
University of Cambridge
Engineering Part IB

Information Engineering Elective
Paper 8 Image Search and Matching

Handout 4: Search

Roberto Cipolla and Matt Johnson
May 2006



2 Engineering Part IB: Paper 8 Image Search

Searching Documents

So far we have discussed interest points and descriptors,
but we haven’t really touched upon how they will be used
to retrieve images. For a moment, pretend that we are
writing a search engine for text documents. The differ-
ence is that with this search engine you enter in an entire
document that is like the one you want, and the engine
goes through its database looking for matches.

How would this engine work? Well, it would pick out
particular words from the document you gave it, probably
a subset of distinctive nouns and verbs, and look for other
documents which had those words. The document which
had the most matching words would then be chosen.

processor

monitor

memory

drive

food

processor

heart

monitor

memory

loss

car

drive

computer

processor

monitor

memory

drive



Feature Extraction 3

Matching words

Initially, it seems like matching words is simple. Aside
from verbs, which have various conjugations, nouns should
be easy to match. This isn’t the case, unfortunately.
Take, for example, different members of the same class.
“dalmation” and “poodle” are very similar words, as they
are both dogs, but don’t look anything alike. Only by
looking at their definitions can we match them properly.
Thus, both the words from a document and their defini-
tions can be used to find documents from the database
which match.

It ends up that this simple idea of matching documents
based on the words they contain and their definitions
carries over remarkably well into the problem of search-
ing images. We are going to use the same technique to
match images to images in a database. Interest points
will be used as visual words with descriptors as their
definitions. What remains is a need of a way to find the
synonyms of a visual word.



4 Engineering Part IB: Paper 8 Image Search

Matching words

Query



Feature Extraction 5

Nearest Neighbour Matching

Finding synonyms without a thesaurus is quite difficult.
It requires scanning definitions of words for those with
the same meaning. Imagine that instead of word-based
definitions, though, each word was described by a unique
point in a 2D plane, and that words that meant the same
thing were near to each other.

angry

furious

enraged

emotion

pier

dock

ship

boat

Then, finding the best synonym would be a simple case
of finding the point in the plane which is the nearest
neighbour to the query word.

This is essentially the task that a feature descriptor trans-
form is meant to perform, namely a transformation that
takes the input data (an interest point) and outputs a
vector which describes that data such that other, similar
data members will be nearby.



6 Engineering Part IB: Paper 8 Image Search

Data Structures

“Nearby” is usually defined as a small distance away as
measured by an Euclidean distance metric, measured us-
ing the following formula

E(~x, ~y) =

√∑

d

(~xd − ~yd)2

So, one way of solving the problem is to search through
all the feature points in the database images for the best
match of a query feature. This is called a linear search,
and is prohibitively expensive to compute. Instead, we
must find a way of storing the data to make searching
faster.

A data structure organizes data such that it is more effi-
cient to store, access and search. The simplest data struc-
ture is a list of items, such as an array of numbers. The
most complex are almost impossible to visualize. We will
be looking, however, at tree-based data structures, and
how they can applied to tackling the problem of nearest
neighbour retrieval.



Feature Extraction 7

Binary Search Trees

A binary search tree is a data structure which stores
scalar values in such a way as to make them very effi-
cient to search. It is a directed graph (meaning that it
has nodes that are connected with one-way connections)
with the stipulation that every node can only have one
incoming edge and at most two out-going edges. What
makes them effective search structures is the cunning way
in which they are organized.

13

375

3 8 5416

1 4 7 12 15 6523 42

The left subtree contains nodes with values that are all
less than the current node’s value, and the right subtree
values which are all greater than its value. Therefore, to
search, you start at the root, and if your query value is
less than the node value you go left, if greater than, you
go right. If you get to the bottom and haven’t found your
number, it isn’t in the tree.

This way, instead of performing an operation for all N
items of data, you are only examining at log N items,
which is significantly better!



8 Engineering Part IB: Paper 8 Image Search

Binary Search Tree, cont.

The structure of a node is quite simple:

structure Node

{

scalar value;

Node leftLeaf;

Node rightLeaf;

}

The algorithm to search the tree is a while loop:

procedure search(Node root, scalar query) returns boolean

{

Node current = root;

while(current is something)

{

if(current.value == query)

return true;

if(query < current.value)

current = current.leftLeaf;

else current = current.rightLeaf;

}

return false;

}



Feature Extraction 9

Binary Search Trees, cont.

The procedure to add a new node to the tree is recursive:

procedure add(Node current, scalar value) returns Node

{

if(current is nothing)

return new Node(value, nothing, nothing);

if(value == current.value)

return current;

if(value < current.value)

current.leftLeaf =

add(current.leftLeaf, value);

else current.rightLeaf =

add(current.rightLeaf, value);

return current;

}

Let’s practice building a binary search tree. Here is a list
of numbers:

{16, 42, 8, 4, 23, 15}

Build a binary tree below:

16

428

15 234



10 Engineering Part IB: Paper 8 Image Search

Metric Trees

Binary search trees are excellent, but in their current form
we can only use them for scalar values. Also, constructing
them so that they are optimal (balanced, with all subtrees
at log N length) is quite difficult. We need a way to
generalize the concept to vector values while retaining
the property of speedy search.

The answer to this problem is the metric tree. The
way in which a metric tree works is simple. At each
level of the tree you find the two data values which are
furthest away from each other (using some metric). A
line is drawn between those points, and all points in the
space are projected onto that line. All those between the
midpoint and the “left” end go in the left subtree, and
the rest go in the “right” subtree. The process is then
repeated for the subtrees.

4 8 15 23 421 3 5 7 12 13 16 37 54 64

2.5

3.5

4.5

6.5

12

7.5 12.5

14

15.5

17.5

32.5

39.5

50.5

59

A metric tree in 1 dimension

In a metric tree, traversal decisions are made based on
which side of a hyperplane the query value falls on, and
as such they are scalable to any dimensionality.



Feature Extraction 11

Metric Trees

Here is an example of a two-dimensional metric tree. The
thickness of the lines indicates what level of the tree they
represent, with thicker lines being nearer the root. The
circles are the data points.

There are several problems with metric trees as a final
solution to the need for a multi-dimensional search data
structure. Namely, its dependence on projection makes
it particularly slow to construct and algorithmically com-
plex to model and traverse. Thankfully, there is a better
data structure which has all the properties of a metric
tree but without the hassle in construction and traversal.



12 Engineering Part IB: Paper 8 Image Search

K-Dimensional Trees

K-dimensional trees, or Kd trees as they are often re-
ferred to, are a kind of metric tree. The difference is that
while the canonical metric tree uses a projection to a
line between the two farthest points and then comparing
values against the midpoint as its means of dividing the
data into subtrees, the Kd tree uses a hyperplane with
one dimensional constraint.

We begin by collecting all the points assigned to a subtree.
We choose a dimension to split in, and a value to split at,
and then split the data into two groups, with those which
are less than the splitting value in the splitting dimension
going to the left subtree and the rest to the right subtree.



Feature Extraction 13

K-Dimensional Trees, cont.

The node in a Kd tree is similar to that in a binary search
tree:

structure KDNode

{

hyperrectangle bounds;

vector value;

int splitDimension;

scalar splitValue;

KDNode leftLeaf;

KDNode rightLeaf;

}

Traversing the tree follows the same mode as that used
in binary search trees:

procedure search(KDNode root, vector query) returns boolean

{

KDNode current = root;

while(current is something)

{

if(current.value == query)

return true;

if(query[current.splitDimension] < current.splitValue)

current = current.leftLeaf;

else current = current.rightLeaf;

}

return false;

}



14 Engineering Part IB: Paper 8 Image Search

K-Dimensional Trees, cont.

Constructing a Kd tree is more complex, and cannot be
accomplished piecemeal but must be done with all of the
data which will be stored in the data structure. At each
subtree, a method of choosing a splitting dimension and
a splitting value must be applied. The two standard ways
of choosing the dimension are to either (A) use a round-
robin system or (B) to choose the dimension with the
highest variance. Choosing the splitting value is typically
done by either (A) using the mean value or (B) using
the median value. Once a split has been determined, the
points are split into their sub-tree groups and the process
is repeated for each subtree.



Feature Extraction 15

K-D Trees

procedure BuildKDTree(list<vector> data)

returns KDNode

{

if(data.Count == 1)

return new KDNode(nothing, -1, 0, data[0],

nothing, nothing);

hyperrectangle bounds = constructHyperrectangle(data);

int splitDimension = chooseSplitDimension(data);

scalar splitValue = chooseSplitValue(data, splitDimension);

list<vector> leftData = new list<vector>();

list<vector> rightData = new list<vector>();

foreach(vector dataPoint in data)

{

if(dataPoint[splitDimension] < splitValue)

leftData.Add(dataPoint);

else rightData.Add(dataPoint);

}

KDNode leftLeaf = BuildKDTree(leftData);

KDNode rightLeaf = BuildKDTree(rightData);

return new KDNode(bounds, splitDimension, splitValue,

leftLeaf, rightLeaf);

}



16 Engineering Part IB: Paper 8 Image Search

K-Dimensional Trees, cont.

Let’s practice by building a Kd tree using the round-robin
split dimension and the median point split value methods.



Feature Extraction 17

Nearest Neighbour Search

How do we use Kd trees for nearest neighbour searching?
Well, the first intuition is to simply use the query value as
our search query, descend the tree to a leaf, and then use
the value at that leaf as our nearest neighbour. However,
there is a problem with doing this.

The ‘X’ is our search point. The correct result is high-
lighted in green, but were we to use our näıve approach,
the returned result is the point highlighted in red, which
is obviously incorrect.



18 Engineering Part IB: Paper 8 Image Search

Branch and Bound Searching

In order to avoid the boundary problems we’ve just en-
countered, we must do a more thorough search of the Kd
tree to be certain that the true nearest neighbour has
been found. This is achieved using a technique called
branch and bound searching. As we descend the
tree, we keep track of what choices we have made. Then,
after reaching the leaf, we use the distance between the
leaf value and the query value as an upper bound on dis-
tance, and then search the branches we ignored if the
distance from the query value to that branch’s hyperrect-
angle is less than the current upper bound. Every time
the algorithm reaches a leaf node, it updates the upper
bound to further prune the search.



Feature Extraction 19

Branch and Bound Searching

procedure BranchAndBound(KDNode root, vector query) returns vector

{

KDNode current = root;

list<KDNode> branches = new list<KDNode>();

vector nearestNeighbour;

scalar bound;

...

/// Store branches ///

/// bound from nearestNeighbour ///

...

foreach(KDNode branch in branches)

{

if(distance(branch.hyperrectangle, query) >= bound)

continue;

current = branch;

...

/// Store additional branches ///

/// update bound and nearestNeighbour ///

...

}

return nearestNeighbour;

}



20 Engineering Part IB: Paper 8 Image Search

Approximate Nearest Neighbour

The problem with branch and bound searching is that
it can often prove exhaustive and inefficient. Indeed, as
the number of dimensions increases, an effect known as
the curse of dimensionality dictates that the number of
branches which need to be searched will increase until the
search is practically a linear search of the dataset. Given
that descriptors like the SIFT descriptor have over one
hundred dimensions, this is a serious consideration.

The solution is to find a way of approximating the
search. In this case, we create a certainty/speed tradeoff,
where we trade certainty for increased speed. The ap-
proximate nearest neighbour technique for Kd trees most
commonly used is called best bin first searching.
It is a modified version of branch and bound searching,
in which the list of branches not taken is modelled as a
priority queue, in which the determining value is the dis-
tance from the query to the hyperrectangle of the subtree.
This way, the closest subtrees are searched first, increas-
ing the likelihood that the nearer neighbours are found
first and more branches are pruned. Also, once one of
the branches is too far away, the search can stop, as all
subsequent branches will be even farther away. Approx-
imation is implemented by limiting the number of leaf
nodes visited. Once the limit is reached, the algorithm
stops.


