
University of Cambridge
Engineering Part IB

Information Engineering Elective

Paper 8: Image Searching and Modelling
Using Machine Learning

Handout 2: Multi-Layer Perceptrons

in
p
u
t

784

F1

1000

F2

1000

F3

10

Roberto Cipolla and Matthew Johnson
May 2017

Multi-Layer Perceptrons 1

Notebook

You can access an interactive version of this handout at the

following URL:

https://aka.ms/ucepibieep8

Multi-Layer Perceptrons 2

Combining Perceptrons

In the last lecture, we saw that a single perceptron can be a

powerful tool for classifying between two classes of input. If

we want to move beyond simple two-class problems to distin-

guish between multiple classes, we can combine perceptrons

using what is called a 1 versus all approach. Each percep-

tron’s weights w become a row in a matrix W:

y = f (Wx)

where x is the input vector and f is the same step function,

applied on a per-index basis on the output vector:

f (xi) =

{
+1 xi ≥ 0

−1 xi < 0

Each perceptron focuses on a single binary problem: is this

input a member of my class, or not? We can then look at

multiple outputs and choose the class that corresponds to the

classifier that has a positive result. The math stays much the

same, though we are going to change the formulation slightly.

Instead of including the bias as an extra dimension in the

data, we are going to use a common convention in modern

neural net architectures and separate it out as a separate bias

term, b, as follows:

y = f (Wx + b)

Multi-Layer Perceptrons 3

Combining Perceptrons, cont.

Let us look at a sample scenario to see what happens in this

new approach:

X =

[
0.3 −0.4

−0.5 1

]
W =

[
0.55 −0.12

−0.32 0.5

]
b =

[
0.4 −0.2

]
WX + b =

[
0.625 −0.546

0.06 0.428

]
Y =

[
1 −1

1 1

]

We can immediately see the problem here: what do we do

when two or more perceptrons both give a positive result for

the same input? We need a new function that will still be

non-linear, but in a “softer” way.

Multi-Layer Perceptrons 4

Activation Functions

The step function used by the perceptron is just one member

of a class of functions called activation functions. There are

many others. One that is a close approximation to the step

function is the hyperbolic tangent:

f (xi) = tanh(xi)

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Unlike the step function, the hyperbolic tangent is fully differ-

entiable, which will come in helpful later. Just as a reminder,

that looks like this:

f ′(xi) = 1− f 2(xi)

In addition to being roughly linear from -1 to 1, tanh saturates

to 1 or -1 as well, thus providing a useful non-linearity, which

was the driving force behind the use of the step function in

the original perceptron.

Multi-Layer Perceptrons 5

Activation Functions, cont.

Another commonly used objective function is the sigmoid

function, which is a special case of the logistic function:

f (x) =
1

1 + e−xi

f ′(x) = f (xi) (1− f (xi))

This function is similar in shape to the hyperbolic tangent,

but ranges from zero to one:

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Both of these functions have similar characteristics: they are

roughly linear from -1 to 1, they saturate (though in the case

of the sigmoid, it saturates at 0 and 1). They also both

of convenient derivatives. In these lectures, we will use the

hyperbolic tangent, but they are both widely used activation

functions in neural networks.

Multi-Layer Perceptrons 6

Multiperceptron

We now have a new formulation:

y = tanh(Wx + b)

This new formulation, which we will call a multi-perceptron,

has several advantages. In particular, it is fully differentiable,

which means we can learn the values of W and b via gradient

descent.

The use of gradient descent to discover the parameters of a

network of perceptrons is called backpropagation, and was

discovered by Paul J. Werbos, who described it in his 1974

thesis [2]. In order to use gradient descent to determine the

optimal values for the network we need to define an objective

function as a function of the network. The current task we are

trying to accomplish is called classification, where we try to

take an input and classify it as belong to one of several classes.

A typical way of performing classification is by generating a

probability distribution P (x), which defines a distribution

over N classes such that:∑
i∈N

P (i) = 1

and where the magnitude of P (x = i), i ∈ N corresponds to

the classifier’s confidence that x belongs to class i. A typical

choice for a neural network is the Softmax function:

P (x = i) =
exi∑
j e

xj

Multi-Layer Perceptrons 7

Cross Entropy

The cross entropy is an objective function for neural networks

that perform classification. It consists of two components:

H(P,Q) = H(P) + DKL(P ||Q)

for discrete distributions P and Q, where H is the Shannon

entropy:

H(P) = −
∑
i

P (i) logP (i)

Entropy measures the information content of a distribution.

This can be thought of as the expectation of the information

content given by sampling from the distribution. A perfectly

uniform distribution, with equal probability for all events,

has maximum entropy. Think of flipping a coin: if it is fair

(P (Heads) = P (Tails) = 0.5) then we have no way of pre-

dicting what the result will be when it is flipped. However, if

the coin were weighted, such that P (Heads) >> P (Tails),

then flipping it does not give as much information; we knew

it was probably going to be heads.

Multi-Layer Perceptrons 8

Cross Entropy, cont.

The second term, DKL is the Kullback-Leibler divergence,

which is a common measure of how much one distribution

diverges from another:

D(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)

The intuition here is that if P and Q are the same, then the

term log P (i)
Q(i) will be zero and thus the divergence is also zero.

We combine them as follows:

H(P,Q) = −
∑
i

P (i) logP (i) +
∑
i

P (i) log
P (i)

Q(i)

= −
∑
i

P (i) logP (i) +
∑
i

P (i) logP (i)

−
∑
i

P (i) logQ(i)

= −
∑
i

P (i) logQ(i)

P0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Q0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In the figures above, the H(P) = 1.49, whereas H(P,Q) =

1.55. It is always the case that the lower bound of the cross-

entropy is H(P).

Multi-Layer Perceptrons 9

Loss Function

We can now write the objective function for our entire net-

work, which in this case is the expected classification loss:

L(D,W,b) =
1

|D|
∑
d∈D

H(t, p(tanh(Wxd + b)))

where p is the Softmax function described above, D is the

dataset, and ti is a one-hot vector corresponding to the cor-

rect label for that data point. In words, we want to minimize

the expected cross entropy between the output and the target

distribution. Now that we have an objective, we can compute

gradients for W and b and optimize them directly.

While the above equation looks rather daunting when it comes

to computing the partial derivatives for W and b, you will

find that the different functions have been chosen very care-

fully to make this tractable. First, let’s expand the combina-

tion of cross entropy and softmax:

H(t,p) = −
∑
i

ti log pi

pi =
esi∑
j e

sj

s = tanh(Wx + b)

We want to look at the partial derivatives with respect to

si. What makes this tricky is that si shows up in both the

numerator and the denominator, which means we need to

index the derivative.

Multi-Layer Perceptrons 10

Computing Gradients

The partial derivatives with respect to si are:

∂pi
∂si

= pi(1− pi)

∂pj
∂si

= −pipj, j 6= i

Using these derivatives, we can compute:

∂L

∂si
= −

∑
k

tk
∂ log pk
∂sk

(1)

= −
∑
k

tk
1

pk

∂pk
∂sk

(2)

= −ti(1− pi)−
∑
k 6=i

tk
1

pk
(−pkpi) (3)

= −ti + tipi +
∑
k 6=i

tkpi (4)

= pi

(∑
k

tk

)
− ti (5)

Remember that t is a one-hot vector, and so we get the final

result:

∂L

∂si
= pi − ti

This may seem surprising, but the functions for the loss and

the probability were chosen carefully to end in this way.

Multi-Layer Perceptrons 11

Computing Gradients, cont.

The tricky part is over. Now that we have ∂L
∂si

, we just need

the hyperbolic tangent, which as you remember is:

si = tanh(hi) (6)

∂si
∂hi

= 1− s2i (7)

At this point, due to the nature of the linear transform, we

need to take into account the vector of partial derivatives,

which we will denote δ =
{
∂L
∂hi
, ∀i

}
. We can now compute

the interesting derivatives:

∂L

∂W
= δTx (8)

∂L

∂b
=
∑
i

δi (9)

Multi-Layer Perceptrons 12

Batching

With perceptrons, we showed a single example to the percep-

tron at each step. Now that we are using backpropagation,

however, we need to do something different. While our goal

is to minimize the overall loss, it is often the case that it is

either impractical to perform backpropagation for all of the

data or even that the gradient obtained from showing every-

thing at once is suboptimal. However, just showing a single

example at a time results in the network having trouble make

good decisions for all categories.

As a result, the data is typically presented to the network

as a (small) batch DB called a mini-batch, which must be

selected uniformly at random from D. We need to select the

examples at random because otherwise it can cause major is-

sues during training. Imagine if the network was shown only

images of zeros in one mini-batch. It would learn something

about zeros, but in attempting to adjust it may forget impor-

tant things it had already learned about twos. In practice, it

is better to present a uniform sampling from all categories in

the training set, thus allowing the network to learn strategies

that are good for all classes, not just a few.

Seeing as we are presenting all examples x ∈ DB ⊂ D, δ is

actually defined as:

δ =

{
1

|DB|
∂L

∂hi
, ∀i

}

Multi-Layer Perceptrons 13

Datasets

Before we continue, it is important to outline the right and

wrong ways of using data. There are three commandments

of data science:

1. Thou shalt not train on test data

2. Thou shalt not determine hyperparameters on test data

3. Thou shalt not overfit

These statements stem from the central goal of machine learn-

ing: generalization. When you train a model, you want to

ensure that it can effectively infer information from new, un-

seen data. This is why you take a portion of your data and

set it aside for use as test data. If you train on this data,

then you have no way of knowing whether your technique can

generalize, and thus your results are meaningless. This is the

source of the first commandment. The second commandment

is similar: by determining your hyperparameters (like learn-

ing rate, number of hidden dimensions) from the test data,

you are essentially transmitting information from your test

data to your training set even though the algorithm does not

look at the data directly. For this reason, we set aside a bit of

our training data as a validation set, which can be used for

determining hyperparameters. Finally, there is a temptation

to continue training until the results on the training data are

as high as possible, which is called overfitting. Unless your

algorithm is designed carefully to avoid this, you will end up

creating a solution that is so specific to your training data

that it behaves strangely on the test data.

Multi-Layer Perceptrons 14

Training a Multiperceptron

How does this new classifier perform? Below we see three

snapshots from a two-perceptron model training on a two-

class problem like the one we saw in the last lecture:

6 4 2 0 2 4 6
6

4

2

0

2

4

6

0 50 100 150 200
Instances

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

6 4 2 0 2 4 6
6

4

2

0

2

4

6

0 50 100 150 200
Instances

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

6 4 2 0 2 4 6
6

4

2

0

2

4

6

0 50 100 150 200
Instances

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0.2

0.3

0.4

0.5

0.6

0.7
Lo

ss

We see here both the accuracy and the loss on the same

plot. Note how the loss drops as the accuracy increases. This

problem is clearly too easy for our new multiperceptron, so

we will make it harder.

Multi-Layer Perceptrons 15

Three Classes

We are now going to do something that was impossible with

a normal perceptron: classify inputs into one of three classes.

This model has three perceptrons, one per class:

6 4 2 0 2 4 6
6

4

2

0

2

4

6

0 50 100 150 200 250 300
Instances

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

6 4 2 0 2 4 6
6

4

2

0

2

4

6

0 50 100 150 200 250 300
Instances

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

6 4 2 0 2 4 6
6

4

2

0

2

4

6

0 50 100 150 200 250 300
Instances

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Lo

ss

The classifier starts off in much the same way, but very quickly

each perceptron (represented by a line in the graph) learns to

separate its points from the rest, and is remarkably accurate

by the end of training. Time to make things even harder.

Multi-Layer Perceptrons 16

MNIST 10-Way Classification

How does our classifier deal with classifying all ten digits of

MNIST?

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 50000 100000150000200000250000300000
Instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0 50000 100000150000200000250000300000
Instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

0.4

0.2

0.0

0.2

0.4

0 50000 100000150000200000250000300000
Instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Lo

ss

As you can see, each perceptron learns the characteristics of

a single digit, as it is only responsible for that single class.

However, it seems our network is stalling at a loss of 1 and an

accuracy of 0.9. What can we do to make this even better?

Multi-Layer Perceptrons 17

Multi-Layer Perceptrons

The same principles that enabled us to train the multiper-

ceptron can be used to combine layers of multiperceptrons

together, creating a network known as the Multi-Layer Per-

ceptron:

h0 = W0x + b0

s0 = tanh(h0)

h1 = W1s0 + b1

s1 = tanh(h1)

h2 = W2s1 + b2

This new network can learn non-linear classification bound-

aries. We can visualize networks like this using diagrams like

the one below:

in
p
u
t

784

F1

1000

F2

1000

F3

10

This is a diagram for a multi-layer perceptron for MNIST

with two hidden layers with 1000 dimensions (F1 and F2)

followed by a final layer that transforms things into the ten-

dimensional output space (F3). The squiggly lines represent

non-linearities.

Multi-Layer Perceptrons 18

MNIST with MLP

This is what it looks like when we train a simple MLP on the

MNIST dataset with one hidden layer that has 64 dimensions:

0.10

0.05

0.00

0.05

0.10

0.15

0 50000 100000150000200000250000300000
Instances

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0.5

1.0

1.5

2.0

Lo
ss

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 50000 100000150000200000250000300000
Instances

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

0.5

1.0

1.5

2.0

Lo
ss

0.2

0.1

0.0

0.1

0.2

0 50000 100000150000200000250000300000
Instances

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0.5

1.0

1.5

2.0
Lo

ss

Note how the weights start out as noise, a common initial-

ization strategy for multi-layer perceptrons, and then slowly

begin to form structure that looks like bits and pieces of

numbers. What is happening is that the network is find-

ing commonalities between different digits like similar strokes

or curves and sharing the expertise via the second layer. This

new system gets significantly lower loss and a higher accuracy

of around 0.95.

Multi-Layer Perceptrons 19

Vanishing Gradients

We started with a single perceptron, and then connected them

in a single layer to create a multiperceptron. We then looked

at how the same techniques can be used to train multiple

layers of perceptrons in a multi-layer perceptron via stochastic

gradient descent. In doing so we have now reached the state

of the art in the 1990s, when research into neural nets entered

into a second doldrums due to hardware limitations and the

problem of the vanishing gradient.

For activation functions like we have seen so far, the value

of the function and thus the derivative is between 0 and 1.

Since all the derivatives of the non-linearities in a network

are multiplied together during backpropagation, the gradient

becomes smaller the farther backward it is propagated. For

deep networks, it becomes so small that it causes convergence

to slow down or stop.

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

0 2 4 6 8 10 12 14 16 18 20

G
ra

d
ie

n
t

M
ag

n
it

u
d

e

Layer

Multi-Layer Perceptrons 20

Rectified Linear Units

To overcome the problem of vanishing gradients, a new form

of non-linearity was developed: the Rectified Linear Unit, or

ReLU [1]. ReLUs have a deceptively simple form:

f (xi) =

{
xi xi > 0

0 xi ≤ 0

The ReLU function is an approximation of the softplus func-

tion f (xi) = log(1 + exi), as can be seen below:

4 3 2 1 0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

While at first the discontinuity in the function and the lack

of a “squashing” effect would appear to be a problem, in

practice it does not have any negative effect on convergence

of the network. However, it does have the very desirable effect

of entirely reducing the vanishing gradient effect. It does this

so nicely (and is so computationally efficient as well) that it

is used in the majority of modern deep network architectures.

In the next lecture we will look at some of these architectures

and a new kind of network operation: convolution.

Multi-Layer Perceptrons 21

References

[1] Vinod Nair and Geoffrey E. Hinton. Rectified linear units

improve restricted boltzmann machines. In Proceedings of

the 27th International Conference on Machine Learn-

ing, Haifa, Israel, 2010.

[2] Paul Werbos. Beyond regression: New tools for pre-

diction and analysis in the behavioral sciences. PhD

thesis, Harvard University, 1974.

