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Abstract
Composite images are synthesized from existing pho-
tographs by artists who make concept art,e.g.,story-
boards for movies or architectural planning. Current
techniques allow an artist to fabricate such an image
by digitally splicing parts of stock photographs. While
these images serve mainly to “quickly” convey how a
scene should look, their production is laborious. We
propose a technique that allows a person to design a
new photograph with substantially less effort. This pa-
per presents a method that generates a composite image
when a user types in nouns, such as “boat” and “sand.”
The artist can optionally design an intended image by
specifying other constraints. Our algorithm formulates
the constraints as queries to search anautomaticallyan-
notated image database. The desired photograph, not a
collage, is then synthesized using graph-cut optimiza-
tion, optionally allowing for further user interaction to
edit or choose among alternative generated photos. An
implementation of our approach, shown in the asso-
ciated video, demonstrates our contributions of (1) a
method for creating specific images with minimal hu-
man effort, and (2) a combined algorithm for automat-
ically building an image library with semantic annota-
tions from any photo collection.

1 Introduction
Paintings, illustrations, and photographs in particular
are very efficient for conveying information. But ef-
ficiency depends on both the audience’s reception and
the author’s expended effort. Our primary contribution
is a new method for creating images of specific things
and people, with minimal human effort. While a pho-
tographer might opportunistically capture a desired im-
age, we enable the average person to design a photo-

Figure 1: An image generated by our system. The query was
“water” in front of Taj Mahal image (also see Figure 10).

graph semantically, as if explaining to another human
that “it looks like this.” Such images are desirable as
concept art that is normally carefully prepared for team
productions such as movies and architectural planning.
Beyond aesthetic value, such art has very practical uses.
The layout of elements in a planning image conveys the
creator’s vision, which can then be interpreted by oth-
ers and revised. Alfred Hitchcock’s storyboards are fa-
mous for their impact on the scene-by-scene look of his
movies, though they are somewhat utilitarian. The in-
dustry of stock photography is organized around themes
of images, so that customers can more easily locate each
image of an intended category, though combining of
categories usually requires some PhotoshopTM talent.

The goal of our proposed method is to simplify im-
age creation by leveraging raw image archives. Given
an empty canvas to start, the user can enter words such
as “sky” and “car” in the caption or at desired locations
(See Figure 2). The canvas also accepts other similar
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Figure 2: In (A), the user specifies only a semantic caption.
(B) and (C) show the automatically selected source images
used to synthesize the designed photograph (D).

semantic labels such as proper names of people, and
can be supplemented with copy-pasted islands of pixels
for categories that lack semantic labels, such as logos or
scanned designs (Figure 1 shows a result for which the
query was a combination of text and literal patches).
Our algorithm treats the empty parts of the canvas as
don’t-cares, and searches a specified image library to
find candidate stock images. Different combinations of
these candidate images are then stitched together using
a graph cuts based seam optimization algorithm to gen-
erate realistic photographs for each combination. The
best combination is then picked as the one with the
minimum seam cost. Our secondary contribution is a
parallel algorithm for automatically building an image
library of semantic annotations from any photo collec-
tion, that can then be used for image creation as de-
scribed above.

2 Background
The existing Content Based Image Synthesis work
of [8] also seeks a high-level interface for performing
effective image manipulation, and operates by recom-
bining image regions from a database with semantic la-
bels. They define the problem in terms of semiotics,
and explain the three combinations of possible varia-
tions: (1) vary the paradigm (meaning) and fix the syn-
tagm (spatial positioning), (2) fix the paradigm and vary
the syntagm, and (3) vary both. They considered only
the first combination and were able to alter the mood
of a photo by replacing, for example, a clear sky with a

stormy one. We instead consider the third case, gener-
ating our semantic labels automatically instead of man-
ually; our user’s image design is populated by drawing
from 160,000 regions and 16,000 images, compared to
their 100 regions and 50 images. In addition, their in-
terface is meant for detailed manipulation of a manually
specified region, while our method allows for very fast
design of new photographs. The Semanticons work [25]
parses files for their overall meanings and then automat-
ically merge icons which represent those meanings to
create synthesized icons for the files. These icons form
an intuitive visual clue to the contents of the file, and
were found in user studies to raise user productivity.
Interfaces Annotated data has been employed to gen-
erate different graphical elements based on simple user
instructions. [2] showed how annotated motion capture
data can be employed to synthesize animations with
various desired behaviors. A special high-level script-
ing language was developed in [7] to simplify the pro-
cess of solid modeling, while a beautiful interface that
inferred the third dimension from pen-strokes was pre-
sented in the surface modeling of [11]. Except for [10]
(who address combination (2) above), there has been
little progress for the high level design of photographs.
Synthesis Novel image synthesis from example source
images has been of great research interest in recent
times. The work most closely related to our own is
that of Graphcut Textures [17] in which a large tex-
ture image is synthesized from a much smaller example
image by intelligent placement and stitching of multi-
ple copies of the input example. The stitching is per-
formed using a graph cuts based optimization algorithm
to determine theleast noticeableseam (or transition
boundary) that passes through a set of overlapping in-
put patches. Graphcut textures also support low-level
user control for fusing together arbitrary input images
– not just textures – where the user can constrain cer-
tain pixels to copy from a certain input before perform-
ing the graph cut seam optimization. We use graph-
cut textures as the backbone of our synthesis framework
but allow user control at a much higher semantic level,
where the constraints are specified as annotations in the
form of wordsand not mere pixels. Other related tech-
niques include Image Analogies [10], where example
pairs of input-output images are used as guides to learn
filtering and painting operations, that are then applied to
new inputs. They also demonstrate pixel-level user con-
trol in their texture-by-numbers application. In Digital
Tapestry [24], multiple images from a photo collection
are used to automatically construct a collage by choos-
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ing informative and spatially compatible regions from
the collection. They attempt to pack as much informa-
tion as possible from the input collection into the syn-
thesized image, thereby creating a summary of the col-
lection. In our work, on the other hand, we extract only
as much information from the database as necessary to
satisfy the user specification, thereby culling away most
of the database.
Semantic Labeling of Image Libraries Semantic la-
beling of images is an especially active area of research
for the field of Computer Vision. It encompasses the
problems of object detection, recognition, and segmen-
tation, expanding the range of relevant semantic labels.
Numerous approaches exist because so far, all have
significant failure modes, but the representative works
of [16, 26] are among the newest algorithms that con-
sider image regions in their context of the rest of the im-
age. Clever approaches for retrieving images from auto-
matically classified image libraries include [30] and [9].
The former has the original semantic vocabulary used
in [8], and the latter allows for refinement of queries by
allowing a user boolean control over large sets of small
category images. Interestingly, several websites (Face-
book.com and Flickr.com) dispense with automation as
being too unreliable, and maintain only labeling infor-
mation entered by people visiting these sights to view
their friends’ photo albums. However, our method can
tolerate the shortcoming of current automatic category
and face labeling methods by virtue of having a human
making the final decision among results produced by
the system.

We now proceed to explain how our system automat-
ically builds an image library, and our algorithm for al-
lowing a user to very quickly and easily build specific
new photos.

3 Image-Library Preprocessing
A user is essentially allowed to paint using semantic
labels, so our method relies on the quantity and vari-
ety of available image regions that have those labels.
While images on the internet have contextual informa-
tion, most digital photos have no more than a times-
tamp. Even newspaper image archives have little more
than the text from each caption. The task of automati-
cally assigning semantic labels to pixel regions is a long
standing vision problem that we do not claim to have
solved. However, we are able to consolidate the com-
plimentary algorithms that currently lead the field for
their respective label categories. The result is anauto-

Figure 3: A sample training image with corresponding ground
truth which has been hand-labelled through a ’paint’ interface
offline.

matic means of generating a broad range of semantic
labels for thousands of raw images.

3.1 Automatic Semantic Image Labeling
Our implementation uses the TextonBoost algo-
rithm [26] of Shotton et al. to accurately segment test
images into contiguous semantically labeled regions.
We provide a brief overview of this algorithm here. The
segmentation result is created by evaluating a learned
classification function at every pixel; we first describe
the image features used by the classifier, and then its
form.

The algorithm takes an L*a*b* image and convolves
it with a bank of Gaussians, derivatives of Gaussians,
and Laplacian filters, over the three color channels.
L*a*b* space is used as it is a perceptually uniform
color space and has been shown to work well for the
purposes of textonization. Each pixel is then assigned a
texton [20, 32] number according to a nearest neighbor
search within a learned texton dictionary for the filter
response vector at that pixel, producing a texton map.
The features used in the classification function, known
as ’shape filters’, are each computed as a count of pix-
els with a given texton number within a particular sub-
window of the texton map.

The classification function is an additive model
learned using the Joint Boosting algorithm of [29]. It
combines a numberM of weak classifiershm additively
as

Hi(c,x) =
M

∑
m=1

hi,m(c,x) (1)

at pixeli, for category labelc and input imagex. A pos-
terior category probability can then be computed triv-
ially for each categoryc with a soft-max function

Pi(yi = c|x) =
expHi(c,x)

∑cexpHi(c,x)
(2)

whereyi is the random variable representing the cate-
gory label at pixeli. Note that the learning algorithm
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Figure 4: Examples of matching query regions to a database
region. (a) Query region 1 can be fully contained within the
database region at some translation. (b) Query region 2 is too
large to fit within the database region at any translation. (c)
However, scaling up the database region allows query region
2 to be fully contained. This match will be given a higher
cost since we desire minimum translation and scaling of the
database regions.

requires roughly labeled training data, as seen in Fig-
ure 3, and so 300 example images were hand-labeled in
about 3hrs.

For the purposes of this paper, a maximuma-
posteriori (MAP) estimate of the category labels is
taken at each pixel, ˆyi = argmaxcPi(yi = c|x), and com-
bined to give the MAP image,y. The code for this
labelling is available online at:http://mi.eng.
cam.ac.uk/~jdjs2/.
Semantic-Driven Search The MAP image is com-
puted for each database image offline. Each MAP im-
age is then divided into a set of contiguous semantically
labeled regions, by means of a standard connected-
component analysis. To avoid spurious matches and in-
crease efficiency, only regions with a certain minimum
area are kept.

Our search algorithm takes a query region, semanti-
cally labeled through our user-interface, and attempts to
match it against all regions of the same category label
in the database, such that for a particular relative shift
and scaling, the database region completely covers the
query region (see Figure 4). A search over all possi-
ble shifts and a range of scales can be done extremely
efficiently by comparing sets of spans (start and end x-
coordinates) for each scan-line in the query (see Fig-
ure 5). These spans can be pre-computed.

3.2 Automatic Face Recognition
The inherent difficulties of face recognition and those
specifically in the context of image and video retrieval
[3, 27] are well appreciated in the literature. Lighting,
facial expressions, and head pose drastically change the
appearance of faces, as do occlusions, blur and small
resolution. The recognition algorithm we employ is

Figure 5: To determine matching locations, the query region
is scanned across the database region. The matching algo-
rithm determines whether all scans of the translated query re-
gion (marked with blue crosses) lie wholly within scans of the
database region (marked with brown crosses), for all scan-
lines at interval∆. An example, matching, relative transla-
tion is indicated with a green check-mark, and another, non-
matching translation, with a red cross. The horizontal red
lines indicate the parts of query scans that fail to be contained
within the database scans. Note that the search in scale has
been omitted from this figure for clarity.

based on the adaptive filtering framework of [1]. We
start with the face detector of [33]. We then recognize
faces from single photos by synthetically generating a
face set from each single input and then performing set-
to-set matching.

Assuming that the face to image space embedding
function is smooth, geodesically close images corre-
spond to small changes in imaging parameters (e.g.
yaw or pitch). Hence, the face motion manifold is
locally topologically similar to theaffine warpmani-
fold. We generate a set of face images from a single
face by applying stochastic affine warp perturbations to
the face (see [21] and [28]). Similarity between two
sets of images is computed as the weighted average of
the first three canonical correlations [4] between these
sets. That similarity measures the variation of sub-
spaces spanned by the two sets.

3.3 Literal Patches
A good deal of recent work uses interest points and ro-
bust, local descriptors for image retrieval and matching
[19, 13, 22, 12, 18, 31]. The majority of these methods
incorporate a nearest neighbor search, where the clos-
est match for an interest point descriptor in the query
image is found for the ultimate purpose of discovering
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Figure 6:Sample Retrieval Result. On the left is a sample Lit-
eral Patch, placed by the user in the canvas as a constraint.
The image on the right shows an intermediate step, where
an image with matching feature points has been found in the
database. Literal patch matching is necessary because the Arc
de Triomphe and many other objects are not yet recognized
with semantic labels.

which image or images in a database match the query.
Groups of these matches are verified, often using geo-
metric constraints, and then evaluated, the final result
being a ranked list of possible database images which
appear in some form in the query. A sample result from
such a system is shown in Figure 6.

Naturally, this process can be reversed such that all
images in a database which contain a particular object
are returned in ranked order, and it is in this context that
the technique becomes interesting for use in image syn-
thesis. There are certain circumstances when the user
will want to specify that a particular patch of an image
must be present in the synthesized result, as is the case
with a particular landmark, or a particular building fa-
cade. In these cases, asking for a generic region from
the database will not suffice, and so the user is able to
add a “literal” image patch to the canvas. In order to
find matching image patches to use in synthesis, we use
a modified version of PCASIFT[14] using the database
structure from [13] along with a center clustering tech-
nique for pose prediction to query the database.

4 Synthesis Framework

Our method for enabling an artist to create images of
specific scenes benefits from an implementation with a
clean user interface. While other interfaces can be built
around the algorithm, our implementation resembles a
simple painting program. A blank box in the middle
serves as a canvas which the user annotates with de-
scriptions of their desired elements. The descriptions
are usually in the form of text, placed on the canvas
to specify relative locations where the requested cate-
gories should be generated.

The descriptions (or constraints) specified by the user

are converted into queries, which are pixel masks paired
with categories, then handed over to the search algo-
rithm. The procedure for query formulation from con-
straint specification is explained in Section 4.1. The
database search returns a set of real photographs for
each constraint specified by the user. This set is then
sorted into a list based on category-specific heuristics
and the magnitude of shifting and scaling required to
align the query and the database photograph. Note that
we can search for all user constraints in parallel since
they are considered independently of each other.

Once we have a sorted list of photographs for each
user constraint, we synthesize a set (or selection list)
of output photographs, where each output photograph
is constructed from a combination of database pho-
tographs. Each combination picks one photograph for
each constraint by sampling from its sorted list of pho-
tographs. For each combination, the photograph is syn-
thesized using the graph cut optimization algorithm to
find seams (transition boundaries) between the database
photographs in the combination1. Typically, we search
the top few combinations exhaustively and then sam-
ple the remaining greedily by favoring those with less
costly graph-cut seams. The synthesized photographs
are eventually ranked based on their graph cut seam cost
and returned to the user for selection. See Algorithm 1
for pseudo-code.

Algorithm 1 Synthesis Pipeline
for all constraint∈ user_constraints_list do

query← ParseConstraint(constraint)
{ query

def
= pair<mask,category>}

db_images← SearchDataBase(query)
db_images_list[constraint]← Sort(db_images)

end for {for loop executed in parallel}
synthesized_list ← empty
repeat

source_images←NextCombination(db_images_list)
synthized_image←GraphCutsStitch(source_images)
synthesized_list.Add(synthesized_image)

until TestedEnoughCombinations()

1The expansion move algorithm [6, 15] is used to stitch the candi-
date images together. Combining ideas from Graph Cut Textures [17]
and Grab Cut [23], a color model is learned for each user specified
region, and used to assign a cost to all pixels within each source im-
age. These unary potentials are combined with pairwise potentials
based on a contrast sensitive Potts model [5]. The expansionmove al-
gorithm finds an (approximate) minimum energy which can compose
multiple layers together simultaneously.
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(A)

(B)

Figure 7: Shown are examples of user’s text specification and
corresponding synthesized images: “tree,” “road,” and “sky”
in (A) and “building” and “water” in (B).

4.1 Easy Formulation of Queries
Text by Itself The user enters text after clicking within
the canvas. Once one or more such constraint words
have been entered, the “synthesize” button converts the
constraints into mask images. If the word “car” was
typed in the bottom right, then that word is sent to our
recognition database with a query mask featuring a cir-
cle of on pixels in the bottom right. The query pro-
ceeds as described in the Semantic-Driven Search of
Section 3.1 (see Figure 7 for examples).
Text with Paint A user may wish to design a photo-
graph in which some of the categories appear in spe-
cific shapes and sizes. The paint-tool is used for this
case, and each connected component of painted pix-
els is associated with a typed constraint word (see Fig-
ure 8). Once the desired photo has been designed, click-
ing “synthesize” generates location mask queries, per-
forms the search, and returns a collection of synthesized
images for the user to choose from.
Location-free Text in Image Captions When the user
enters constraining text without locating their prefer-
ence of object locations in the canvas, our application
samples a location prior that has been learned from the
labeled training images. The prior is learned by creating
a normalized histogram for each category label of loca-
tion. See Figure 9. To sample from this prior we use a
simple and efficient Gibbs sampler. Figure 2 shows the
result of entering scene direction for a movie script as
the caption.
Literal Patches For situations where the desired photo

(A)

(B)

Figure 8: The user may both specify text and paint desired
regions to synthesize a photo. (A) and (B) show the query for
“sky” and “building”; (C) and (D) show “car” and “road.”

Figure 9: Whiteness of dots indicates the learned prior proba-
bility of that category occurring at that image location; image
intensities are displayed here with agamma= 1.75 enhance-
ment. Shown are example categories (left to right, top row
first): snow, sky, airplane, flower, face, tree.
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Figure 10: The drag-dropped example pixels are treated as
part of the image’s design. The synthesized image contains
pixels from a matching object, even though there is not yet a
semantic label for this category.

should contain an object from an unknown category, the
user can drag-drop an example of the object, assuming
it has distinct image features, into the canvas as one of
the constraints (see Figure 10).

5 Results & Conclusions
Our method for designing photographs has successfully
enabled non-experts to quickly create a variety of im-
ages using only text, text and some markup of a can-
vas, or using example pixel patches. The average image
takes a few typed words and 15 to 45sec. to synthe-
size, where most of that time is spent waiting for the
graph-cut optimization to try out more combinations.
The system returns an array of results like those shown
in Figure 11 for the user to choose from to find the one
which is most aesthetically pleasing, or appropriate to
the task at hand.

The system does have distinct failure modes, as de-
picted in Figure 12. They are related to known lim-
itations of the automatic semantic labeling and image
stitching technologies, however, and as those systems
improve so will ours. To deal with the variety of images
available in any significant photo archive, the interface
allows the user to revise results. To replace a stitched
region within a result, the user picks an alternate same-
class source image from other most-highly compatible
candidates. Generally, so little human effort is suffi-
cient only because we were able to automate the ap-

Figure 11: The system returns a wide array of results that
combine the input images in many different ways. These im-
ages along with the one in Figure 10B are the top four results
returned for the Taj Mahal and “water” query shown in Figure
10B.

(A) (B) (C)

Figure 12: The system has three main failure modes: (A)
the stitching algorithm chooses incorrect seams and seversan
object; (B) the automatic semantic labeling fails and givesan
incorrect result for a semantic label; (C) scale differences re-
sult in obvious resolution change across a border.

proximate but broad image-database category labeling.
With fewer images, user requests for specific layouts
would be harder to synthesize, though image-flipping
and automatic color correction are known technologies
that could be employed.
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