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Abstract

In this paper we present a complete system for segmenting, matching, track-

ing, and visual servoing with respect to unknown planar contours. Our system

can be used with arbitrary contours of any shape and without any prior knowl-

edge of their models. The system is first shown the target view. A selected

contour is automatically extracted and its image shape is stored. The robot

and object are then moved and the system automatically identifies the target.

The matching step is done together with the estimation of the homography

matrix between the two views of the contour. Then, a 2 1/2 D visual servoing

technique is used to reposition the end-effector of a robot at the reference po-

sition relative to the planar contour. The system has been successfully tested

on several contours with very complex shapes such as leaves, keys and coastal

outlines of islands. Experiments using a ship mockup without any artificial

marker proves that the system can be applied to ship building industry.
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1 Introduction

Standard visual servoing systems (Hashimoto, 1993) (Hutchinson et al., 1996)

are generally contrived to make the vision problem easy by using simple

geometric visual features, or by using some “a priori” knowledge on the

3D geometry of the objects. From both theoretical and practical point of

views, it would be preferable to use visual features extracted from images

of complex unknown objects. In this case, the choice of the vision-based

controller is extremely important since it strongly depends on the amount

of knowledge about the considered scene. For example, if the 3D structure

of the environment is unknown then position-based visual servoing (Wilson

et al., 1996) can not be used. Image-based visual servoing (Espiau et al.,

1992) can deal with complex objects and it has been recently applied to

contours with unknown shape (Collewet and Chaumette, 2000). However,

image-based visual servoing is not completely model-free since the depths of

the observed objects are needed to compute the control law. The depths

are generally unknown and only approximations can be used (Espiau et al.,

1992) (Collewet and Chaumette, 2000). In order to deal with completely

unknown environments, model-free approaches have been proposed recently

(Basri et al., 1998) (Malis et al., 1999). These methods, based on projective

reconstruction of the scene from only features matching, are robust to cali-
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bration errors (Malis and Chaumette, 2002) and need only a rough estimate

of the distance of the camera to the object. This single depth parameter can

be chosen very approximately. Indeed, it has been proven in (Malis et al.,

1999) that the distance has little influence on the stability of the system.

The 2 1/2 D visual servoing system proposed in (Malis et al., 1999) was

specially designed to work without any knowledge about the 3D structure

of the target and to exploit the information provided by a projective re-

construction between two views of any rigid object. Despite its generality,

the approach has been tested on simple visual features. In that case, the

objects were specially marked with white points on black backgrounds and

the matching problem was assumed to be solved. The primary objective of

this paper is to propose a 2 1/2 D visual servoing which allows to use un-

known complex planar contours. When considering a planar contour, the

projective reconstruction consists in recovering the homography matrix be-

tween two images of the contour. Thus, in addition to the robustness of the

approach to calibration errors (Malis et al., 1999), we can benefit also from

recent planning techniques (Mezouar and Chaumette, 2000) which can be

used to keep the object in the field of view of the camera. Another objective

of this paper is to integrate all the steps of a visual servoing system: image

segmentation, matching, tracking and servoing. In particular, we focus on

the matching of two images of a contour with an unknown complex shape
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since we need to find the correspondences between two contours in order to

compute the homography. Despite matching is a problem which is common

to all visual servoing systems it is often supposed to be solved. On the other

hand, matching two views of an object under full perspective projection and

for large camera displacements is a difficult problem. Even using “a pri-

ori” knowledge of the 3D model of the objects, finding the correspondences

between the projection of the model and a real image remains a difficult

problem. The main approaches for curve matching are based on finding in-

variants to the transformation linking two images of the curve. Geometric

invariants have been studied extensively (Taubin and Cooper, 1992) (Reiss,

1993) (Rothwell, 1995). However, existing invariants suffer from occlusion

and sensitivity to image noise. To cope with these problems, semi-local inte-

gral invariants were proposed in (Sato and Cipolla, 1996). They showed that

it is possible to define invariants semi-locally which require a lower order of

derivatives and hence are less sensitive to noise. Although semi-local integral

invariants reduce the order of derivatives required, it is still high in the gen-

eral affine case. Not only are derivatives of high order difficult to calculate

since sensitive to noise, but for some curves the derivatives do not give any

information (e.g. polygonal curves) or contain many discontinuities. Hence,

for these contours, it is not possible to use differential or semi local-integral

invariants, while it would be possible to use invariants based on features like
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corners that, however, are not present in smooth curves. In this paper, the

model of the objects is supposed to be unknown and the contours are neither

smooth nor polygonal. Thus, we propose a matching method which allows

us to deal with both previous cases. The contour matching is completely

automatic and if different contours are present in the scene then the good

one is automatically selected.

2 Matching and homography estimation

The segmentation of closed contours is made in two steps: edge detection

and edge linking. The first step is done by using the Canny edge detection

algorithm (Canny, 1986). The second part takes as input all the edges found

in the first part and links them in order to form closed curves. It must be

underlined that we suppose that occlusions can only occur during tracking

(see Section 3). During the initial matching the full contour must be visible

in the current and reference image.

After the segmentation of a reference image and the selection of the ref-

erence contour C∗, the camera is displaced to another position and the seg-

mentation is repeated for the current image. A point P of the contour C

corresponding to the point of C∗ in the reference image can be obtained from
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P∗ since (see figure 1):

p ∝ Gp∗ (1)

where G is the collineation matrix of dimension 3 × 3, p = (u, v, 1) and

p∗ = (u∗, v∗, 1) are vectors containing the projective coordinates (in pixels)

of the points P and P∗ respectively. The problem is thus to find jointly the

p*

p
G

Figure 1: point to point correspondence

collineation G and which point of C∗ is transformed in which point of C.

Once the collineation matrix has been found, the homography matrix H can

be easily computed:

H = AGA−1 (2)

where A is a triangular matrix containing the camera internal parameters of

dimension 3 × 3:

A =




f s u0

0 fr v0

0 0 1




(3)
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where f is the focal length in pixels, s is the skew, r is the aspect ratio, u0

and v0 are the pixel coordinates of the principal point. In general, the camera

internal parameters are only roughly known. Thus, we use an estimation Â

instead of the true matrix.

Let us notice that, in the vision community, the words “collineation” and

“homography” are both used to indicate a projective transformation between

two hyper-planes (in our case two dimensional). However, it is important to

distinguish between the uncalibrated transformation G and the calibrated

one H from which it is possible to extract the Euclidean information.

In the next subsection, an algorithm for the estimation of the collineation

matrix is described. In the second subsection, this algorithm is used to

recognize the selected object when there are more than one closed contours

in the current image. Finally, some results obtained with our method are

presented in the third subsection.

2.1 The matching algorithm

The algorithm proposed in (Chesi et al., 1999) is initially used to match the

contours and find the collineation matrix. It consists of two main parts: the

correspondence finder and the collineation finder. The first part determines

the best point on C corresponding to the starting point on the contour C∗.
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In this part of the algorithm the last row of the matrix G is supposed to be

constant. This means that we are considering a weak perspective transfor-

mation between the two contours that allow us to use a very fast least-square

technique to compute the solution. The second part of the algorithm deter-

mines an estimation of G based on the correspondence found in the first

part. Now the transformation is supposed to be full perspective. The two

steps are repeated until the matching error does not decrease any more. This

algorithm works well even for large perspective transformations. However, if

perspective is strong, the starting point found by the algorithm is not precise

enough to obtain good correspondences.

The matching precision can be improved by using the properties of the

Discrete Fourier Transform (DFT). Let (u∗, v∗) be the image coordinates of

a point belonging to the contour C∗. If we have a guess Ĝ of the collineation

matrix, a new contour C
′

can be obtained from C∗ since:

û
′

=
ĝ11u

∗ + ĝ12v
∗ + ĝ13

ĝ31u∗ + ĝ32v∗ + ĝ33

v̂
′

=
ĝ21u

∗ + ĝ22v
∗ + ĝ23

ĝ31u∗ + ĝ32v∗ + ĝ33

(4)

where ĝij is an element of the guessed collineation matrix Ĝ. The curve

obtained applying the guessed collineation matrix is re-parameterized in such

a way that the points on the respective contours be uniformly spaced (i.e.
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(û
′

, v̂
′

) → (û, v̂)). Now, let’s consider the DFT of the vectors (û, v̂) and (u,

v) containing respectively the coordinates of the estimated contour Ĉ and of

the contour C.

Û = F(û) V̂ = F(v̂)

U = F(u) V = F(v)

(5)

Then a more accurate estimation of G can be found as the one minimizing

the difference between the magnitude of U ,V and the magnitude of Û , V̂ :

min
G

n∑

i=1

(
|Û(i)| − |U(i)|

)2

+
(
|V̂(i)| − |V(i)|

)2

(6)

This cost function does not depend on the choice of the starting point (pro-

vided that the parameterization is the same for the two curves). Indeed, the

vectors û, v̂ computed with Ĝ (and after the re-parameterization) differ from

u,v by only a shift and, hence, the magnitude of their DFT is the same. The

optimization problem defined in (6) takes a longer time than the algorithm

proposed in (Chesi et al., 1999) and is used only if the initial matching error

is too high. Once the best collineation matrix is found, the reference contour

C∗ is reprojected in the current image and the nearest points to the points

of the current contour are matched.
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2.2 Object identification

Unlike the method proposed in (Chesi et al., 1999) where the reference object

was supposed to have already been identified, here we consider the problem

of recognizing the contour in the current view in the presence of other objects

and finding the collineation matrix between the reference view. Let Ci be a

contour in the current view. For all i an estimation Ĝi of G is calculated

with the collineation estimation algorithm (supposing Ci the corresponding

contour of C∗) and Ci is projected on the contour Ĉ∗

i in the reference view

by the inverse collineation G−1

i . Then the selected object is represented by

the contour Ĉ∗

i minimizing the distance d(C∗, Ĉ∗

i ) from C∗, where:

d(C∗, Ĉ∗

i ) = max{δ(C∗, Ĉ∗

i ), δ(Ĉ∗

i , C
∗)} (7)

and

δ(C∗, Ĉ∗) =
1

n

n∑

j=1

min
k

∥∥p∗

j − p̂∗

k

∥∥. (8)

2.3 Examples

The segmentation and matching algorithms were tested on several planar

objects with polygonal, smooth or fractal-like shapes. Figure 2 shows an

example using four leaves with similar shapes. The selected leaf in the ref-

erence view is the one on the bottom. Figure 2(c) shows the closed contours
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found in the current view. For all them the collineation matrix is estimated

and the results are shown in Figure 2(d). The calculated distances (from

the left-bottom leaf in the anti-clockwise sense) are 5.92, 1.07 (the selected

leaf), 58 and 51.2 pixels which means that the reference leaf was identified

with a great margin. If the contours are very similar, as in Figure 3 where

three keys are used, the errors could be very close. In this example, the

relative position of the objects in the initial view and in the reference view

is not the same. The selected key is the one on the right in the reference

view. The distances obtained with the estimated collineation matrices (from

the bottom key in the anti-clockwise sense) are 2.95, 0.99 (the selected key)

and 2.68 pixels. Even if the distances are closer than in the previous case

the reference key is recognized with a good margin. It must be noticed

that the matching precision depends also on the number of points used to

describe the contours. In our experiments, 256 points are used to describe

very complex shapes. The distance between two points is, in our examples,

greater than two pixels. A good result is thus to obtain a matching error

smaller than the sampling step. It could be possible to increase the precision

using more points but only during the matching step. Indeed, the system

does not allow us to update the homography matrix at video-rate with more

than 256 points during the servoing stage. Moreover, the precision depends

also on the planarity of the objects.
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(a) reference view (b) current view

(c) contours Ci (d) errors Ĉ∗
i
− C∗

Figure 2: Matching of a leaf. Despite leaves have very similar shapes, the
matching is sufficiently accurate to identify the good leaf.
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(a) reference view (b) current view

(c) contours Ci (d) errors Ĉ∗
i
− C∗

Figure 3: Matching of a key. Despite keys have very similar shapes, the
matching is sufficiently accurate to identify the good key.
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3 Contour tracking robust to occlusions

During the visual servoing the contour is tracked with the real time active

contours tracking system proposed in (Drummond and Cipolla, 2000). The

contour is represented by an active contour constrained to undergo only de-

formations due to 2D projective transformations. This is achieved by search-

ing for the contour in the image along the normal to the contour tangent at

each point. The measurements are projected down onto the space defined by

the projective transformations group using the Lie Algebra and, successively,

the active contour updated. This method is robust to occlusion even if only

local information is used. Note that the tracking is not constrained only to

affine transformations. Indeed, a projective compensation extends the range

deformation to the full projective group in such a way that the affine com-

ponent of the observed deformation is essentially intact. Figure 4 shows six

images of a sequence where the contour of Sicily is tracked and Extension 1

shows the complete sequence. The robustness to occlusion is very important

since a part of the contour can eventually get out of the image during ser-

voing. Active contours are used to extract contours even in the presence of

occlusions since the contour matching do not work if the contour is occluded.

Since the active contour is constrained to follow a projective deformation, the

occluded parts can be reconstructed. Once the full contour is available, the
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(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6

Figure 4: Tracking robust to occlusion (see also Extension 1).
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matching between two consecutive views of the contour can be successfully

achieved in real time.

The the local tracking could be improved by taking into account the

multiple-view constraint existing between collineations. For example, if a ref-

erence image of the contour is available, as for standard teaching-by-showing

techniques, then it is possible to re-project the occluded parts from the refer-

ence image to the current image using the collineation. Obviously, if there are

not enough points of the contour in the image to compute the homography

then the reprojection cannot be done.

4 Visual Servoing

The matching algorithm alone does not work in the presence of occlusions.

Thus, the (full projective) contour tracking in (Drummond and Cipolla, 2000)

is very useful since it allows to reconstruct the occluded parts (once the full

contour is available the matching algorithm can be used). On the other hand,

the vision-based control proposed in (Drummond and Cipolla, 2000) is de-

signed for affine transformation only and cannot be used in the presence of

full projective deformations. Thus, the visual servoing approach proposed in

the paper is close to the 2 1/2 D visual servoing (Malis et al., 1999). This ap-

proach exploits the information extracted from an homography matrix. The
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homography matrix computed during the matching step can be decomposed

as follows (Faugeras and Lustman, 1988):

H = R +
t

d∗
n∗T (9)

where R and t are respectively the rotation and the translation of the frame

F attached to the contour C with respect to the frame F ∗ attached to the

contour C∗, n∗ is the unit vector normal to the plane of the contour π ex-

pressed in F ∗ and d∗ is the distance between the origin of F ∗ and π. At each

iteration, only the homography matrix is updated supposing the initial match

to be good. If there is a big matching error, the system still converges near

the final position but it will oscillate around it. The precision of the system

can be improved by repeating the matching procedure during the servoing

especially near the convergence when the two contours are very close.

The positioning task controlling the 6 camera d.o.f. is described as the

regulation to zero of the following task function (Malis et al., 1999):

eT =

[
eT

ν eT
ω

]
=

[
mT

e − mT∗

e uT θ

]
(10)

where u is the rotation axis and θ the rotation angle computed from R and

17



me are the extended image coordinates of a point on the plane:

mT
e =

[
x y z

]
=

[
X
Z

Y
Z

log(Z)

]
(11)

where z = log(Z) is a supplementary coordinate controlling the relative depth

of the camera from the plane (even if Z is unknown, from the homography

matrix it is possible to compute log(Z) − log(Z∗) (Malis et al., 1999)). Any

point on the contour can be used as a reference point. However, it is not

always possible to find a particular point on the contour (for example consider

the case of smooth contours without any high curvature given in Extension 2).

In order to make the control law more general and to avoid the choice of a

point we proposed in (Chesi et al., 2000) to use the centroid of the contour as a

reference point. However, the center of the contour produces a supplementary

error in the estimation of the coordinates of the reference point (it is well

known that the projection of the centroid of a planar contour is not the

centroid of the projection of the contour). It is therefore necessary to analyze

the stability of the new control law. The extended images coordinates of the

centroid of the contour are defined as follows:

m>

e =

[
x y z

]
=

[
1

n

n∑

i=1

xi

1

n

n∑

i=1

yi

1

n

n∑

i=1

zi

]
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where (x, y) are the coordinates of the centroid of the contour and z is a

supplementary coordinate controlling the relative depth of the camera from

the plane (even if Z is unknown, from the homography matrix it is again

possible to compute z − z∗). The derivative of the task function is related to

the velocity v of the camera by:

ė = L v (12)

where the interaction matrix L is upper block triangular:

L =




Lν Lνω

0 Lω


 (13)

The block Lω contains the same matrix given in (Malis et al., 1999), while

the two other blocs have different form:

Lν =




−
1

n

n∑

i=1

1

Zi

0
1

n

n∑

i=1

xi

Zi

0 −
1

n

n∑

i=1

1

Zi

1

n

n∑

i=1

yi

Zi

0 0 −
1

n

n∑

i=1

1

Zi



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Lνω =




1

n

n∑

i=1

xiyi −
1

n

n∑

i=1

1 + x2

i

1

n

n∑

i=1

yi

1

n

n∑

i=1

1 + y2

i −
1

n

n∑

i=1

xiyi −
1

n

n∑

i=1

xi

−
1

n

n∑

i=1

yi

1

n

n∑

i=1

xi 0




In order to control the camera, we use the following simple proportional

control law:

v = −L̂−1




λνI 0

0 λωI


 ê = −




λνL̂
−1

ν −λωL̂
−1

ν L̂νωL̂
−1

ω

0 λωL̂
−1

ω


 ê (14)

where v is the camera velocity sent to the robot controller, L̂ is an ap-

proximation of the interaction matrix related to the time variation of the task

function e, ê is the estimated task function, λν and λω two positive gains

witch tunes the velocity of convergence. Without loss of generality, we can set

L̂−1

ω = I in the control law, since L̂−1

ω êω = êω (Malis et al., 1999). The matrix

L̂νω can be computed from image measurements and a rough approximation

of camera intrinsics parameters m̂i = Â−1pi (where m̂i = (x̂i, ŷi, 1)). On the

other hand, the matrix L̂ν cannot be easily computed since each depth Zi is
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unknown. For this reason, the matrix used in the control law is:

L̂−1

ν = −Ẑ




1 0 x̂

0 1 ŷ

0 0 1




where only an “average” depth parameter Z must be guessed. Similarly to

standard 2 1/2 D visual servoing there is only one global parameter to be

approximated and not all the depths Zi relative to each point of the contour.

Note that L L̂−1 = I if and only if Zi = Z ∀i. Thus, even in the absence

of calibration errors, the convergence of the task function to zero will not be

exactly decoupled. However, the control law is locally asymptotically stable

as it is proven in the next section.

5 Stability Analysis

In this section we prove the local stability of the control law. The local

stability is extremely important since the trajectory of the contour can be

planned using the method described in (Mezouar and Chaumette, 2000).

Thus, only small displacements can be considered at each iteration of the

control law.

Plugging the control law (14) into equation (12) we obtain the following
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closed-loop differential equation:

ė = −L L̂−1




λνI 0

0 λωI


 ê (15)

which can be separated into two different loops:




ėν

ėω


 =




−λνLνL̂
−1

ν êν + λω

(
Lνω − LνL̂

−1

ν L̂νω

)
êω

−λωLωêω




The control loop of the rotation is decoupled from the control loop of the

translation. Thus, the stability can be analyzed in two steps.

5.1 Stability and robustness of the rotation control

The proof of the stability and robustness of the rotation control is exactly

the same given in (Malis and Chaumette, 2002). The estimated task function

êω can be written as a function of the true task function eω:

êω = Eωeω = µÃeω (16)
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where µ = 1/‖Ãu‖ and Ã = Â−1A is the following upper triangular matrix:

Ã =




f

f̂

1

f̂

(
s − ŝ

fr

f̂ r̂

)
u − û0

f̂
−

ŝ (v − v̂0)

f̂ 2r̂

0
fr

f̂ r̂

v − v̂0

f̂

0 0 1




The closed loop equation for the rotational subsystem is thus:

ėω = −λωµLωÃeω (17)

The stability of this system can be analyzed independently on eν and its

robustness domain have been already analyzed in (Malis et al., 1999). The

equilibrium point eω = 0 of the differential system (17) is locally asymptot-

ically stable if and only if Ã has eigenvalues with positive real part. The

equilibrium point is globally asymptotically stable if Ã > 0. In that case,

‖eω‖ decreases at each iteration of the control law. Since µ ≥ 1/‖A‖, the

solution of the differential equation (17) can be bounded as follow:

‖eω(t)‖ ≤ ‖eω(0)‖e−λ
′

ω
t (18)
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where λ
′

ω = λωσ/‖Ã‖, σ being the unknown minimum singular value of

1

2
(Ã+ ÃT ). Thus, ‖eω(t)‖ will converge exponentially to zero. Finally, since

eω(t) is completely defined by the differential system (17) and by its initial

condition eω(0), we can compute êω(t) from equation (16) and plug it in

equation (15) obtaining a new closed-loop system for eν .

5.2 Stability and robustness of the translation control

The estimated task function êν can be written as a function of the true task

function eν :

êν = Eνeν (19)

where:

Eν =




f

f̂

1

f̂

(
s − ŝ

fr

f̂ r̂

)
0

0
fr

f̂ r̂
0

0 0 1




The new closed-loop equation for eν is the sum of two nonlinear terms:

ėν = −λνQ(eν)eν + λωf(eν , t) (20)

where:

Q = LνL̂
−1

ν Eν (21)
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f =
(
Lνω − LνL̂

−1

ν L̂νω

)
êω(t) (22)

Equation (20) is a differential equation where eν has to be determined and

êω(t) is a function of time. Consider the system linearized around eν = 0,

eω = 0 (i.e. me = m∗

e):

ėν = −λνQ(0)eν + λωf(0, t) (23)

where:

Q(0) =
1

n

n∑

i=1




f

f̂

Ẑ
∗

Z∗

i

1

f̂

(
s − ŝ

f r

f̂ r̂

)
Ẑ

∗

Z∗

i

Ẑ
∗

Z∗

i

(x̂∗ − x∗

i )

0
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is a non-singular triangular matrix and the function f(0, t) is a decreasing

function:

lim
t→∞

f(0, t) = 0

The equilibrium point eν = 0 of the differential system (23) is locally asymp-

totically stable if and only if Q(0) has eigenvalues with positive real part.
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The eigenvalues of Q(0) are:

λ1 =
1

n

n∑

i=1

Z

Zi

(24)

λ2 =
f

f̂

1

n

n∑

i=1

Z

Zi

(25)

λ3 =
fr

f̂ r̂

1

n

n∑

i=1

Z

Zi

(26)

Since Zi > 0 ∀i, λ1 > 0 if and only if Z > 0. Thus, we can theoretically use

any positive scalar Z in the control law. Since f > 0, λ2 > 0 if and only

if f̂ > 0 and λ3 > 0 if and only if r̂ > 0. Again, we can use any positive

approximation of the camera intrinsic parameters in the control law.

A sufficient condition for the asymptotic stability of the system is Q(eν) >

0 ∀eν 6= 0. This condition is equivalent to Ã > 0 and det(Q + Q>) > 0.

The sufficient condition Ã > 0 is the same for the rotational control and

it depends only on camera intrinsic parameters. On the other hand, the

sufficient condition det(Q+Q>) > 0 depends also on eν . Thus, the condition

det(Q + Q>) > 0 define an open set S containing eν = 0 such that for any

starting point eν(0) ∈ S the system is asymptotically stable.
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6 Experimental results

In our experiments we have used a Mitsubishi robot RV-E2 Movemaster

with 6 degrees of freedom (see Figure 5). A coarsely calibrated camera (the

parameters given by the manufacturer are used) is mounted on the end-

effector. The transformation between the end-effector frame and the camera

frame is only roughly known. The aim of the first experiment is to test the

system when the initial displacement of the camera is large. The second

experiment tests the system in a situation very close to a real industrial

application.

6.1 Positioning with respect to complex unknown con-

tours

Visual servoing experiments have been realized using the complex non smooth

contours presented in the paper. The system has also been successfully tested

on different smooth contours with generic shapes (see Extension 2). Figure

5 shows an experiment using leaves. Several experiments have been done,

using different leaves as reference target, obtaining similar results. In this

experiment, the selected leaf in the reference view (Figure 5(c)) is ivy. After

the robot and/or the leaves have been moved away from the reference po-

sition, the system is able to select the right leaf during the matching step.
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Figure 5(d) shows the initial view of the leaves and the ivy matched with our

algorithm. In both views the ivy is represented by an active contour that is

used during the servoing to track the contour. In Figure 5(a) and 5(b) are

shown respectively the reference and initial robot position.

(a) reference position (b) initial position

(c) reference view (d) initial view

Figure 5: Experimental results with a leaf. The contour is not smooth and
the system is uncalibrated.

Figure 6(a) and 6(b) show the behavior of the extended image coordinates

and orientation of the camera, while Figure 6(c) and 6(d) show the transla-

tional and rotational velocity (i.e. the control law). Note that to compute
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the control law we do not use any knowledge on the depths of the points be-

longing to the contour. The control law is stable and the error converges to

zero but not exponentially (as it should in ideal conditions) since the system

is uncalibrated. Furthermore, the center of gravity of the contour was used

instead of a point of the contour. The convergence of the visual servoing

demonstrates that the initial matching was good in spite of the noise and the

camera displacement. The visual servoing is stopped when the error between

all corresponding points on the contour is less than 0.5 pixel.

The experimental result is obtained with a rotation rx = 20◦ and rx = 10◦

since the robot workspace is limited (see Figures 5 (a) and (b)). However, the

induced projective distortion is large enough to prove that the visual tracking

proposed in (Drummond and Cipolla, 2000) is working correctly. Indeed, an

affine tracking without any projective compensation would fail in this case.

Note also that in the reference position the image plane is nearly parallel to

the contour plane. This corresponding to a singular position for any affine

controller. Thus, this experiment is a meaningful test case to prove both

the validity of the full projective tracking in (Drummond and Cipolla, 2000)

and the improvements provided by the 2 1/2 D visual servoing method with

respect to the affine controller proposed in (Drummond and Cipolla, 2000).

29



0 50 100 150 200
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

iterations number

(a) extended image coordinates

0 50 100 150 200
−60

−50

−40

−30

−20

−10

0

10

20

30

iterations number

(b) rotation uθ (deg)

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iterations number

(c) translation velocity (cm/s)

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

iterations number

(d) rotation velocity (deg/s)

Figure 6: Experimental results with a leaf.
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6.2 Application to ship building

The work presented in the paper has been funded by the Long Term Research

European Project VIGOR (Visually Guided Robots using Uncalibrated Cam-

eras). The goal of the project was to remove the calibration bottleneck in

visually-guided robots, in order to perform industrial tasks with minimal

modeling. One of the area concerned by the project is the shipbuilding

industry. Today, the robot-based shipbuilding technology is limited in that

robots are exclusively programmed off-line. When in the actual environment,

the CAD-generated trajectories have to be computed depending on the ex-

act locations and orientations of all the relevant parts in the workspace, for

example, to perform a welding task on the hull. With the proposed approach

the relevant trajectories of the robot are automatically transformed on line

using the visual input. The experiment illustrated here demonstrates the

feasibility of vision-based control with neither prior camera calibration nor

hand-eye calibration and without prior knowledge of the precise location of

the robot with respect to an unknown and complex contour on the workpiece.

Figure 7 shows the front view (a) and a bird’s eye view (b) of a mockup of

the ship. Several closed contours are visible and the approach presented in

the paper can be used to position a welding torch with respect to a ship part.

Consider for example the image in Figure 7(b) as the reference image. The
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(a) Front view (b) Bird’s eye view

Figure 7: Mock-up of the ship used in the experiment.

reference contour is extracted from the reference image (see Figure 8(a)).

The robot is displaced to its initial position. As it was shown in the previ-

ous experiment, the proposed visual servoing approach is able to converge

from any initial position. However, we present here the results obtained for a

small displacement. Indeed, in order to meet real-time requirements (sample

rate is 50ms), the sequence acquired by the camera is stored on disk only at

the end of the servoing. Thus, the total amount of available memory is lim-

ited. From the initial image, the system extracts the initial contour (the red

contour in Figure 8(b)) which is automatically matched with the reference

contour (the blue contour in Figure 8(b)). Figures 8(b)-(f) show the behavior

of the current contour during the servoing. At the convergence, Figure 8(f),

the current and reference contours are superimposed. The complete sequence

of the experiment is available in Extension 3.
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(a) Reference image (b) Initial image

(c) Image I (d) Image II

(e) Image III (f) Final image

Figure 8: Experimental results with the mock-up of the ship (see also Ex-
tension 3)
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7 Conclusion

In this paper, we have presented a complete visual servoing system for posi-

tioning a camera with respect to a planar contour. All the steps necessary to

visual servoing have been addressed: segmentation, matching, tracking and

servoing. The vision controller is based on a 2 1/2 D visual servoing tech-

nique. It exploits the homography between the initial and the reference view

of the contour, which is found by the matching algorithm. The results show

that the system is able to match contours with complex shapes for which

invariants cannot be used. Moreover, the selected object is recognized even

in presence of other similar ones. The accuracy of the estimated homography

is tested servoing a camera mounted on the end-effector of a 6 d.o.f. robot.

The experiments show that the system can position the robot end-effector

with a good precision even for unmarked complex planar objects.
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Appendix: Index to multi-media Extensions

The multi-media extensions to this article can be found online by following

the hyperlinks from www.ijrr.org.

Extension Media type Description

1 video Tracking of a contour robust to occlusion

2 video Visual servoing using an unknown smooth contour

3 video Visual servoing using a contour on the ship mockup
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