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Affine Reconstruction of Curved Surfaces from
Uncalibrated Views of Apparent Contours

Jun Sato and Roberto Cipolla

Abstract—in this paper, we consider uncalibrated reconstruction of curved surfaces from apparent contours. Since apparent contours
are not fixed features (viewpoint independent), we cannot directly apply the recent resuits of the uncalibrated reconstruction from fixed
features. We show that, nonetheless, curved surfaces can be reconstructed up to an affine ambiguity from their apparent contours
viewed from uncalibrated cameras with unknown linear translations. Furthermore, we show that, even if the reconstruction is nonmetric
{non-Euclidean), we can still extract useful information for many computer vision applications just from the apparent contours. We first
show that if the camera motion is linear translation (but arbitrary direction and magnitude), the epipolar geometry can be recovered
from the apparent contours without using any optimization process. The extracted epipolar geomsetry is next used for reconstructing
curved surfaces from the deformations of the apparent contours viswed from uncalibrated cameras. The result is applied to
distinguishing curved surfaces from fixed features in images. It is also shown that the time-to-contact to the curved surfaces can be

computed from simple measurements of the apparent contours.

Index Terms—Curved surfaces, affine reconstruction, uncalibrated recenstruction, apparent contours, epipolar geometry, time-to-

contact.

1 INTRODUCTION

FOR smooth curved surfaces, their apparent contours {or
profiles) are dominant in images and they are rich
sources of geometric information about the surfaces and
motions [9], [6], [22]. These are the projection of the locus of
peints on the surface which separate the visible and
cccluded parts on the surface (see Fig. 1). Under perspective
projection, this locus, the contour generator, can be
constructed as the set of points on the surface which are
touched by rays through the projection center.

The fundamental difficulty of recovering structure from
apparent contours lies in the fact that the apparent contours
are not fixed features. That is, the contour generator slips
over the surface under viewer motion and the apparent
contours observed from the different viewpoints do not
have any correspondence in general (see Fig. 1). Giblin and
Weiss [9] showed that if the camera motion is known and is
coplanar, the curved surfaces can be recovered uniquely
from their apparent contours. This result has been extended
for general camera motion by Cipolla and Blake [6] and
Vaillant and Faugeras [22]. For extracting curved surfaces
reliably, these results are combined with B-spline surface
patches [25], optimization processes [2], and with purposive
viewpoint control [16]. Unfortunately, all these methods
assume that the cameras are calibrated and their motions are
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known or controlled for a specific position. To cope with
unknown camera motion, Seales and Faugeras [21] derived
a method for classifying the fixed features from apparent
contours and estimating the camera motion from the
extracted fixed features. The method assumes that the
cameras are calibrated and some fixed features are visible
together with the apparent contours. The question is that, if
the camera motion is wnknown and if the camera is
uncalibrated, is it still possible to recover curved surfaces
just from their apparent contours?

It has been shown recently that there exist some points
on contour generators which are visible on both apparent
contours before and after the camera motion. Such points
are called frontier points [10], [20] and are visible from both
viewpoints (see Fig. 2). The epipolar plane is tangent to the
curved surface at the frontier point in 3D space and the
epipolar line is tangent to the apparent contour at the
projection of the frontier point in images, ie., epipolar
tangency [19]. Recent research [4], [1], [12] showed that, by
iteratively searching for the frontier points, we can recover
the epipolar geometry just from the apparent contours of
curved surfaces. Although these works showed the possi-
bility of recovering the epipolar geometry from apparent
contours viewed under unknown arbitrary motions of a
camera, the methods require nonlinear optimizations,
which are sometimes unstable and fall into local minima.

Recent progress [7], [11] in nonmetric reconstruction
showed that, if we have fixed features, their correspon-
dences in two views from uncalibrated cameras enable us to
recover 3D structures up to a 3D projective ambiguity.
Furthermore, it has been shown [18], [17] that, if the camera
has a fixed calibration matrix and its motions are limited to
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Fig. 1. Structure and motion of curved surfaces. The contour generaters
separate the visible and occluded parts on a surface. The projections of
the contour generators in images are apparent contours. The contour
generator slips over the surface under viewer motion and the apparent
contours ovserved from the different viewpoints do not have any
correspondence in general.

pure translations,’ the structure can be recovered up toa 3D
affine ambiguity. Unfortunately, we cannot apply these
results to curved surfaces directly since apparent contours
are not fixed features. To reconstruct curved surfaces from
uncalibrated cameras, a purposive control of camera
motions has been exploited under the assumption of
orthographie projections [13].

In this paper, we consider the reconstruction of curved
surfaces from uncalibrated views under perspective projec-
tions without knowing or purposively controlling camera
motions. We assume that the internal parameters of the
camera are unknown but fixed during the camera motions.
We also assume that the camera motions are unknown but
are limited to linear translations (pure translations in a fixed
direction). We show that, under these conditions, the
epipolar geometry can be obtained without using any
optimization method and the curved surfaces are recon-
structed up to an affine ambiguity just from the changes in
apparent contours, as in the case of fixed features. The
result is applied to labeling image curves as belonging to
the projection of curved surfaces or fixed features. We also
show that the partial reconstruction of curved surfaces
allow us to extract an important cue for visual navigation,
i.e., lime-to-contact to the curved surfaces, just from the
changes in apparent contours viewed from an uncalibrated
camera.

In Section 2, we define a camera model considered in this
paper. In Section 3, the epipolar geometry under pure
translations is investigated. In Section 4, the computed
epipolar geometry is used for recovering the structure of
curved surfaces from uncalibrated views. It is also shown
that the time-to-contact to the curved surfaces can be
computed from the changes in apparent contours. In
Section 5, a method for extracting epipolar geometry by

1. This condition is exactly the same as repeated structures observed in a
single view [18].
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Fig. 2. The epipolar plane defined by the two projection centers touches
to the surface at a frontier point. At this point, the contour generators
from two viewpoints intersect each other. In the images, the epipolar
lines are tangent to the apparent contours at the projections of the
frontier point.

using the Hough space is shown. The results of some
experiments are shown in Section 6.

2 CaAMERA MoDEL

We first define a camera model. Consider a point X € R* in
a 3D space observed with camera coordinates X' so that X
can be described by X’ € R? with rotation, R, and position,
T of camera with respect to the world coordinates:

X=RX +T. (1)

Suppose X' is projected onto an image point m = [z, 3, 17
by a pinhole camera whose internal parameters can be
described by a 3 x 3 upper triangular matrix, i.e., calibration
matrix, A [8]:

Am = AX/ (2)

where A is described by the focal length, f, horizontal and
vertical scales, k, and k,, skew, s, and the principal point, 2o
and yq of the camera:

Fky 8 >
A= 0 fk |- (3)
0 0 1

The scale factor, A, in (2) coincides with the depth to the
point with respect to the camera coordinates. In this paper,
we assume that the camera is uncalibrated but fixed, i.e., the
calibration matrix, A, is unknown, but it does not change
during camera motions.

3 EPIPOLAR GEOMETRY UNDER PURE
TRANSLATION

In this section, we discuss the recovery of epipolar
geomelry from apparent contours viewed from uncali-
brated cameras.
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(b}

Fig. 3. Epipolar geometry under linear translations. f the motion of the
camera is a linear translation, as shown in (a), the epipole, e, and the
epipolar lines, 1, in images from two viewpoints coincide as shown in (b).

Consider an uncalibrated camera, i.e., a camera whose
calibration matrix A is unknown. It is known that if the
camera motion is linear translation and the calibration
matrix A is fixed during the motion, then the corresponding
points observed from two different viewpoints are mufo-
epipolar [18], i.e., the epipoles and epipolar lines before and
after the camera motion coincide. Since the frontier points
on contour generators can be regarded as fixed features, the
above fact can be extended for the apparent contours
viewed from the same but uncalibrated cameras. Suppose
m? and m{ are the projections of a frontier point, X°, in two
views (i.e., before and after a translation). As shown in
Fig. 3, if the camera motion is linear translation and the
calibration matrix A is fixed:

Property 1. The projections of a frontier point, mY and m),

before and after the comera motion le on the same epipolar
line, 1.

Since the projections of a frontier point are observed as a
tangent point of an epipolar line to the apparent contour in
the image, we have the following properties:

Property 2 (Epipolar bitangency). A bitangent line to the
corresponding apparent contours cofncides with an epipolar
line, 1, and the bitangent points coincide with the projections of
a frontier point, mY and m).

(e

(c2)

Fig. 4. Epipolar bitangency. (al), (b1}, and {c1) show the three cases of
contour generators before and after a camera motion. (a2), (b2), and
(c2) show the intersections of apparent contours in these cases. The
dashed lines in (a2) and (b2) show bitangents. For finding bitangents
which correspond to frontier points, contour generators at two view-
points must intersect each other.

Thus, if the camera motions are limited to linear
translation and if A is fixed, epipolar lines, 1, and epipoles,
e, can be computed uniquely from the bitangency of
apparent contours.

However, bitangents which go through the projections of
frontier points do not always exist in images. For example,
when the camera is translating directly toward a sphere,
contour generators do not intersect each other, and there is
no bitangents on apparent contours (see Fig. 4cl and Fig.
4¢2). If there is no intersection of contour generators at two
consecutive time instants, there is no frontier point on the
surface. Hence, we have no bitangent which goes through
the projections of a frontier point in images. On the other
hand, if there is an intersection of contour generators at two
consecutive time instants, a bitangent which goes through
the projections of a frontier point always exists. The only
critical case is when the contour generators intersect
nontransversally {see Fig. 4b1). In this case, two apparent
contours intersect nontransversally, as shown in Fig. 4b2.
Nonetheless, it is possible to find a line which is tangent to
both two apparent contours at the projections of a frontier
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Fig. 5. The Infinitesimal motion, éX, of a point X caused by a camera
motion, 6T, is observed as an infinitesimal motion, ém, of the paint in the
image.

point. This line is aiso considered as a bitangent, since it is
tangent to both apparent contours (see Fig. 4b2). Thus, the
bitangents which go though the projections of frontier
points exist in images under linear translations, if and only
if the following condition holds.

Condition 1. The contour generators before and after a camern
motion must intersect each other,

As shown in Section 5, the bitangency can be extracted
efficiently by using the Hough space. As we will see in the
section, the above condition can also be characterized by
using the Hough space.

In the next section, we use the extracted epipole, e, and
the projections of frontier points, m, for reconstruction.

4 AFFINE RECONSTRUCTION oF CURVED
SURFACES

In this section, we show that, from given epipoles and
frontier points, we can, up to an affine ambiguity,
reconstruct curved surfaces from their apparent contours
viewed from uncalibrated cameras.

4.1 Epipolar Parameterization
To analyze the 3D surface geometry from the changes in 2D
image curves (apparent contours), we must identify the
correspondences between the successive apparent contours
and 3D surfaces. To do this, the epipolar geometry is useful.
Consider an instantaneous motion of a camera so that the
view point O(t{) at time ¢, moves to O(y) at time iy,
Suppose an apparent contour, C(t), in an image at time ¢
corresponds to a contour generator, I'(¢), on the surface. The
two projection centers, O(t)) and O(t,), define a family of
epipolar planes, II(s), Then, the contour generators, I'(#;)
and T'(ty), at time ¢; and ¢; cross over an epipolar plane,
II(s1), at X(s1,11) and X(s,42), respectively. Since X(s1,,)
and X({s;,13) are on the same epipolar plane, II(s;), their
projections, m(s,#,) and m(sy,t), are on the correspond-
ing epipolar lines in images. In the infinitesimal limit, this
provides a natural spatio-temporal parameterization of the
image and contour generators. This parameterization of
curved surfaces and image sequence with respect to s and ¢
parameters is called the epipolar parameterization [6], and the
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Fig. 8. Extraction of frontier points. The contour curves in images (a)
taken before and after a camera moticn are transformed into the Hough
space in (b). The frontier points are found as intersection points in (b).
The extracted frontier points are shown by circles in (a). The dashed
lines in (a) show epipolar lings computed from the frontier points,

trajectory of a surface point, X(s,t), with a fixed s
parameter is called the epipolar curve. Since it enables us to
identify correspondences between the changes in apparent
contours and the changes in contour generators, the
epipolar parameterization is very useful for recovering the
surface geometry from apparent contours, The following
analyses are based on the epipolar parameterization.

4.2 3D Motion and Changes in Images

Consider an infinitesimal motion, 6X, of the 3D point X
caused by an instantaneous motion, §T, of the camera (see
Fig. 5}. By differentiating (1) with respect to the time, ¢, the
velocity and the acceleration of the point X along the
epipolar curve caused by the camera motion are described
as follows:
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{c)
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Fig. 7. Results of the affine reconstruction. (a), (b), and (c) show sequential images of a curved surface, i.e., head. These images are used for affine
reconstruction of the curved surface. The back of the head is recovered and is shown in (@) Since we do not know the camera parameters, the
recovered surface is ambiguous up to a 3D affine. (e) shows the projection of the recovered surface in the first image. Note there is no ambiguity in

the projected surface in {@). (8) i =1, (b) t=2,{c) t = 3.

X[ — R;X’ + RX’; + U (4)

Xy = R“Xf + QRtX’t + R'X’tt + Ut: (5)

where the subscripts ¢ and it denote the first and the second
derivatives with respect to time, ¢. Also, U = T, denotes the
translational velocity of a camera and is described by the
epipole, e and the magnitude of a camera motion projected
into the image, v, as follows:

ue = AR™U. (6)

Substituting (2) and (6) into (4) and {5) and, since we
assume that there is no rotational motion (ie, R; =0,
R, = 0), we have:

X, = RA"H{(Am + Am, + ue) (1)

X;g = RA71 ()\ftm—l-Q)\tmt+)\mu+u¢e+uet). (8)

This equation shows how the changes in position of an
apparent contour caused by the camera motions are
observed in images.

4.3 Camera Motion from Frontier Points

We now consider how the camera motion can be computed
from frontier points, X", on curved surfaces. Since a frontier
point does not move under linear transiations, X and X3,

vanish. Substituting X? = 0 and X}, = 0 into (7) and (8), we
find that the magnitude of motion, =, and its time
derivative, u,, can be computed from the projection of
frontier points, m®, mY, m,, and epipoles, e, up to the depth
to the frontier point, A%, (i.e., speed-scale ambiguity) as
foliows:

u=AF(m’, mf. e) (9)

Uy = /\”F'g(m”,m?,m?l,e), (10)

where F) and F; are computed from:

Feam! = —-m{ Am®

Ferm® = ~2FeAm! — m) Am®,

where A denotes the vector product. Note, epipoles are
unchanged (i.e., ¢, = 0) under linear translations. From (9)
and (10), we find that, even if the camera is uncalibrated,
both u and 1, are computed from the changes in apparent
contours in images up to the depth X° and are independent
of A, R, and T.

4.4 Recovery of Surface Depth

The magnitude of camera motions computed from the
frontier points is next used for recovering the depth to
curved surfaces.
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Fig. 8. Results of the distinction of apparent contours. (a) shows sequential images of a curved surface (vase) with fixed features (lip). the
reconstructed surface Is projected into the first image. (c) shows the distances, |Am|. The apparent contours are distinguished from the fixed
features by using |Am/|. The distinguished apparent contours and fixed features are shown by (o) and (x) in (b), respectively.

If the point X on the contour generator is not a frontier
point, X; and X, in (7) and (8) do not vanish. As was
shown in [6], since the viewing ray, X — T, is always
tangent to the surface at a point X, the change X, must be
parallel to X — Tt

X A(X-T)=0. (11

Note, T is the position of the camera. Substituting (1), (2),
(7), and (9) into (11), we have:

A= AFy(m®, m¢, m,my, e), (12}

where Fj is computed from:
F‘gmt Am=—Feam.

Thus, the following proposition holds:

Proposition 1. The depth to a point on a contour generator can
be computed from the changes in apparent contour viewed
from an uncalibrated camera with linear franslations, up to the
depth to the frontier point A°.

4.5 Recovery of Curved Surfaces

We next consider how curved surfaces are recovered from

apparent contours viewed from uncalibrated carmeras,
Substituting (1), (2), and (7) into (11) and differentiating

with respect to ¢, we find that the time derivative of the

depth, ), is computed from the changes in apparent

contour and epipole as follows:

(13)

o 0 0 0
A = AP Fy(m®, m}, my;, m, my, my, e},

where I} is computed from:
oy Am = —Fymy Am—FeeAm — FleAm;.

Substituting (12) into (2) and using (1), the contour
generator at time £ = 0 is reconstructed as follows:

X(0) = A (BRA™ F(0)m(0) + T. (14)
Substituting (9), (12), and (13) into (7), we can compute the
change in the contour generator at time ¢ caused by the
camera motion as follows:

Xi(t)= N (ORA (P (Om(8)+ Fy(ymy (1) + Fi (e(t)).
From (9), it is clear that the the depth to the frontier point,
A2y}, at time ¢ is computed from the depth, A"(0), at time
t =0 as follows:

X0(ts) = A0V (i),
g 1
where Fi{t;) = AT Thus, by computing X, itera-

(15)

tively, the curved surface, X(s1,#), can be reconstructed
with respect to the epipolar parameterization, (s,¢), as
follows:

[X(sl,tl)] _ {)\”(O)RA" T] Fi(sht;)}

1 0 1 1 1e)

where X is a 3 x 1 column vector whose compenents are

computed from the image measurements as follows:
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Fig. 9. Results of the computation of the time-to-contact. {a) Shows sequential images of a head. (b) Shows the extracted contour curves {solid
lines), frontier points (small circles), and the epipolar lines (dashed lines). {c) Shows the computed time-to-contact to the frontier point (solid lines)

together with the calibrated time-to-contact (dashed lines).

X(s1,21) = F3(0)ym(0) + 011 F5(0)(Fa(t)m(z)

In (16), the 4 x 1 vector [XT 1]% is available from the image
measurements and the 4 x 4 matrix

[AﬂRA*l T]

0 1
represents an unknown 3D affine transformation. This
means that, even if the camera is uncalibrated and its
translational motion is unknown, the curved surfaces can be
reconstructed up to a 3D affine transformation:

Theorem 1. The curved surfaces can be reconstructed from the
changes in apparent contour viewed from an uncalibrated
camera with linear translations, up to a 3D affine ambiguity.

4.6 Distinction of Apparent Contours

Up to now we have shown the affine reconstruction of
curved surfaces. In this section, we show that the affine
reconstruction can be used for distinguishing apparent
contours from fixed features. This extends the results from
orthographic views [15], [26].

Substituting (16) into (1) and using (12) and (15), we find
that the reconstructed contour generator at time ¢ = ¢; can
be projected back into the original image at time =10
without any ambiguity as follows:

X(s1,11)

F(t)Filty)’ (7

I’h(sl: tl) =
where mis;, ;) denotes the projection of a reconstructed
contour generator, i(s 1,t1), on to the image at time ¢ = 0.
We now compute the differential component between the
projection, m{s,#;), and the original contour curve,
m(s;, 0}, along the epipolar line:

Am = m(s;, 1) — m(s,0). (18}

If the image curve is of a fixed feature, the projection,
m(s;,#;) must coincide with m(sy,0), and Am vanishes. If
the image curve is an apparent contour, mf{s, {;) does not
coincide with m(s;, @), and Am is not equal to zero. Thus,
the magnitude |Am| can be exploited for distinguishing
apparent contours from fixed features even if the camera is
uncalibrated.

4.7 Time-to-Contact to Curved Surfaces

As shown in some previcus work [5], time-to-contact can
provide a useful visual cue for robot navigation. It has been
shown that, if the object is planar, the time-to-contact can be
computed from the first order derivatives of image flow,
i.e., image divergence and deformation [5]. Unfortunately,
these analyses are limited to fixed features on planar
surfaces. In this section, we show that it is also possible to
compute time-to-contact to curved surfaces from apparent
contouts.
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Fig. 10. Results of the computation of time-ta-contact. {a) and (b) show two sequential images from the film Star Wars, The dashed lines and the
circles in {c) show epipolar lines and frontier points extracted by using the Hough space. The time-to-contact to the left and the right frontier points is

computed from the extracted epipolar geometry and is shown in (d).

From (9) and since u = —A!, we find that the time-to-
contact, t,, to the frontier point on a surface is computed
simply from I, as follows:

AU 1

te=—g=——.
CXNOR

(19)
Thus, ¢, to frontler points is computed from the first
derivatives of image curves with respect to time, #
Furthermore, from (12) and (13), we find that f. to
nonfrontier points on a surface can be computed from the
second derivatives of image curves with respect to time, ¢, as
follows:

AR

N R

Note, since AY cancels out, the time-to-contact to curve
surfaces can be computed uniquely just from their apparent
contours in images. The time-to-contact does not depend on
camera calibration either. Thus, the following theorem holds:

te = {20}

Theorem 2. The time-to-contact to a frontier point is computed
from the first derivatives of apparent contours with respect to
time and the time-to-contact to a nonfrontier point on a curved
surface is computed from the second derivatives of apparent
contours.

Note, for computing the time-to-contact, Condition 1 must
hold.

5 IMPLEMENTATIONS

In this section, we provide a method for extracting frontier

points by using Hough transformations.
As we have seen, if the camera motions are linear

translations, the frontier points are observed as bitangent
points in images. We transform the image curves into the
Hough space, that is, the space whose two coordinates are
the orientation and the distance to the tangent line at every
point on the curve (see Fig. 6). Then, the transformed curves
preduce intersections in the Hough space. It is known [24]
that these intersections correspond to the bitangent in
images and the envelope of curves in the Hough space
corresponds to a convex hull of the image curves (for
enveloping, the reference point must be in the convex hull),
Thus, the curves in the Hough space produce an intersec-
tion if and only if the image curves have a bitangent at the
corresponding points in images. Although not all bitangents
correspond to frontier points, the following property of
curves in the Hough space is very useful to distinguish
frontier points from other bitangents.
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Fig. 11. Results of the computation of time-to-contact. (a) and (b) show two sequential images from the film 2007. The dashed lines and the circles in
(c) show epipolar lines and frontier points extracted by using the Hough space. The time-to-contact to the upper and the lower frontier points is

computed from the extracted epipolar geometry and is shown in (d).

Property 3. If the infersection point is on the envelope of curves
in the Hough space, then it corresponds to a frontier point,

This is because the bitangent points on convex hull of two
consecutive image curves always correspond to frontier
points, and the convex hull is observed as an envelope of
curves in the Hough space.

The point B and C in Fig. 6b thus correspond to frontier
points (although A4 is on the envelope, it does not
correspond to a frontier point since this is a self-intersection
and corresponds to a self-bitangent). The small circles in
Fig. 6a show the extracted frontier points and the dashed
lines show the computed epipelar lines, The epipole, e, is
computed simply as the intersection of two cr more
epipolar lines.

6 EXPERIMENTS

6.1 Reconstruction of Curved Surfaces

We now show the results from reconstruction experiments.
Fig. 7a, Fig. 7b, and Fig. 7c show the three sequential images
of a head which are observed from a camera with unknown
linear translations, The apparent contours are extracted by
fitting B-spline curves [3] and the Hough space is used for
computing frontier points. The curved surface is recon-
structed from the changes in apparent contours and the

frontier points and is shown in Fig. 7d. Fig. 7e shows the
projection of the reconstructed surface in the first image.
Although the reconstructed surface, Fig. 7d, has 3D affine
ambiguity, its projection in the image, Fig. 7e, has no
ambiguity as described in Section 4.6,

6.2 Distinction of Apparent Contours

We next show the results from the distinction of apparent
contours from fixed features. Fig. 8a shows a curved surface
(vase) used in this experiment. The contour curve of a lip of
the vase is a fixed feature, while the contour curve of the
side of the vase is an apparent contour, We now distinguish
the fixed features (lip of the vase) from the apparent
contour (side of the vase) by using the proposed method.
The contour curves of the vase in sequential images are
extracted and used for the affine reconstruction of contour
generators. The reconstructed contour generators of the vase
are projected back into the first image as shown in Fig. 8a. As
shown in this image, the projected contour generators
coincide with the original curves at the lip of the vase, and
do not coincide at the side of the vase. The distances, |Am)|,
between the projected contour generators and the original
curves along epipolar lines are computed and plotted in Fig.
8c. The points on the apparent contour are distinguished from
fixed features by using |Am| and are shown in Fig. 8b by (o).
(x) in Fig. 8b shows extracted fixed features. The lip of the
vase is clearly distinguished from the apparent contours.
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6.3 Computation of Time-to-Contact

We next show the results from the computation of time-to-
contact to curved surfaces. Fig. 9a shows five sequential
images of a head observed from a camera with unknown
linear translations and Fig. 9b shows their contour curves
extracted by B-spline fitting. The frontier points and the
epipolar lines are extracted by using the Hough space as
before and are shown in Fig., 9b. The time-to-contact to the
frontier point (upper frontier point) is computed and is
shown in Fig. %¢ by small circles and solid lines. The exact
time-to-contact is shown by dotted lines in Fig. 9¢. As
shown in this figure, the computed time-to-contact is quite
accurate and reliable,

Fig. 10 shows a result from another example. Fig. 10a and
Fig. 10b are two sequential images from the film Star Wars.
The motion of the spaceship is considered as a linear
translation. The dashed lines in Fig. 10c show the computed
epipolar lines and circles show the extracted frontier points.
It is computed from the exiracted geometry and frontier
points that the time-to-contact to the left and the right
frontier points on the spaceship is —2.15 frames and
—1.98 frames, respectively (inus means that the point is
going away from the observer). Fig. 11 shows a result from
the film 2001,

Since the spaceships in Fig. 10 and Fig. 11 are curved
surfaces, we cannot compute the exact time-to-contact just
from the changes in area of apparent contours. However, as
we have seen, the exact time-to-contact is computed
efficiently by using the proposed method.

7 CONCLUSIONS

We have shown that, from apparent contours of curved
surfaces viewed from uncalibrated cameras, we can
reconstruct the curved surfaces up to a 3D affine ambiguity.

We first showed that if the camera motion is a linear
translation, the epipolar lines and the frontier points
coincide with bitangent lines and bitangent points in
sequential images. It has been shown that these epipolar
lines and frontier points can be extracted efficiently by
transforming image curves into the Hough space and
finding intersection points on the envelope of curves in
the Hough space. The epipolar geometry is thus recovered
without any optimization process, unlike previous work [1],
[4]. We next showed that, given the epipolar geomeltry, the
curved surfaces can be reconstructed up to a 3D affine
ambiguity from their apparent contours viewed from an
uncalibrated same camera.

The result is used for distinguishing apparent contours
from fixed features from uncalibrated views. It has also
been shown that the fime-to-contact to a curved surface can
be computed just from apparent contours. For computing
the time-to-contact to nonfrontier points, the second
derivatives in spatio-temporal images are required and,
for frontier points, the time-to-contact is computed just from
the first derivatives in spatio-temporal images. These were
implemented and tested on real images of curved surfaces.
The results are promising.
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