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Abstract. It is known that the deformation of the apparent contours of a surface under perspective projection
and viewer motion enable the recovery of the geometry of the surface, for example by utilising the epipolar
parametrization. These methods break down with apparent contours that are singular i.e., with cusps. In this paper
we study this situation and show how, nevertheless, the surface geometry (including the Gauss curvature and mean
curvature of the surface) can be recovered by following the cusps. Indeed the formulae are much simpler in this
case and require lower spatio-temporal derivatives than in the general case of nonsingular apparent contours. We
also show that following cusps does not by itself provide us with information on viewer motion.

1. Introduction

For smooth curved surfaces an important image feature
is the profile or apparent contour. This is the projection
of the locus of points on the surface which separates
the visible and occluded parts. See Fig. 1. Under per-
spective projection this locus—the critical set or con-
tour generator—can be constructed as the set of points
on the surface which are touched by rays through the
projection centre. The contour generator is dependent
on the local surface geometry (via tangency and con-
jugacy constraints) and the viewpoint. Each viewpont
will generate a different contour generator with the con-
tour generators ‘slipping’ over the visible surface under
viewer motion.

The family of contour generators generated un-
der continuous viewer motion can be used to rep-
resent the visible surface. Giblin and Weiss (1987)
and Cipolla and Blake (1992) have shown how the
spatio-temporal analysis of deforming image appar-
ent contours (profiles) enables computation of local

surface curvature along the corresponding contour gen-
erator (critical sets) on the surface, assuming viewer
motion is known. To perform the analysis, how-
ever, a spatio-temporal parametrization of image-curve
motion is needed, but is underconstrained. The epipo-
lar parametrization is most naturally matched to the
recovery of surface curvature. In this parametrization
(for both the spatio-temporal image and the surface),
correspondence between points on successive snap-
shots of an apparent contour is set up by matching
along epipolar lines. Namely the corresponding ray in
the next viewpoint (in an infinitesimal sense), is cho-
sen so that it lies in the epipolar plane defined by the
viewer’s translational motion and the ray in the first
viewpoint. The parametrization leads to simplified ex-
pressions for the recovery of depth and surface curva-
ture from image velocities and accelerations and known
viewer motion. It is especially suited to the recovery of
surface geometry by an active explorer making delib-
erate viewer motions around an object of interest and it
has been successfully implemented in various systems
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Figure 1. Perspective projection: the contour generator ¥ with a
typical point r, the image sphere with centre ¢ and the corresponding
apparent contour point ¢ + p. Thus p is the unit vector joining the
centre ¢ to the apparent contour point.

(Cipolla and Blake, 1992; Vaillant and Faugeras,
1992).

There are however several cases in which this
parametrization is degenerate and so can not be used
to recover the local surface geometry. The first case
of degeneracy occurs when the contour generator does
not slip over the surface with viewer motion but is fixed
to it. This is the case of viewing a 3D rigid curve at-
tached to the surface such as a surface marking. In this
case the epipolar parametrization successfully allows
the recovery of the structure of a space curve from im-
age velocities (it is analogous to stereo reconstruction
in the infinitesimal limit) but the surface orientation
is no longer completely defined but constrained to be
perpendicular to the curve tangent. This case poses no
special problems. In fact one advantage of the epipolar
parametrization is that it leads to a uniform treatment to
the recovery of depth for rigid space curves as well as
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the occluding contours of smooth surfaces, The formetr
can be simply treated as occluding contours with in-
finite curvature in the direction of the viewing ray—a
property which has been successfully used to discrim-
inate between fixed space curves and the occluding
contours of smooth surfaces.

Another case of degeneracy occurs at a point of the
surface-to-image mapping when a ray is tangent not
only to the surface but also to the contour generator.
This will occur when viewing a hyperbolic surface
patch along an asymptotic direction. For a transparent
surface this special point on the contour generator will
appear as a cusp on the apparent contour. For opaque
surfaces, however, only one branch of the cusp is vis-
ible and the contour ends abruptly (Koenderink and
Van Doorn, 1982; Koenderink, 1984). We call such
a surface point a cusp generator point and the corre-
sponding image point simply a cusp point. See Fig. 2.

The epipolar parametrization of the surface will be
degenerate at these cusp generator points since the ray
and contour generator are parallel and do not form a ba-
sis for the tangent plane. The epipolar spatio-temporal
parametrization under viewer motion of the apparent
contours can no longer be used to recover depth, surface
orientation and surface curvature at these points. Under
viewer motion the locus of the cusp generator points
on the surface defines the cusp generator curve. In the
vicinity of this surface strip the epipolar parametriza-
tion will be ill-conditioned and impractical.

The remaining cases of degeneracy of the epipolar
parametrization will not concern us here—they come
from singular contour generators (‘lips/beaks’ transi-
tions) and frontier points (where the epipolar plane is
tangent to the surface). See (Giblin and Weiss, 1995;
Giblin et al., 1994) for further details.

Apparent contour

Figure 2. Left: three viewing positions c(z), all of which produce cusps on the apparent contours because some viewline (ray) from c(t) is
tangent to the corresponding contour generator . The cusp generator curve is labelled L. Right: A single contour generator T as in the figure
above produces a cusp on the apparent contour when the viewline is tangent to .



Although the cusp points are difficult to detect by
photometric methods in video images of opaque objects
they are visible in the images of transparent objects and
in X-ray imaging. This is not to say that they are easy
to locate accurately: cusps tend to occur as a dark blur
even in an X-ray image. (There is such an image in
(Koenderink, 1990, p. 425).) But at least in principle,
cusp points offer the possibility of being detected and
tracked under viewer motion. Giblin and Soares (1988)
presented a first attempt to relate local surface geome-
try (Gaussian and mean curvatures and principal direc-
tions) to the image motion of cusps under orthographic
projection and planar viewer motion. We extend this
here to arbitrary nonplanar, curvilinear viewer motion
under perspective projection. We show how the image
motion of the cusp can be used to induce an alterna-
tive parametrization of the surface in the vicinity of the
cusp generator which can be used to recover surface
depths and orientation. Remarkably this leads to sim-
plified formulae for surface curvature which require
only first-order temporal derivatives. Furthermore our
simulations suggest that the formulae are fairly robust.
The computation of surface curvature at non-singular
apparent contour points requires second order spatial
and temporal derivatives.

We also investigate the problems and ambiguities in
attempting to recover egomotion from the image mo-
tion of cusp points and present the results of some simu-
lated experiments. We indicate how global information
can be obtained with certain special classes of surface
and give one example; a more detailed treatment of
this topic will appear elsewhere (Fletcher and Giblin,
1996). Some of the results in the present paper were
announced in (Cipolla et al., 1995).

2. Viewing Geometry and Parametrization
of the Surface

2.1.  Spherical Perspective Projection

Consider the perspective projection of a point on a
smooth surface M with position vector r. The direc-
tion of a ray to the point on a smooth surface can be
represented as a unit vector p defined by

r=c+Ap (1)

where A is the distance along the ray to the viewed
point and ¢ is the position of the projection centre of the
viewer. This is equivalent to considering the imaging
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device as a spherical pinhole camera of unit radius. See
Fig. 1.

For each viewpoint ¢, the apparent contour deter-
mines a family of rays p emanating from the projection
centre which are tangent to the surface so that

pn=0 @)

where n is the surface normal.

2.2, Parametrization Using Contour Generators

Movement of the viewpoint (projection centre) will
produce different contour generators on the surface M.
A moving monocular observer with position at time ¢
given by ¢(z), will generate a one parameter family of
contour generators, indexed by time. It is natural to
attempt a parametrization of M which is ‘compatible’
with the motion of the camera centre, in the sense that
contour generators M are parameter curves. That is, ‘¢
is to be one of the parameters on M’, and so we want
there to exist a regular (local) parametrization of M
of the form (u, t) — r(u, 1), the set of points r(u, f;),
for fixed #o, being the contour generator from viewpoint
c(to). The set of points p(u, tp) is the corresponding ap-
parentcontour in the unit sphere at the origin; the actual
apparent contour points in space are ¢(ty) + p(u, fp).
Note that (1) and (2) become

(i, t) =c(t) + Alu, )p(u, 1),
p(u, t).n(u,t) = 0. (3)

The conditions for such a parametrization to be pos-
sible are that

e I is not a frontier point, i.e., an epipolar tangency
point. Atafrontier point the epipolar plane (spanned
by the velocity vector ¢, () of the camera centre and
the viewline r — ¢) coincides with the tangent plane
to M. This causes the contour generators to form
an envelope on M; see (Giblin and Weiss, 1995).
We shall assume ¢;(1).n £ 0, which implies ¢, (¢) is
not in the tangent plane to M: this rules out frontier
points.

e The contour generators are nonsingular curves.

In this paper we are chiefly concerned with singular
apparent contours, so we are avoiding only the situ-
ations of a ‘cusp on the frontier’ and of ‘lips/beaks’
singularities (Koenderink, 1990, p. 458). In the lat-
ter case, we can expect cusps to appear or disappear.
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A special case of this was investigated in (Giblin and
Soares, 1988, pp. 232-233).

Note that in the special case of the epipolar
parametrization (Cipolla and Blake, 1992), we have r;
parallel to p, and hence by differentiating (3) we have
p:» ¢, and p coplanar, i.e., [p;, ¢;, p] = 0. We shall
see later than when following cusps this triple scalar
product is never zero.

2.3, Viewer and Reference Coordinate Systems

Note that p is the direction of the ray in the fixed ref-
erence/world frame for 3-space. It is determined by
a spherical image position vector q (the direction of
the ray in the camera/viewer co-ordinate system) and
the orientation of the camera co-ordinate system rel-
ative to the reference frame. For a moving observer
the viewer co-ordinate system is continuously moving
with respect to the reference frame. The relationship
between p and q can be conveniently expressed in
terms of a rotation operator R(t) ((Cipolla and Blake,
1992, Section 2.4) where our p appears as Q and our

q as Q):
p = R(t)q. “4)

If the frames are defined so that instantaneously, at time
t = 0, they coincide, i.e.,

p(0) = q(0) (5)
and have a relative rotational velocity of £2(¢), then
Q2 Aq=Rq (6)

The relationship between temporal derivatives of
measurements made in the camera co-ordinate system
and those made in the reference frame is then given
instantaneously at time t = 0 by (differentiating (4)):

PP=q+QAq @)

where the subscripts denote differentiation with respect
to time and A denotes a vector product.

3. Static Properties of the Apparent Contour
and Its Cusp

3.1.  Tangents and Normals

It is well known (Cipolla and Blake, 1992) that the
surface normal is recoverable from one non-singular

apparent contour. We recall here the reasons for this
and go on to consider the case where the apparent con-
tour is singular.

From (3) we have

ry = Ayp + Ap.. (8)

Thus p A r, isparallel to p A p,. We have the following
easy consequences of this:

® p Ar, is parallel to the normal to M so long as p is
not parallel to r,,.

e p | r, if and only if the viewline is along the tangent
to the contour generator, which happens if and only
if the apparent contour is singular, i.e., if and only if
p. = O(since u — p(u, t) parametrizes the apparent
contour, and p, is along the tangent to the apparent
contour at a nonsingular point). This also occurs
if and only if the viewline is along an asymptotic
direction (Koenderink, 1990, p. 439),

e p Ap, is parallel to the normal to the apparent con-
tour provided p, # 0. Hence:

e The normals to M and to the apparent contour are
parallel in the general situation of a nonsingular
apparent contour,

At singular points we must look for a formula for the
(limiting) tangent direction other than p,, and conse-
quently a different formula for the normal from p A p,.

Proposition. Assume as above that p, = 0. Pro-
vided p,, # 0, which will always be so at an ordinary
cusp point, puy is in the direction of the cuspidal tan-
gent. (In fact it points ‘into’ the cusp.) See Fig. 3.

In particular p,,, is perpendicular top whenp, =0
and the normal to the apparent contour ( perpendicular
to the cuspidal tangent) is in the direction p A Pyy.

O

Figure 3. A cusp on the apparent contour, where p, = 0 and p,,
is along the cuspidal tangent.



(a) (b)

Figure 4. (a) Orientation of a cusp and its normals, (b) an opaque
surface where half the cusp is occluded.

Proof: See Appendix 8. a

Thus we have
pn=0,p, =0, ppp=0, pun=0, (9)

where the first equation always holds and the rest apply
to points where the apparent contour is singular.

Suppose that the cusp is oriented, as in Fig. 4(a). At
nonsingular points we can follow the usual convention
of turning to the left from the oriented tangent to obtain
the oriented normal. However the two limiting normals
at the cusp are then opposite in direction. On the other
hand, when a surface projects to acusp, as is sketched in
Fig. 4(b), the ‘outward’ normals to the surface project
in the image to normals which have the same limit as the
cusp point is approached. If the surface M is opaque
then one side of the cusp is hidden (dashed in Fig. 4(b)).
If we know which way the surface is folded above the
cusp then we can identify which way the projection of
this outward normal to M points.

Later (see Section 4.2, Note 3) we shall give a way
of determining, from the image, the projection of a
particular normal. For the moment we note only the
following.

Note on the Orientation of r,. Orient the visible
branch of the cusped apparent contour as shown in
Fig. 4(b) (into the cusp point py), which corresponds
to the point ry on the surface, say. On the surface the
contour generator can be oriented so as to correspond
with the chosen orientation of the apparent contour.
The oriented tangent at ry to this contour generator
then points in the same direction as p, that is, r, is a
positive multiple of p, which from (8) is the same as
saying that &, > 0.

3.2. A Static Formula for the Gauss Curvature

There is a well-known ‘static’ formula for the Gauss
curvature K of a surface in terms of the (geodesic)
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curvature «” of the apparent contour on the image
sphere and the ‘transverse’ curvature «' of the surface,
that is, the normal curvature of M in the direction of
the visual ray. The formula, due to Koenderink (see
(Cipolla and Blake, 1992, p. 92)) is

K =«"k" /A,

In the situation of a singular apparent contour the
numerator takes the form K = co x 0 since an ordinary
cusp has infinite curvature and the normal curvature of
a surface in an asymptotic direction is always zero.
It is still possible to make a sensible analogue of this
when the apparent contour is singular (this was done
in a special case in (Giblin and Soares, 1988), Prop. 8).
In fact writing p for 1/«k? it can be shown that for an
ordinary cusp the limit of p is O while that of d /ds (p?)
is finite, and nonzero. Here, s is arclength along the
cusped curve. Thus the appropriate thing to do is to
write K2 = (k')?/(A*p?) and then to use I"Hépital’s
rule to deduce that K is the negative square root of the
limit of

Lt
A2L(p2)

4. Dynamic Analysis

In this section we show that by following the cusp tra-
Jectory in the image, we can reconstruct a surface strip
together with the second fundamental form of the sur-
face along that strip. The cusp trajectory is defined by
p. = 0, where, as before, p is a function of two vari-
ables ¢ and u. The corresponding set of points in M is
called the cusp generator curve.

4.1.  General Properties of the Cusp Trajectory

It should be noted straight away that the epipolar
parametrization of M, where r, is parallel to p (com-
pare (Cipolla and Blake, 1992, p. 90)) cannot be used
in a neighbourhood of cusp points. This is because the
contour generator t = constant on M, and hence the
Vector 1y, is actually parallel to p at a point giving a
cusp on the apparent contour. We cannot have r, and
r, parallel for a regular parametrization of M. In par-
ticular, the formula (31) in (Cipolla and Blake, 1992)
for the normal curvature «* fails at cusp points, where
kKt =0.

Proposition.  Assume thar p, # 0 and that all cusps
are ordinary, so that p,, is certainly not zero (compare
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the Proposition in Section 3.1). Assume further that
Puu Is not parallel to p,. (All these conditions will hold
generically.) Then

(1) the cusp trajectory in the image and the cusp gen-
erator curve on M are smooth and parametrized
by t,
(i) the cusp generator curve on M is transverse (non-
tangent) to the contour generators,
(iii) The velocity vector of the cusp in the image sphere
is equal to the vector p,.
(iv) The normal component of acceleration along the
cusp trajectory in the image is given by p;;.n.

Proof: See Appendix 9. Note that if p,, is parallel
to p, then either the surface point r is a frontier point
(epipolar tangency point) or the apparent contour is un-
dergoing a ‘swallowtail transition’ (Koenderink, 1990,
p. 458). The latter implies that, on the surface, the
cusp generator curve is tangent to the contour genera-
tor. More details of this kind of situation can be found
in (Giblin and Weiss, 1995). O

We can make immediate use of the above Proposition
to customize slightly the parametrization of M. In fact,
we can choose the smooth cusp generator curve on M
as the curve u = 0 in our parametrization of M; see
Fig. 2, where this curve is marked L. This has the
advantage that we have p, (0, t) = 0 for all values of #,
so that differentiating with respect to ¢ (for which we
can put 4 = 0 first) we obtain

Pur = 0 (10)

along the cusp trajectory in the image.

4.2, Surface Geometry by Following Cusps

Using (3) we obtain by differentiation and use of (9),
(10) the following formulae which hold at cusp points:

r=c+ Ap,
ry = Ayp
r, = ¢ + Ap + Apy,
Ty = Al + APuus
Ty = AP + AuPrs
Ty = €y + 20p: + Ayp + Apss- (1)

Using these formulae, and standard methods given
for example in (O’Neill, 1966, pp. 210-213), we can

find expressions for the Gauss curvature and mean cur-
vature of M at points of the cusp generator curve. We
state these formulae here, and make comments on them
below. The proofs are in Appendix 10.

Clearly these formulae can be transformed into
rotated viewer coordinates using the formulae in
Section 2.3,

Proposition.
_ —(p:m)*
[p. ¢, pe]?
e p:-n(¢;;.n p;.n — ¢;.n p;;.n — 2p.c;(p,.n)?)

2[p, ¢, p; 12

Notes on the Formulae.

1. Recall that the standard formula for K (see (Cipolla
and Blake, 1992, Section 4.3)) depends on second
temporal derivatives of camera position and image,
and also on the curvature of the image. Itis therefore
a striking feature of the above formula for K that it
lacks second derivatives. Using the special geome-
try of cusp points, we have obtained a formula for
Gauss curvature which depends on the first deriva-
tives of the motion only.

2. Note that the denominator of the expressions for K
and H cannot be zero (provided our assumptions,
as in Section 2.2, hold); this is the opposite situation
to that of the epipolar parametrization, where it is
always zero.

3. The normal n in the above formulae is assumed to
be in the direction of r, A r,. It is not immediately
clear that this direction can be found from the image.
However, we show in Appendix 11 that we find
the direction, at any rate for an opaque surface, as
follows.

Orient the visible part of the apparent contour to-
wards the cusp point, taking r, therefore to be a
positive multiple of p; compare the note on orienta-
tion in Section 3.1. Choose a normal n at the cusp
point and consider the sign of [p, ¢, p;1/p;.n. The
chosen normal is along r, A r, (i.e., a positive mul-
tiple of this) if and only if this sign is positive. Thus
the sign of H is unambiguous in the above formula.

4. Once we have the Gauss and mean curvatures at a
point where the apparent contour gives a cusp we
have essentially determined the second fundamental
form of the surface at that point (see below). Thus
by following cusps we can recover a surface strip



along the cusp generator curve, together with the
second fundamental form of the surface along that
strip.

Think of a surface in ‘Monge form’, z = f(x, y)
with f, fi, f, all vanishing at x = y = 0, so that
the tangent plane to the surface at the origin is the
plane z = 0. Let one asymptotic direction be along
the x-axis. Then the surface has the form

1
7= E(fo_,.xy + f}.}.yz) + higher order terms,

the derivatives being evaluated at x = y =0. Know-
ing K=—f2 and H= f,,/2 we know the sec-
ond order terms, and hence the second fundamental
form, apart from an ambiguity of sign in f;,.

In fact, in our situation of working at the cusp
points, we can eliminate this ambiguity. This is
sketched in Appendix 12.

5. Note the interpretations of p,.n and p;,.n as the nor-
mal components of velocity and acceleration along
the cusp trajectory, as in the Proposition in Sec-
tion 4.1, (iii) and (iv) above. An equivalent expres-
sion for the denominator of K is given in Lemma 2
in Appendix 10. Since p A p; is along the normal,
n. say, to the cusp trajectory, we could also write
this denominator as (n,.c,||p,|)2.

6. A special case of the formulae above for K and H
was obtained in (Giblin and Soares, 1988). Tt can be
shown fairly readily that these special results follow
from ours.

7. In fact the formulae of the above Proposition do
not depend on following cusps, merely on starting
at a cusp point. The instantaneous veclocities can
be measured for any surface curve parametrized by
time ¢ and starting at this point and the formulae
then hold at this point.

4.3.  Image Velocity of a Cusp Point

Finally in this section we consider the image veloc-
ity of the cusp. Recall from Section 4.1, (iii) of the
Proposition, that we can measure p, by measuring the
velocity of the cusp along its trajectory in the image.
Now write t for the tangent to the cusp, which we can
define as n A p. We have

(p;-m)(c;.t) — (c;,.m)(p;.t) = (tAm) Ac,).p,
= [p, ¢, p.].
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Epipolar line

Figure 5. Moving cusp versus surface marking (large dot): the
marking moves along the epipolar line while the cusp has relative
motion along the tangent of magnitude ¢, .n/(A2,/(—K)).

Recall the standard depth formula (Cipolla and
Blake, 1992)

(12)

Rearranging and using (12) and the Proposition in Sec-
tion 4.2 we find:

Proposition. The components of image velocity of
the cusp are given by

c;.n
p:n= —T,

c,.t c.n
p{.t= =m—— :':

A A=K
where the sign, %, is that of [p, c;, p,].

Note that the formula for p,.n is the same as we would
get by following the end-point of a surface marking,
rigidly attached to the surface, while the first term of
p;-tis the one we should expect from a surface marking.
The second term represents the contribution of the sur-
face, when we are following a cusp, which is not rigidly
attached to the surface. If K islarge, then this term is in-
significant; the limiting case of ‘K = oo’ corresponds
to that of a space curve or surface marking. See Fig. 5
which illustrates schematically the cusp moving away
from the epipolar line in the image sphere, here drawn
as a plane.

5. Motion Constraints

In this section we address the question: given only the
locus of apparent contour cusps in the image sphere
(using say the rotated q coordinates), can we place any
constraints on the viewer motion? In fact we show that,
using the locus of cusps as a parametrized curve q(t)
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in the sphere, and using also the normal lines to the
cusps, there cannot be any constraint on the motion.
Explicitly, we claim the following, where ¢ is a real
number lying in some (small) openinterval t; < t < 5.

Theorem. Suppose that (1), n(t) are given smooth
Jamilies of orthogonal unit vectors, that R(t) is a
smooth family of 3-dimensional rotations, and that ¢(t)
is a smooth space curve. Then we can find a smooth
surface M in 3-space for which q(t) is the locus of
cusps of apparent contours arising from camera cen-
tres ¢(t), with rotated coordinates q(p = R(q) in the
usual notation) and R(t)(n(t)) is the normal to the
apparent contour at the cusp point.

Proof: Letp(t) = R(t)q(r) and replace alson by its
rotated form R (¢)n(r) (we shall continue to use n). We
then seek a surface M with the following properties:

o for cach ¢, there is a point r(r) = ¢(¢) + A(1)p(f) on
M for some A(1),

e the normal to M at r(¢) is n(z),

e for each 7, the vector p(¢) is in an asymptotic direc-
tion at r(z) (this ensures that the apparent contour
at ‘time’  has a cusp at the apparent contour point
e(t) + p(2)).

There is no choice for the function A, since we require
(using subscripts to denote differentiation as usual)
r; = ¢ + Ap; + Ap, and since n(z) is required to
be normal to the surface, we deduce the usual formula

A(f) = —c;.n/p;.n, (13)

noting here that p is a function of one variable ¢, since
it gives the position of the cusp (in unrotated p coordi-
nates).

We now have a space curve r(t), and, along that
curve, we shall require our surface M to have normal
n(t) (for this is parallel to the apparent contour normal
in the unrotated coordinates). This gives us a ‘surface
strip” in the language of Koenderink (1990).

The final requirement on M is that, at each point
r(r), an asymptotic direction is in the specified direc-
tion p(¢). This amounts to saying that, in the direction
p(t), the sectional curvature of M is zero, that is the
section of M by the plane through r(¢) containing p(t)
and n(r) has an (ordinary) inflexion at r(z). There is
no difficulty in constructing an M with this property,
so long as the asymptotic direction does not actually
coincide with the tangent to the curve r(¢). But in that

case it is easy to check that the locus of cusps p(#)
in the image sphere would be singular. (Another way
of thinking of this reconstruction is to say that we are
specifying the second fundamental form of M at each
point of a curve on M, for specifying one asymptotic
direction and the derivative of the normal in a different
direction (along the curve) is precisely enough to fix
the second fundamental form. Of course there is no
claim here that the surface constructed is unique, away
from the curve r(z).) O

6. Experiments

‘We have performed many simulations using the method
of following cusps, and we briefly describe here some
of them. In the first, we seek only to recover the Gauss
curvature from a cusp locus in the image sphere, while
in the others we assume that the object surface is of
a special kind and use cusp tracking to do a global
reconstruction of the surface. We have reported on
these global experiments in detail elsewhere (Fletcher
and Giblin, 1996). We regard the present series of
experiments as a first attempt to test the viability of
the above theory; in particular we do not claim to have
overcome the technical problems of locating cusps, or
contour-endings, in images.

The method adopted for the experiments is as fol-
lows. Rather than taking an explicit surface and cam-
era motion, and calculating the cusp generator curve
and cusp locus, we used the result of Section 5 which
says that we can take a cusp locus p(z), normal vectors
n(¢) and camera motion ¢(¢) and be sure that there is a
surface ‘out there’ which fits this data. For simplicity
c(t) was taken as a straight line. The cusp locus was
always taken as an explicit curve in the image sphere,
given in terms of ‘latitude’ 8 and ‘longitude’ ¢:

p(t) = (cosf cos ¢, cosf sin g, sin ).

Here 8, ¢ are functions of t which can conveniently be
taken to be simple polynomials. We also took a family
of normal vectors n(¢) (subject only to the condition
that n(r) had to be perpendicular to p(t)).

To simulate the uncertainty in the position of the
cusp, we added noise to the cusp positions p(¢). Thus
we thought of each cusp as a blurry circular blob sur-
rounding its actual position, and we took a random po-
sition inside this blob as the measured position of the
cusp. It seems to us probable that the blob would be,
in real life, more elliptically shaped, with the long axis
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Figure 6. A cusp locus on the image sphere, given by latitude and longitude. Noise has been added to the data and the noisy data fitted by a
polynomial curve. Because of the method of simulation we have not shown the cusped profiles themselves.

along the tangent to the cusp: there should be greater
uncertainty in this direction than in the normal direc-
tion. We took some account of this in decreeing that
the uncertainty in the normal n(¢) should be smaller
than that in the position p(t).

Thus we produced a scattering of a large number
of points which represented the measured positions of
the cusp: see Fig. 6, whichis a picture of the 8, ¢ plane
parametrizing the sphere. In order to use the formulae
of Section 4.2 we had to fit a curve to all this noisy data
30 that derivatives could be calculated. In practice it
would be necessary to try various degrees of polyno-
mial to fit the data; because the cusp loci produced in
dur experiments were not very wavy, we found that a
least-squares fit parametrized curve in which each co-
ordinate 6, ¢ was of degree 4 in the parameter worked
very well, and in fact degree 3 was nearly as good. The
‘esult of fitting a curve is also shown in Fig. 6; as can
Je seen, the fitted curve is a reasonable approximation
0 the original cusp positions, though the fit naturally
recomes steadily worse as the noise is increased. The

fitted curve was used to calculate the derivatives used
in the formulae of Section 4.2. Even when the fitted
curve is a good approximation to the cusp locus, we can
expect the derivative of the fitted curve to be a worse
approximation to the true derivative. Luckily, using
our formulae, only first derivatives are needed. This
seems to contribute to the relative robustness of the
method.

A similar curve-fitting exercise turned the noisy nor-
mal vectors into a curve in the 8, ¢ plane. For these
experiments we took it that ¢(r) was known exactly.

6.1. Recovery of Gauss Curvature

In these experiments, we calculated the exact Gauss
curvature of the simulated surface along the cusp gen-
erator curve using the formula of Section 4.2. Note
that, since we took a closed form for p(r), we could
calculate the derivatives p, explicitly in this exact cal-
culation.
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Figure 7. The results of several simulations, each with increasing amounts of noise, showing the resulting relative percentage error in measurin g

Gauss curvature.

As above, curves were fitted to the noisy cusp
and normal data and these curves used to calculate
the approximate Gauss curvature of the surface.
In this, it is an advantage that only first deriva-
tives are needed, in contrast with the formulae of
(Cipolla and Blake, 1992). In Fig. 6 we show a typical
cusp locus in the ¢, 6 coordinate plane (angles being
in degrees!), and the noisy data together with a curve
fitted to this data. In Fig. 7 we show the results of
about 10 experiments with different cusp and normal
loci, for each of which we took an increasing amount of
added noise. That is, the measured cusp positions were
assumed to lie at random positions in steadily larger cir-
cles centred at the actual cusp points. Ignoring the ends
of the cusp locus, if we take a typical width to be about
40°, then a noise level of 1° in each of the angular co-
ordinates represents a maximum error of about 1.5° or
nearly 4%. Thus each true cusp point is surrounded by
a blurry region of angular width about 4% of the total
angular spread of the cusp locus in the image sphere.
The ‘estimated position’ of the cusp is a random point
within this blurry region. This seems typically to pro-
duce about a 10% error in the Gauss curvature, still

giving useful surface information. Further the error
does not appear to increase more than linearly with the
maximum noise.

In terms of pixels, for a camera with a focal length
of 20 mm and pixel density of 500 pixels per 5 mm,
we find that an angular separation of 0.03 degrees is
about 1 pixel. So it will be seen that we are taking
very large noise levels in these experiments, to allow
for the known difficulty in localising cusps and contour
endings.

6.2. Special Classes of Surface

There are several special classes of surface where ‘fol-
lowing the cusp’ can given global information. We
give a few details here of three of these special classes;
detailed experiments and results are reported on else-
where (Fletcher and Giblin, 1996). Although this is
an ‘experimental’ section, we also need to establish
a few theoretical (and not completely standard) facts
about special surfaces in order to apply our methods to
global reconstruction.



Ruled Surfaces. We use the formulae of Section 4.2 to
find both the Gauss curvature K and the mean curvature
H of the surface along the cusp generator curve. A ruled
surface consists of straight lines, usually called ‘gener-
ators’ but here we use the word ‘ruling’ to avoid confu-
sion with contour and cusp generators. Recall that, at
each point, one asymptotic direction on a ruled surface
is along the ruling through that point. In our case, the
other asymptotic direction is along the view direction,
since we are viewing cusps of apparent contours, and
we can make use of a well-known formula for the an-
gle @ between the asymptotic directions on any surface:
tana = +/—K/H. (See (O’Neill, 1966, p. 225).) Our
angle o is 2% where ¥ is the angle in (O’ Neill, 1966).
Also K = kiky, H = 1(ki + k2) where ki, k, are
the principal curvatures. The formula for tan « follows
easily from this and the formula tan® 9 = —k;/k; in
(O’Neill, 1966). The tangent plane to the surface is
spanned by the vectors p and p An, p being along the
viewline which is asymptotic. The other asymptotic
direction, along the ruling, is therefore

pcosa + p Ansina.

It is an easy matter therefore to construct the ruling
through each surface point.

We have done this for various ruled surfaces, adding
noise to the image and estimating the ruling from this
noisy data. The derivatives involved were estimated by
the same method as in Section 6.1. Note that we now
need second temporal derivatives of p in order to use
the formula for H in Section 4.2. Even with substantial
amounts of noise (a maximum angular error of 1.5° in
an angular width of around 50°) we still found that the
reconstructed surface was a useful approximation to
the original. We have tried to illustrate this in Fig. 8
which shows the true surface as a shaded and opaque

Figure 8. Ruled surface and its reconstruction from the cusp locus.
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Figure9. Projection of aruled surface showing a cusp on the profile:
on the left the surface is opaque and the cusp is an apparent contour
ending, while on the right the surface is transparent and the cusp is
at the left of the central darker area,

surface and the reconstructed ruling as black lines. In
Fig. 9 we show an image cusp in a projection of a ruled
surface, in opaque mode (left) and transparent mode
(right, where the cusp can be seen at the left of the
central darker area).

Surfaces of Revolution. Surfaces of revolution have
circular ‘parallel sections’, namely the sections by the
family of parallel planes all of which are perpendicular
to the axis of revolution. It can be shown that, if there
i$ a cusp generator point on a particular parallel section
then there will be exactly one other such point on that
section: the cusp generator points occur in pairs. In the
image we therefore have pairs of cusps corresponding
to points on the same parallel section. If there are
more than two cusps in one image then we can assist
the pairing by calculating the Gauss curvature, which
will be the same at the pair of points on the same sec-
tion. Reconstructing the cusp generator points in pairs,
using the distance formula (13), we can find the surface
normals at these points. These will theoretically inter-
sect on the axis of revolution; in practice we can find
their points of nearest approach and estimate the axis,
and hence the radius function. It is also possible to
use a method similar to that in Section 6.2 to estimate
asymptotic directions as a check on the calculations.

Tubular Surfaces. A tubular surface (canal surface) is
obtained from a ‘core’ curve C by taking a circle of
fixed radius r in the normal plane to C at each point.
These circles sweep out the tubular surface. If K, H
are as usual the Gauss and mean curvatures of such a
surface then it can be shown that

HE++H?—K

K

r=
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Now K and H can be estimated by following cusps,
using the formulae of Section 4.2, and hence the ra-
dius can be estimated. As a rule the ambiguous sign
in r can be eliminated by using more than one circle,
since r must have the same value for each. Further, we
can obtain the second asymptotic direction (besides the
viewline), as in Section 6.2, and hence the principal di-
rections at the cusp generator points, since these bisect
the two asymptotic directions. One of these principal
directions is along the tangent to the circle of radius r,
so up to a choice of principal directions we can recover
the circle itself and hence the tubular surface.

7. Conclusions

In this paper we have shown how to recover a strip of
surface and its second fundamental form in the vicinity
of the cusp generator curve by following cusps under
known viewer motion. The epipolar parameterisation
which has been successfully exploited to recovery sur-
faces at non-singular profile points is degenerate at
cusps and ill-conditioned in their immediate vicinity.
Cusp points, however, have the advantage that they can
be tracked under viewer motion and this was used to
induce an alternative parameterisation based on the tra-
jectory of the cusp in the image and the cusp generator
curve on the surface. This yields alternative expressions
for the recovery of depth, surface orientation and curva-
ture from known viewer motion and measurements of
the cusp point velocity and acceleration. Remarkably
the expressions for Gaussian curvuture are extremely
simplified, only depending on image velocities.

Following cusps can also be used to discrimi-
nate them from surface markings. Unlike a surface
marking—whose projection is constrained by the
epipolar constraint to epipolar lines/great-circles in
consequent images—a cusp point has an additional
component of image motion along the cuspidal tangent
which depends on surface Gaussian curvature. Cusps
will not generally project onto the epipolar lines/great-
circles induced in new viewpoints and this can be used
in their discrimination.

We have given simulated experiments showing how
the measurement of Gauss curvature and the recon-
struction of ruled surfaces is affected by noise in the
image. Other classes of surface (tubular surfaces, sur-
faces of revolution) can also be reconstructed globally
using cusp tracking.

Can following cusps be used to constrain the viewer
motion? Unfortunately we have seen that, irrespective

of the number of cusps which can be detected and
tracked, their image trajectories alone can not be used
to determine viewer motion. However it seems likely
that constraints on viewer motion are available from the
image motion of the apparent contour. Frontier points
or epipolar tangencies—a third degenerate case of the
epipolar parameterisaton—provide constraints on ego-
motion even though the contour generators are not fixed
in space. A very special case was covered in (Giblin
etal., 1994). Efficiently detecting these in the presence
of arbitrary viewer translations and rotations remains
to be investigated, but preliminary results, reported in
(Cipolla et al., 1995) are encouraging.

It is tempting to track T-junctions in the hope that
they provide additional information in the same way
that cusps do. The T-junction can be tracked and
its velocity obtained in any direction. Unfortunately,
tracking a T- junction does not appear to give us any ad-
vantage over using the two separate branches of the T.

For a single branch of apparent contour, the speed
normal to the apparent contour can be measured and,
in the fixed p coordinate system, is p,.n. For a moving
T-junction, we can measure the speed of the junction
and so deduce the tangential speed of the apparent con-
tour. However, when the two branches of the apparent
contour are transverse (non-tangential), we have two
normal velocities which can be measured, namely,
those in directions normal to the two branches. Calcu-
lation shows that the formula obtained from these two
measurements for the tangential velocity is identical
with the formula obtained from tracking the T-junction.
Thus by equating the two ways of obtaining the tangen-
tial velocity we cannot deduce any information about
the motion or the surface.
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Appendix
8. Cuspidal Tangent

Here, we prove the Proposition in 3.1. At nonsingular
points of the apparent contour the tangent direction is



that of p,, or of the unit vector p, = p,/|p.||. Note
that at an ordinary cusp the limit of this does exist. By
I’Hopital’s rule, the limit coincides with the limit of
Puu/Pu-Puu, the denominator here being the derivative
of [|p./l. Now at an ordinary cusp, by definition, the
second and third derivatives p,,, pyu, are independent
(compare (Bruce and Giblin, 1992, p. 155)), and in
particular p,, is non-zero. Thus the limit of the above
expression has direction that of py,, i.e., the limiting
tangent has the latter direction.

9. Cusp Trajectory

Here, we prove the Proposition in 4.1.

(i) Consider the function

g(‘u! t) = [Pa Pus Pt],

the quantity on the right being a scalar triple prod-
uct. Then certainly the values of (u,t) giving
cusps are contained in the set of zeroes of g. Fur-
thermore with the hypotheses of the proposition, ¢
can be used as a parameter on g = 0, for, at points
where p, = 0, we have g, = [p, Puu, p;]. This
is zero if and only if p, p,, and p, are coplanar.
But by hypothesis these vectors are all nonzero,
and the second and third are both perpendicular to
p. So coplanarity is equivalent to p,, || p;- Thus
&u # 0 and the implicit function theorem says
that ¢ is a parameter on g = 0.

We now need to project ¢ = 0 to the image
sphere, that is consider p(g~!(0)), and ask when
t is a parameter on this set, which is the cusp tra-
jectory in the image sphere. This trajectory will
be smooth provided there is no nonzero vector ly-
ing in both the kernel of Dg(u, t) and Dp(u, 1),
D standing for derivative map. Taking local coor-
dinates on the image sphere, it is not hard to check
that the condition for smoothness is just the same
as g, # 0.

(ii) Letting 8(t) = r(U(t), t) be the cusp generator
curve on M, we have §' = r, U/’ + r,. The tan-
gent to the contour generator is simply r, in this
notation, and 8’ Ar, = r; Ar, # 0, since u, t do
form a regular system of local coordinates on M.

(iii) Note that p, (U(), t) = 0 for some function U,
and, differentiating with respect to 7,

d
E;(P(U(!),t)) =pU'+p =pr, (14)
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at all points where p, = 0. The first term in this
equation is by definition the velocity of the cusp,
along the cusp trajectory, and this equals the last
term p;.

The ‘bad situation’ is when this tangent is along
the cuspidal tangent itself, i.e., when p,, is paral-
lel to p; (or indeed when p, = 0). Then we may
expect the cusp trajectory itself to have a cusp.
Note that the set g = 0 includes, besides the cusp
points of apparent contours, those points where p,,
is parallel to p,. Thus our result shows that, with
the hypotheses of the proposition, all these sets
are smooth. The set p, || p; is the set of envelope
points of apparent contours in the image sphere.

(iv) We have

dZ
FP(U(IL 5) et PuUrI'i'puu(U’)z

+ 2p£u U’ + Prt-

Now under our assumptions, p, and p;, are both
Zero, so, at points of the curve of cusps, we have

2
EEP(U(”’ 1= ll'm.g(Ur)2 + Pus-

Note that the left hand side, that is the acceleration
of the cusp point, is not equal to p,;: there is a
component in the direction of the tangent line to
the cusp, which is along p,, by the Proposition
in Section 3.1. However, if we take the scalar
product with the normal vector n we have (see

(€)2

d2
(EP(U(I)’ t)).n = py.N.

as required.

10.  Formulae for K and H

Here, we prove the Proposition in Section 4.2.
The formulae in (O’Neill, 1966, pp. 210-213) for
Gauss curvature K and mean curvature H are:

Lemmal. LetE =r, 1, F =1,1,, G = 1,.14,
L=rynM=ry,n N=r,n Then

_ LN - M?
~ EG-F%’

_GL+EN-2FM
T 2UEG — F?)
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Using (9) we find

b == Az,
F=r,r= ru(p-c: + 2,),
G=rr=(+MApt+ Apr)z- (15)

Hence the expression occurring in the denominators
of K, H is

EG — F? = )i ((e, + 2p)> — (pc)?).  (16)
Also

L =r,,n=\Ap,,n=0,
M =r,.n=\p;n,
N =r;.n = (¢ + 20,pr + Apy).n amn

It is noteworthy that when using the formulae of
Lemma 1 for K and H, the occurrences of A, and A,
all disappear. After using (12) to substitute for A in
(16), we want to simplify the expression

((p;-m)c; — (¢ -D)Pr)2 —(p.& p;.n)z. (18)

Lemma 2. The above expression (18) is equal to
each of

[p, e, pel* and e Ap 2

Note. This makes it obvious that the expression (16) is
positive.

Proof: First it is easy to check directly that the ex-
pression (18) is unchanged if we add any multiple of p
to the vector ¢,. From this it follows that we can replace
¢, by its projection, v say, to the plane perpendicular to
p. In that case the second squared term in (18) vanishes
and we are left with ((p,.n)v— (v.n)p,)?, which equals
(mA (v Ap;))%. Now v and p, are both perpendicular
to p, so v A p, is parallel to p and so perpendicular to
n. Hence

@A AP = lvAap|?
= ((vAp) P,

the last equality holding, again, because v A p; is par-
allel to p. We have reduced (18) to the forms in the
statement of the Lemma but with ¢, replaced by v.
However adding a multiple of p to ¢; does not affect
these forms, so the Lemma is proved. O

Now we can write down the formulae for K, H which
result from Lemmas 1 and 2. Of course, we continue
to assume that we are not working at a frontier point,
(see Section 2.2), so that p;.n and ¢,.n are nonzero.

11.  Orientation of Normals

Here, we prove the result of Section 4.2, Note 3. Using
the formulae for r,, r, in (11) we have

Iy AL = Ayp A (e + Apy)

at the cusp point. Now A, > 0 (see the note on orien-
tation in Section 3.1, and substituting for A from (12)
we find

c;.n
Iy, AT = ApA (€ — P:
p:.n
nA (¢, Apy)
P:-n

= AP A

1
= A, —(p, ¢;, p/In — p.n(e; Ap,))
p:.n

= A

1

[p, ¢, prlm,
p;.n
since p.n = 0. This applies for either choice of n, so
choosing n such that [p, ¢;, p;]/p;.n > O assures us
that n is a positive multiple of r,, A ry.

12, Second Fundamental Form

Here, we show how to remove the apparent ambiguity
in sign mentioned in Section 4.2, Note 4. Let us take
axes in the tangent plane to M (at a cusp point) alongr,,,
assumed here to be a positive multiple of p as in the note
on orientation in Section 3.1, and along r, A n, where
n is determined as in Section 4.2, Note 3. This corre-
sponds exactly to the placing of M in Monge form, as in
Section 4.2, Note 4. The ambiguity noted there amounts
to an uncertainty about the sign of II(r,, r, An). Re-
garding n as a function of u, ¢, this is n,,.(r, An). Now

nlr, Anll=r,Ar,

so that, differentiating with respect to u and dotting
with r, AT, we get

n.(r, Ary) ||ty Axel| = [ry, Axy, 1y, 0]

+[ry ATy, T, m].



But the second term is zero on expansion, using
ry.n = 0 and r,,.n = L = 0 (see Appendix 10). The
other term is similarly equal to M E, and E > 0 so the
sign in question is simply that of M, which is the sign
of p,.n since A, > 0. Hence the sign is unambiguous.

References

Bruce, J.W. and Giblin, P.J. 1992. Curves and Singularities. 2nd
edition, Cambridge University Press.

Cipolla, R. and Blake, A. 1992. Surface shape from deformation of
apparent contours, /nt. J. of Computer Vision, 9(2):83-112.

Cipolla, R., Astrom, K.E., and Giblin, P.J. 1995. Motion from the
frontier of curved surfaces. Proc. Fifth Int. Conf on Computer
Vision. Cambridge, Mass., pp. 269-275.

Cipolla, R., Fletcher, G.J., and Giblin, P.J. 1995. Surface geometry
from cusps of apparent contours. Proc. Fifth Int. Conf. on Com-
puter Vision, Cambridge, Mass., pp. 858-863.

Fletcher, G.J. and Giblin, P.J. 1996, Class based reconstruction of
surfaces from singular apparent contours. Proc. Fourth European

Following Cusps 129

Conf. on Computer Vision, Cambridge, U.K., April 1996, pp. 107—
L16.

Giblin, PJ. and Weiss, R.S. 1987. Reconstruction of surfaces
from profiles. First Internat. Conf. on Computer Vision, London,
pp. 136-144.

Giblin, P.J. and Soares, M.G. 1988. On the geometry of a surface and
its singular profiles. Image and Vision Computing, 6:225-234.
Giblin, P.J., Pollick, EE., and Rycroft, J.E. 1994, Recovery of an
unknown axis of rotation from the profiles of a rotating surface. J.

Opt. Soc. America, 11A:1976-1984.

Giblin, P.J. and Weiss, R.S. 1995, Epipolar curves on surfaces. lmage
and Vision Computing, 13:33-44. Epipolar fields on surfaces.

Koenderink, J.J. 1984. What does the occluding contour tell us about
solid shape? Perception, 13:321-330.

Koenderink, J.J. 1990. Solid Shape. M.L.T. Press.

Koenderink, J.J. and Van Doorn, A.J. 1982. The shape of smooth
objects and the way contours end. Perception, 11:129-137.

O'Neill, B. 1966. Elementary Differential Geometry. Academic
Press.

Vaillant, R. and Faugeras, O.D. 1992. Using extremal bound-
aries for 3D object modelling. Part. Recog. and Machine Intell.,
14:157-173.






