
University of Cambridge

Engineering Part IB

Information Engineering Elective

Paper 8 Image Matching

Handout 4: Search

Reference
Images

Query
Image

BA

Result: A

Database

PREPARATION

OPERATION

Roberto Cipolla and Matthew Johnson

May 2018



2 Engineering Part IB: Paper 8 Image Features and Matching

Data Structures

The overarching goal of this system is to accurately retrieve a

source image from a database for each presented query image.

We have discussed ways of describing images succinctly, using

interest points and descriptors. Now we will discuss how to

use these descriptions for search and retrieval.

In the introduction to the course, the analogy of text retrieval

was used to introduce the way that we are going to achieve

our goal of image retrieval. The interest points, or “words”,

and their descriptors, or “definitions”, will be stored in a

database. With each query image, the system will extract

interest points and descriptors and then look in the database

for those interest points and descriptors which are similar.

The source image with the most matches is then returned.

While this system seems quite straightforward, there are two

problems which aren’t without a clear solution. The first is

how to define “similar” when the entities we are comparing

are multi-dimensional vectors. The second is how to store the

source image descriptions such that they can be efficiently

searched.



Finding Correspondences 3

Similarity and Searching

For the purpose of defining similarity, we have a multitude

of metrics to choose from. However, the most common used

is the L2 Norm, otherwise known as a Euclidean distance

metric, measured using the following formula

E(~x, ~y) =

√

∑

d

(~xd − ~yd)2

While this does work well for comparing the individual vec-

tors, without a data structure we must resort to searching

through all the feature points in the database images for the

best match of a query feature. This is called a linear search,

and is prohibitively expensive to compute. Instead, we must

find a way of storing the data to make searching faster.

A data structure organizes data such that it is more efficient

to store, access and search. The simplest data structure is a

list of items, such as an array of numbers. The most complex

are almost impossible to visualize. We will be looking, how-

ever, at tree-based data structures, and how they can applied

to tackling the problem of nearest neighbour retrieval.



4 Engineering Part IB: Paper 8 Image Features and Matching

Binary Search Trees

A binary search tree is a data structure which stores

scalar values in such a way as to make them very efficient to

search. It is a directed graph (meaning that it has nodes that

are connected with one-way connections) with the stipulation

that every node can only have one incoming edge and at

most two out-going edges. What makes them effective search

structures is the cunning way in which they are organized.

13

375

3 8 5416

1 4 7 12 15 6523 42

The left subtree contains nodes with values that are all less

than the current node’s value, and the right subtree values

which are all greater than its value. Therefore, to search, you

start at the root, and if your query value is less than the node

value you go left, if greater than, you go right. If you get to

the bottom and haven’t found your number, it isn’t in the

tree.

This way, instead of performing an operation for all N items

of data, you are only examining at log2N items, which is

significantly better!



Finding Correspondences 5

Binary Search Tree, cont.

The structure of a node is quite simple:

structure Node

{

scalar value;

Node leftLeaf;

Node rightLeaf;

}

The algorithm to search the tree is a while loop:

procedure search(Node root, scalar query) returns boolean

{

Node current = root;

while(current is something)

{

if(current.value == query)

return true;

if(query < current.value)

current = current.leftLeaf;

else current = current.rightLeaf;

}

return false;

}



6 Engineering Part IB: Paper 8 Image Features and Matching

Binary Search Trees, cont.

The procedure to add a new node to the tree is recursive:

procedure add(Node current, scalar value) returns Node

{

if(current is nothing)

return new Node(value, nothing, nothing);

if(value == current.value)

return current;

if(value < current.value)

current.leftLeaf =

add(current.leftLeaf, value);

else current.rightLeaf =

add(current.rightLeaf, value);

return current;

}

Let’s practice building a binary search tree. Here is a list of

numbers:

{16, 42, 8, 4, 23, 15}

Build a binary tree below:

16

428

15 234



Finding Correspondences 7

Metric Trees

Binary search trees are excellent, but in their current form

we can only use them for scalar values. Also, constructing

them so that they are optimal (balanced, with all subtrees at

logN length) is quite difficult. We need a way to generalize

the concept to vector values while retaining the property of

speedy search.

The answer to this problem is the metric tree. The way in

which a metric tree works is simple. At each level of the tree

you find the two data values which are furthest away from

each other (using some metric). A line is drawn between

those points, and all points in the space are projected onto

that line. All those between the midpoint and the “left” end

go in the left subtree, and the rest go in the “right” subtree.

The process is then repeated for the subtrees.

4 8 15 23 421 3 5 7 12 13 16 37 54 64

2.5

3.5

4.5

6.5

12

7.5 12.5

14

15.5

17.5

32.5

39.5

50.5

59

A metric tree in 1 dimension

In a metric tree, traversal decisions are made based on which

side of a hyperplane the query value falls on, and as such they

are scalable to any dimensionality.



8 Engineering Part IB: Paper 8 Image Features and Matching

Metric Trees

Here is an example of a two-dimensional metric tree. The

thickness of the lines indicates what level of the tree they

represent, with thicker lines being nearer the root. The circles

are the data points.

There are several problems with metric trees as a final solu-

tion to the need for a multi-dimensional search data structure.

Namely, its dependence on projection makes it particularly

slow to construct and algorithmically complex to model and

traverse. Thankfully, there is a better data structure which

has all the properties of a metric tree but without the hassle

in construction and traversal.



Finding Correspondences 9

K-Dimensional Trees

K-dimensional trees, or Kd trees as they are often referred

to, are a kind of metric tree. The difference is that while the

canonical metric tree uses a projection to a line between the

two farthest points and then comparing values against the

midpoint as its means of dividing the data into subtrees, the

Kd tree uses a hyperplane with one dimensional constraint.

We begin by collecting all the points assigned to a subtree.

We choose a dimension to split in, and a value to split at,

and then split the data into two groups, with those which are

less than the splitting value in the splitting dimension going

to the left subtree and the rest to the right subtree.



10 Engineering Part IB: Paper 8 Image Features and Matching

K-Dimensional Trees, cont.

The node in a Kd tree is similar to that in a binary search

tree:

structure KDNode

{

hyperrectangle bounds;

vector value;

int splitDimension;

scalar splitValue;

KDNode leftLeaf;

KDNode rightLeaf;

}

Traversing the tree follows the same mode as that used in

binary search trees:

procedure search(KDNode root, vector query) returns boolean

{

KDNode current = root;

while(current is something)

{

if(current.value == query)

return true;

if(query[current.splitDimension] < current.splitValue)

current = current.leftLeaf;

else current = current.rightLeaf;

}

return false;

}



Finding Correspondences 11

K-Dimensional Trees, cont.

Constructing a Kd tree is more complex, and cannot be ac-

complished piecemeal but must be done with all of the data

which will be stored in the data structure. At each subtree, a

method of choosing a splitting dimension and a splitting value

must be applied. The two standard ways of choosing the di-

mension are to either (A) use a round-robin system or (B)

to choose the dimension with the highest variance. Choos-

ing the splitting value is typically done by either (A) using

the mean value or (B) using the median value. Once a split

has been determined, the points are split into their sub-tree

groups and the process is repeated for each subtree.



12 Engineering Part IB: Paper 8 Image Features and Matching

K-D Trees

procedure BuildKDTree(list<vector> data)

returns KDNode

{

if(data.Count == 1)

return new KDNode(nothing, -1, 0, data[0],

nothing, nothing);

hyperrectangle bounds = constructHyperrectangle(data);

int splitDimension = chooseSplitDimension(data);

scalar splitValue = chooseSplitValue(data, splitDimension);

list<vector> leftData = new list<vector>();

list<vector> rightData = new list<vector>();

foreach(vector dataPoint in data)

{

if(dataPoint[splitDimension] < splitValue)

leftData.Add(dataPoint);

else rightData.Add(dataPoint);

}

KDNode leftLeaf = BuildKDTree(leftData);

KDNode rightLeaf = BuildKDTree(rightData);

return new KDNode(bounds, splitDimension, splitValue,

leftLeaf, rightLeaf);

}



Finding Correspondences 13

K-Dimensional Trees, cont.

Let’s practice by building a Kd tree using the round-robin

split dimension and the median point split value methods.



14 Engineering Part IB: Paper 8 Image Features and Matching

Nearest Neighbour Search

How do we use Kd trees for nearest neighbour searching?

Well, the first intuition is to simply use the query value as

our search query, descend the tree to a leaf, and then use the

value at that leaf as our nearest neighbour. However, there

is a problem with doing this.

The ‘X’ is our search point. The correct result is highlighted

in green, but were we to use our näıve approach, the returned

result is the point highlighted in red, which is obviously in-

correct.



Finding Correspondences 15

Branch and Bound Searching

In order to avoid the boundary problems we’ve just encoun-

tered, we must do a more thorough search of the Kd tree to be

certain that the true nearest neighbour has been found. This

is achieved using a technique called branch and bound

searching. As we descend the tree, we keep track of what

choices we have made. Then, after reaching the leaf, we use

the distance between the leaf value and the query value as an

upper bound on distance, and then search the brancheswe

ignored if the distance from the query value to that branch’s

hyperrectangle is less than the current upper bound. Every

time the algorithm reaches a leaf node, it updates the upper

bound to further prune the search.



16 Engineering Part IB: Paper 8 Image Features and Matching

Branch and Bound Searching

procedure BranchAndBound(KDNode root, vector query) returns vector

{

KDNode current = root;

list<KDNode> branches = new list<KDNode>();

vector nearestNeighbour;

scalar bound;

...

/// Store branches ///

/// bound from nearestNeighbour ///

...

foreach(KDNode branch in branches)

{

if(distance(branch.hyperrectangle, query) >= bound)

continue;

current = branch;

...

/// Store additional branches ///

/// update bound and nearestNeighbour ///

...

}

return nearestNeighbour;

}



Finding Correspondences 17

Approximate Nearest Neighbour

The problem with branch and bound searching is that it

can often prove exhaustive and inefficient. Indeed, as the

number of dimensions increases, an effect known as the curse

of dimensionality dictates that the number of branches which

need to be searched will increase until the search is practically

a linear search of the dataset. Given that descriptors like the

SIFT descriptor have over one hundred dimensions (typically

128D), this is a serious consideration.

The solution is to find a way of approximating the search.

In this case, we create a certainty/speed tradeoff, where we

trade certainty for increased speed. The approximate near-

est neighbour technique for Kd trees most commonly used is

called best bin first searching. It is a modified version of

branch and bound searching, in which the list of branches not

taken is modelled as a priority queue, in which the determin-

ing value is the distance from the query to the hyperrectangle

of the subtree. This way, the closest subtrees are searched

first, increasing the likelihood that the nearer neighbours are

found first and more branches are pruned. Also, once one of

the branches is too far away, the search can stop, as all sub-

sequent branches will be even farther away. Approximation

is implemented by limiting the number of leaf nodes visited.

Once the limit is reached, the algorithm stops.


