filter coefficients can be found by sampling the 1D Gaussian $g_{1}(x)$ at the points $x=\{-3,-2,-1,0,1,2,3\}$. The sum of the coefficients is one, so regions of uniform intensity are unaffected by smoothing.
(b) For $\sigma=5$ we get $n=18$ and a kernel size of 37 pixels.
(c) The choice of σ depends on the scale at which the image is to be analysed. Modest smoothing (a Gaussian kernel with small σ) brings out edges at a fine scale. More smoothing (larger σ) identifies edges at larger scales, suppressing the finer detail. There is no right or wrong size for the kernel: it all depends on the scale we're interested in. Another factor is image noise: the smoothing suppresses noise. It may be difficult to detect fine scale edges, since a kernel large enough to suppress the noise may also suppress the fine detail. Finally, computation time may be an issue: large σ means a large kernel and computationally expensive convolutions.

4. Discrete convolution

The image and filter kernels are discrete quantities and convolutions are performed as truncated summations:

$$
s(x)=\sum_{u=-n}^{n} g_{\sigma}(u) I(x-u)
$$

Applying this to the pixel with intensity 118, which is the 11th pixel in the row, we obtain

$$
\begin{aligned}
s(x)= & \sum_{u=-3}^{3} g_{\sigma}(u) I(11-u) \\
= & 0.004 \times 57+0.054 \times 77+0.242 \times 99+0.399 \times 118 \ldots \\
& +0.242 \times 130+0.054 \times 133+0.004 \times 134 \\
= & 115 \quad \text { (to the nearest integer) }
\end{aligned}
$$

5. Differentiation and $1 D$ edge detection

An approximation to the first-order spatial derivative of $I(x)$ mid-way between the $(n-1)$ and $(n+1)$ sample is $0.5(I(n+1)-I(n-1))$. This can be computed by

convolving with the kernel | $1 / 2$ | 0 | $-1 / 2$ |
| :---: | :---: | :---: |
| (remember that the kernel is flipped before | | | the multiply and accumulate operation).

Applying this kernel to the smoothed row of pixels gives the approximation to the first-order spatial derivative:

x	x	x	x	2.5	3	5.5	11.5	17	18	14	8.5	3.5	0.5	-.05	x	x	x	x

The intensity discontinuity is at the maximum of the first-order spatial derivative. The maximum derivative (18) occurs at the tenth pixel - between the pixel with smoothed intensity 79 and the pixel with intensity 98^{1}.

6. Decomposition of $2 D$ convolution

The 2D convolution can be decomposed into two 1D convolutions as follows:

$$
\begin{aligned}
& G_{\sigma}(x, y) * I(x, y)=\frac{1}{2 \pi \sigma^{2}} \iint I(x-u, y-v) \exp -\left(\frac{u^{2}+v^{2}}{2 \sigma^{2}}\right) d u d v \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int \exp -\left(\frac{u^{2}}{2 \sigma^{2}}\right)\left[\frac{1}{\sqrt{2 \pi} \sigma} \int I(x-u, y-v) \exp -\left(\frac{v^{2}}{2 \sigma^{2}}\right) d v\right] d u \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int \exp -\left(\frac{u^{2}}{2 \sigma^{2}}\right)\left[g_{\sigma}(y) * I(x-u, y)\right] d u \\
& =g_{\sigma}(x) *\left[g_{\sigma}(y) * I(x, y)\right]
\end{aligned}
$$

Performing two 1D convolutions is much quicker than performing a single 2D convolution. A discrete 1D convolution with a kernel of size n requires n multiply and add operations. A discrete 2D convolution with a kernel of size $n \times n$ requires n^{2} multiply and add operations. The speed-up offered by decomposing the 2 D convolution is $n^{2} / 2 n=n / 2$.

7. Correlation and Convolution

Convolution involves a reflection. They are identical if the kernel is symmetric.
8. Feature detection and scale space - see handout 2 and cribs for Tripos IB Paper 8 (F) 2010-2021.
9. Interest point and Keypoint descriptors - See handout 2 and cribs for Tripos IB Paper 8 (F) 2010-2021 on SIFT and normalised cross-correlation.
10. Matching keypoints - See handout 2 and cribs for Tripos IB Paper 8 (F) 2010-2021

[^0]
[^0]: ${ }^{1}$ If you want to be more precise, you can localise the discontinuity to sub-pixel accuracy by calculating the second order derivatives and then interpolating to find the zero-crossing.

