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Problems of Scale

Near the end of the previous lecture, we looked at the follow-

ing multi-layer perceptron:
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While this new notation is nice, it obscures the sheer scale

of the computation happening during backpropagation. We

can compute the number of parameters in this network:

|W0| = 784× 1000 = 784000

|W1| = 1000× 1000 = 1000000

|W2| = 1000× 10 = 10000

This is quite a few more than the networks we originally

explored. The number of parameters is not just an issue for

the computation, however. Every parameter in the network

increases its ability to store information, essentially providing

it with more memory. If a network has too much capacity, it

can begin to memorize data points and bypass generalization.

It is fairly urgent that we find a way to reduce the number of

parameters in these deep networks for computer vision.
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SGD Tricks

Before we dive into ways to reduce the number of parame-

ters in deeper networks, however, there are more fundamental

problems to overcome. So-called “vanilla” stochastic gradi-

ent descent can have problems making headway with so many

parameters, but there are some tricks we can use that help.

Momentum A very common means of augmenting stochas-

tic gradient descent is by adding a momentum term,

which alters the weight update in the following way:

∇Wτ+1 =
∂L

∂Wτ
+ ε∇Wτ

Wτ+1 = Wτ − η∇Wτ+1

at training step τ where ε is the momentum hyperparam-

eter and η is the learning rate.

Stepped Learning Rate Updates As the network con-

verges to a local minimum, it is often necessary to make

smaller adjustments in the weight values, which trans-

lates to smaller step sizes during weight updates. A sim-

ple way of doing this is by using a learning rate that

changes over time in a stepped fashion:

ητ = η0γbτ/σc

where the initial learning rate η0 is multiplied by γ every

σ steps.

Inverse Learning Rate Updates Another method is to

continuously alter the learning rate in inverse proportion

to the number of steps:

ητ =
η0

(1 + γτ )ρ

where γ and ρ control the speed of learning rate decay.
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Convolutional Layers

So far we have focused on artificial neural networks in which

every node of one layer has an individual weighted connection

to every node of the previous layer, but this is not necessary

nor even optimal for some data. In the case of visual or aural

signals, in which there is significant structure in the signal

itself, we can use the same principles of convolution which

have been covered in previous lectures to achieve the same

(or better) accuracy with significantly fewer parameters.
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We see above a very small image, two convolutional kernels,

and their corresponding outputs. Each output node is com-

puted as:

of,r,c = wf00ir−1,c−1 + wf01ir−1,c + wf02ir−1,c+1

+ wf10ir,c−1 + wf11ir,c + wf12ir,c+1

+ wf20ir+1,c−1 + wf21ir+1,c + wf22ir+1,c+1

With these layers the weights are being shared by multiple

output nodes, and as such the total number of parameters

is significantly less than in the fully-connected case. Being

shared across multiple output nodes and being applied in a

spatial manner can cause these weights to take on (in the first

layer) the form of common low-level Gabor-like filters from

computer vision which have been seen before.
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Convolutional Layers, cont.

The notation above is unwieldy, so ideally we would like to

use the same linear algebra notation which we used for fully

connected networks. It is possible, provided we first perform

a simple transformation on x. We extract patches in row

column order and embed them as columns in a matrix, as

shown below:

x =


a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

 X =



a b . . . g . . . m

b c . . . h . . . n

c d . . . i . . . o

f g . . . l . . . r

g h . . . m . . . s

h i . . . n . . . t

k l . . . q . . . w

l m . . . r . . . x

m n . . . s . . . y



We will denote this embedding operation as X = E(x). We

can then store the weights in a weight matrix and use matrix

multiplication to perform the convolution:

Wi =

[
w000 w001 w002 w010 w011 . . . w021 w022

w100 w101 w102 w110 w111 . . . w121 w122

]
Ci(x) = WiX
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CNN on MNIST

Let us see how this CNN performs on our MNIST task:
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This is the best system yet, certainly, but there is a worrying

thing happening in the validation loss: it is starting to go

up. This is because the final layer is a 5184 × 10 matrix,

which means that this network has many more hidden units

than previous ones we have analyzed. If we had 5184 hidden

units in a traditional Multi-Layer Perceptron it would require

784 × 5184 = 4, 064, 256 parameters, but the convolutional

layer only has 9 × 5 × 5 = 225 weights. That is good, as

it keeps us from over-parameterizing the model. However,

the 9 filters create 9 images, which have 9× 24× 24 = 5184

pixels, and thus we need 51,840 parameters to reduce those

down to the output space of 10 values. Even though we have

drastically reduced the number of parameters, the validation

loss going up probably means the model is overfitting to the

data. We need to reduce that number further.
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CNN on MNIST, cont.

Before we worry about the overfitting, let us look at what the

system has learned:

As can be seen, they are both familiar and yet very different to

the filters that we used earlier. We can tell from the output

images what kinds of features the filters are detecting, but

they are also doing more subtle things, which you can see in

the images after a ReLU has been applied.

That said, we do need to somehow reduce the number of

pixels that are output by our convolutional layer. For this,

we shall use a technique called pooling.
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Average Pooling

The concept of pooling is similar to sub-sampling, whereby

an image is reduced in size by representing a region in the

input image via a single pixel. In standard sub-sampling this

value is a single pixel in the input region, e.g. the center. In

average pooling, the value is the mean value of the pixels in

the input region.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12

i

a a

a a

b b b

b b b

b b b

c c c

c c c

c c c

0

1

2

3

4

0 1 2 3 4 5 6

a

b

c

o

As can be seen above a filter of size 3 is applied at a stride of 2,

though the size and stride can be altered in practice as needed

by the problem. This pooling acts as a non-parameterised

layer in the neural network, much like non-linearities. An

output value is computed as follows:

o[r, c] =
1

9

2∑
k=0

2∑
l=0

i[2r + k − 1, 2c + l − 1]

This is equivalent to using the embedding function E and then

multiplying by a weight matrix W =
{
Wi,j|∀i∀j Wi,j = 1

9

}
.

When treated in this way the derivative is also this matrix

(as in this case WR ≡W).
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Max Pooling

An alternative to average pooling is maximum, or max, pool-

ing. As with average pooling, the max pooling operator has

a set size and is applied at a predetermined stride. However,

instead of taking the arithmetic mean of all of the pixel values

it selects only the maximum value as its output value.
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This creates a slight difficulty during backpropagation, as the

partial derivatives passing backwards through the operator

only apply to a single input pixel. We can achieve this by

creating, during each forward pass, a O × I matrix W in

which each row has a single value of 1 at the column i cor-

responding to the maximum input value used for the output

row o. The derivative is then WT.
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CNN + Pooling on MNIST

When we run the training with a new CNN that incorpo-

rates a max pooling layer, we see that while it uses far fewer

parameters this does not reduce its accuracy:
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You can see below how the pooling layer makes just particular

features stand out. As you chain together convolutional layers

and max pooling layers and the dimensionality of the images

decreases, more and more high-level features of the image can

be detected and used for classification by the final layer.
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CIFAR-10

We have seen some pretty impressive things so far with the

artificial neural nets we have studied, but it is time to make

things much harder. CIFAR-10, while it has many of the same

characteristics as MNIST, is a considerable step up in diffi-

culty. It is drawn from the “80 million tiny images” dataset [5]

which consists of (almost) 80 million 32 × 32 RGB images

downloaded from the internet and labeled with one of 75,062

non-abstract nouns in English.

CIFAR-10 (named after the Canadian Institute for Advanced

Research where it was gathered) consists of 60,000 images

gathered from this larger set by gathered by Alex Krizhevsky,

Vinod Nair and Geoffrey Hinton [3]. These images belong to

10 classes: (in order from left to right above) airplane, auto-

mobile, bird, cat, deer, dog, frog, horse, ship and truck. As

can be seen, the dataset contains a lot of intra-class variance,

in addition to complications brought about by color and the

much larger variety inherent in non-curated natural images.
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Anatomy of a Deep Net

Using these new building blocks, we can now fully examine

the anatomy of a modern deep net for CIFAR-10.
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We can compute the number of parameters per trainable

layer: Channels× Size2 × Nodes.

Name Channels Size Nodes # Parameters

C1 3 5 32 2400
C3 32 5 32 25,600
C5 32 5 64 51,200
F7 1024 64 65,536
F8 64 10 640

Total 145,376

We can also calculate the input and output dimensions. For

convolutional and pooling layers, output is a function of stride,

size and padding: dimo = bdimi+2×padding−size
stride c + 1.

Name Input Size Stride Pad Nodes Output

C1 3x32x32 5 1 2 32 32x32x32
P2 32x32x32 3 2 1 32x16x16
C3 32x16x16 5 1 2 32 32x16x16
P4 32x16x16 3 2 1 32x8x8
C5 32x8x8 5 1 2 64 64x8x8
P6 64x8x8 3 2 1 64x4x4
F7 1024 64 64
F8 64 10 10
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Anatomy, cont.

Now that we understand the parameters and the dimension-

ality, let us look at this in more detail.
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Each layer in the network plays an important role.

C1 Extracts low-level features in the image, like edges, cor-

ners and blobs.

P2 Provides some flexibility of location to the low-level fea-

tures

C3 Looks for parts that are combinations of lower-level fea-

tures

P4 Smoothes the part responses before subsampling

C5 Finds structures that are built from parts

P6 Smoothes and subsamples the structural responses. The

output of this final layer acts as a CIFAR-10 specific fea-

ture vector of length 1024.

F7 Sub-category classifiers

F8 Final classifier
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Deep CNN on CIFAR-10

Now that we have designed a DNN for CIFAR-10, let us see

how it does:
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It does rather well, though it still is uncertain about some

of its labels. The confusions, however, make sense: cat then

dog in the top left, airplane or ship. Frog or deer seems

counterintuitive, but upon examination many deer images

have this color pattern of brown on green. Look at the loss

curve. This network was trained for 20 epochs, and we can

see several points when the loss went up before going back

down again. This behavior arises as the network, by virtue

of stochastic gradient descent, leaves a local minimum in the

objective. These jumps are to be expected on difficult tasks

like this one, and indicate the networks ability to continue

learning as it sees more and more data.
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Deep Net Training

The following is a typical procedure for training a deep neural

network on a dataset.

1. Divide the dataset into training D, validation V and

test T partitions

2. Compute the “mean” image of D, and subtract it from

all images

3. Scale all images so that pixel values are in the range

[−1, 1]

4. Design a network architecture, or adapt a known-good

architecture to the dataset

5. Select an optimisation algorithm (i.e. a version of SGD)

6. For a pre-determined set of epochs, do the following:

(a) Randomly sample (without replacement) DB images

from D

(b) Compute ∇Wτ for all W in the model

(c) Update all Wτ →Wτ+1

(d) Once all images in D have been seen (i.e. when an

epoch is complete), evaluate the network on D and

V to monitor changes in the loss

7. Evaluate final performance on V, and repeat the above

with different optimisation hyperparameters as necessary

8. Retrain the network using D ∪V with the final hyper-

parameters, and evaluate on T
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Data Augmentation

When it comes to deep networks, the only thing better than

a lot of data is a whole lot of data. However, gathering su-

pervised data is very expensive. One way to overcome this

problem is via data augmentation, whereby on each epoch

each training image is turned into several additional images

by way of translated cropping and horizontal reflection:

In this way one training image can become 10. Another com-

mon usage of data augmentation is during the testing phase,

whereby instead of simply computing P (x = i) from a single

image, x is altered as shown above and then each version of x

is shown to the network. In this scenario, the predicted label

is then:

i = argmax
j

{
ja|∀a : ja = argmax

k
P (xa = k)

}

This can result in significant improvement regardless of the

network model used.
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Batch Normalisation

Batch Normalisation [2] is a technique that is essential to

the deepest neural net architectures, but also useful in gen-

eral for stabilising and accelerating the training process in all

circumstances. The concept is straightforward: if we knew

the statistics of each layer’s output over the entire dataset,

we could normalise those outputs so that all output vectors

had zero mean and unit variance. In mathematical terms, we

want to do the following:

µD =
1

|D|
∑
x∈D

x

σ2D =
1

|D|
∑
x∈D

(x− µD)2

x̂ =
x− µD√
σ2D + ε

The problem is that we do not know µD or σ2D, nor can

we compute them as they will change as the network itself

changes during training. We overcome this by using the same

batch trick to estimate these values i.e. by computing them

for each batch during training. Once the network is trained,

we can then compute the true values and use those during

testing. We can even learn training parameters for scaling

and shifting the normalised vectors:

y = γx̂ + β

Backpropagation through this operation is outside of the scope

of these lectures, but is detailed in the referenced paper.
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ImageNet

The final dataset we will look at is the ImageNet dataset. It

consists of over 14 million images mapped to around 20,000

labels. The images are extremely varied, coming from a va-

riety of different sources all over the internet, and have each

been hand-labeled by a human.

Every year since 2010 there has been a challenge organised

around subsets of these images. In 2015, it was dominated

by Microsoft Research Asia [4].

Detection The algorithm has to specify for each image mul-

tiple classes (from a choice of 200) and their locations in

the image.

Team Name # Categories Mean AP

MSRA 194 0.621
Qualcomm Research 4 0.536
CUImage 2 0.527

Classification The algorithm has to specify for each image

to which class it belongs (from a choice of 1000)

Team Name Error

MSRA 0.0357
ReCeption 0.0358
Trips-Soushen 0.0458



Convolutional Neural Nets 18

ResNet

ResNet [1] used modular construction to assemble the deep-

est successfully trained neural network to date. The overall

structure of the network (in a 34-layer configuration) looks

like this:
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The bottom of each R block in that diagram is a neural net

in miniature of the following form:
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64x56x56

b
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b
n
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Note that while ResNet can be extrememly deep (with up

to 152 layers) the building blocks are the elements we have

already seen in these lectures. The essential techniques that

make the training of this network possible are batch normali-

sation and the shortcut structures, which enable the network

to selectively exclude blocks during training and then add

them in as they become useful.
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