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Abstract

The objective of this work is to authenticate individuals based on the appearance of their

faces. This is a difficult pattern recognition problem because facial appearance is generally

greatly affected by the changes in the way a face is illuminated, by the camera viewpoint

and partial occlusions, for example due to eye-wear. We describe a full automatic algorithm

that systematically addresses each of these challenges. The main novelty is an algorithm for

decision-level fusion of two types of imagery: one acquired in the visual and one acquired in

infrared electromagnetic spectrum. Specifically: we examine (i) the effects of preprocessing of

data in each domain, (ii) the fusion of holistic and local facial appearance, and (iii) propose an

algorithm for combining the similarity scores in visual and thermal spectra in the presence of

prescription glasses and significant pose variations, using a small number of training images

(5-7). Our system achieved a high correct identification rate of 97% on a freely available test

set of 30 individuals and extreme illumination changes.

Index Terms

Face, recognition, thermal, infrared, fusion, illumination, invariance.

I. I NTRODUCTION

For decades, the personal identification task had shown progress by employing tech-

nological means likesecret knowledge, such as Personal Identification Numbers, and by

using personal possessions, such as Identity Cards and Radio Frequency Identification

chips. As opposed to these means which are generally easy targets for fraud, biometric

modalities like facial geometry, ear form and iris are universal and relatively consistent

over time. As the cost of biometric sensors, visible and thermal imagers, microphones,

and motion sensors continues to sink due to higher demand, biometric systems have the

tendency to employ more than a single sensor to identify an individual upon as many

as non-redundant biometric modalities. In recent years there have been largely three

categories of approaches to face recognition for obtaining complementary information
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that can be loosely termed multi-sample, multi-sensor and multi-modal. This paper

presents a multi-sensory multi-sample face biometric fusion methodology for personal

identification.

A. Problem challenges and proposed methodology

Variations in head pose and illumination are the most challenging aspects of face

recognition. In practice, the effects of changing pose are usually less problematic and

can oftentimes be overcome by acquiring data over a time period e.g. by tracking a

face. Consequently, image sequence or image set matching has recently gained a lot

of attention in the literature [2], [19], [53], as a practical way of obtaining multi-view

appearance information. In this paper we too consider the image set matching paradigm.

In contrast to pose, illumination changes are much more difficult to deal with for face

recognition algorithms: the illumination setup in which a face is imaged is in most

cases not possible to control, its physics difficult to accurately model and training data

containing typical appearance variability is usually not available.

Thermal spectrumimagery is useful in this regard as it is virtually insensitive to

illumination changes, see Fig. 1. On the other hand, it lacks much of the individual,

discriminating facial detail contained in visual images. In this sense, the two modalities

can be seen as complementing each other. The key idea behind the system presented in

this paper is that robustness to extreme illumination changes can be achieved byfusing

the two. This paradigm will further prove useful when which we consider the difficulty

of recognition in the presence of prescription glasses, which are a major problem for

recognition using thermal spectrum imagery.

B. Paper organization

The remainder of this paper is organized as follows. In the next section we review

relevant previous work on face recognition in visual and thermal spectra, as well as
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Fig. 1. Illumination changes have a dramatic effects on images acquired in the visible light spectrum (top row). In
contrast, thermal imagery (bottom row) shows remarkable invariance.

multi-sensory techniques. Section III describes each of the main components of the

proposed system in detail: baseline face set matching is covered first (Section III-A),

followed by sections on data preprocessing and extraction (Section III-C), recognition

using only a single modality (Section III-D), the proposed modality fusion (Section III-E)

and, finally, dealing with occlusions caused by prescription glasses (Section III-F). Our

empirical evaluation methodology, data sets used and the performance of the proposed

algorithm are reported and discussed in Section IV. The paper is concluded with a

summary and an outline of promising directions for future research.

II. PREVIOUS WORK

A. Mono-sensor based techniques

a) Optical sensors:Among the most sensors used in face biometric systems is

the optical imager. This is driven by its availability and low-cost. An optical imager

captures the light reflectance of the face surface in the visible spectrum. The visible
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spectrum provides features that depend only on surface reflectance. Thus, it is obvious

that the face appearance changes according to the ambient light. In order to overcome

the lighting, pose and facial expression changes, a flurry of face recognition algorithms,

from the two well-known broad categories, statistical appearance-based and model-based

methods, has been proposed [43].

Appearance-based methods, as their name suggests, perform recognition directly from

the way faces appear in images, interpreting them as ordered collections of pixels.

Faces are typically represented as vectors in the image space; discrimination between

individuals is then performed by employing statistical models that explain inter- and/or

intra- personal appearance changes.

The main limitation of purely appearance-based recognition is that of limited gener-

alization ability, especially in the presence of greatly varying illumination conditions.

On the other hand, an appealing property of this group of algorithms is that they can

be typically extended to recognize using sets or sequences of faces. Eigenfaces, for

example, can be used on a per-image basis, with recognition decision cast using majority

vote [3]. A similar voting approach was also successfully used with local features in

[22], which were extracted by tracking a face using a Gabor Wavelet Network [22],

[36], [37]. In [59] video information is used only in the training stage to construct

person-specific PCA spaces,self-eigenfaces, while verification was performed from a

single image using the Distance from Feature Space criterion. Classifiers using different

eigenfeature spaces were used in [45] and combined using the sum rule [34]. Better

use of training data is made with various discriminative methods such as Fisherfaces,

which can be used to estimatedatabase-specificoptimal projection [23]. An interesting

extension of appearance correlation-based recognition to matching sets of faces was

proposed by Yamaguchiet al. [69]. The so-called Mutual Subspace Method (MSM) has

since gained considerable attention in the literature. In MSM, linear subspaces describing
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appearance variations within sets or sequences are matched using canonical correlations

[27], [31].

However, all of the aforementioned appearance-based methods poorly generalize in the

presence of large illumination changes. Thus, model-based methods have been proposed

to deal with this problem. These formulate models of image formation with the intention

of recovering (i) mainly person-specific (e.g. face albedo or shape) and (ii) extrinsic,

nuisance variables (e.g. illumination direction, or head yaw). The key challenge lies in

coming up with models for which the parameter estimation problem is not ambiguous

or ill-conditioned.

The Active Appearance Model [20], for example, was proposed for describing objects

that vary both in shape and appearance. A deformable, triangular mesh is fitted to

an image of a face, guided by combined statistical models of shape and shape-free

appearance, so as to best explain the observed image. The 3D Morphable Model can

be seen as a 3D extension of this approach. This model consists of albedo values at

the nodes of a 3-dimensional triangular mesh describing face geometry. Model fitting

is performed by combining a Gaussian prior on the shape and texture of human faces

with photometric information from an image [62].

An attractive feature of model-based approaches is that they explicitly model both in-

trinsic and extrinsic variables. On the other hand, they suffer from convergence problems

in the presence of background clutter or facial occlusions such as glasses, unlike the

method proposed in this paper. Furthermore and importantly for the our work they often

require high quality image input and struggle with non-Lambertian effects or multiple

light sources.

b) Thermal infrared-sensor based techniques:A number of recent studies suggest

that face recognition in the thermal spectrum offers a few distinct advantages over the

visible spectrum, including invariance to ambient illumination changes [46], [55], [56],
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[67]. This is due to the fact that a thermal infrared sensor measures the heat energy

radiation emitted by the face rather than the light reflectance. In outdoor environments,

and particularly in direct sunlight, illumination invariance only holds true to good ap-

proximation for the Long-Wave Infrared (LWIR:8–14µm) spectrum, which is fortunately

measured by the less expensive uncooled thermal infrared camera technology. Human

skin has high emissivity in the Long-Wave Infrared (MWIR:3–5µm) spectrum and even

higher emissivity in the LWIR spectrum making face imagery by and large invariant to

illumination variations in these spectra.

Appearance-based face recognition algorithms applied to thermal infrared imaging

consistently performed better than when applied to visible imagery, under various lighting

conditions and facial expressions [35], [51], [54], [56]. Further performance improve-

ments were achieved using decision-based fusion [56]. In contrast to other techniques,

Srivastana and Liu [57], performed face recognition in the space of Bessel function

parameters. First, they decompose each infrared face image using Gabor filters. Then,

they represent the face by modelling the marginal density of the Gabor filter coefficients

using Bessel functions. This approach has further been improved by Buddharajuet al.

[14]. Recently, Friedrich and Yeshurun [26] showed that IR-based recognition is less

sensitive to changes in 3D head pose and facial expression.

A thermal sensor generates imaging features that uncover thermal characteristics of

the face pattern. Another advantage of thermal infrared imaging in face recognition is

the existence of a direct relationship to underlying physical anatomy such as vasculature.

Indeed, thermal face recognition algorithms attempt to take advantage of such anatomical

information of the human face as unique signatures. The use of vessel structure for

human identification has been studied during recent years using traits such as hand

vessel patterns [33], [39], finger vessel patterns [41], [52] and vascular networks from

thermal facial images [47]. In [15] a novel methodology that consists of a statistical face
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segmentation and a physiological feature extraction algorithm, and a matching procedure

of the vascular network from thermal facial imagery has been proposed.

The down side of employing near infrared and thermal infrared sensors is that glare re-

flections and opaque regions appear in presence of subjects wearing prescription glasses,

plastic and sun glasses. For a large proportion of individuals the regions around the eyes

– that is an area of high interest to face recognition systems – become occluded and

therefore less discriminant [5], [38].

B. Multi-sensor based techniques

In the biometric literature several classifiers have been used to concatenate and con-

solidate the match scores of multiple independent matchers of biometric traits [17] [7],

[10], [42], [65]. In [13] a HyperBF network is used to combine matchers based on voice

and face features. Ross and Jain [49] use decision tree and linear discriminant classifiers

for classifying the match scores pertaining to the face, fingerprint and hand geometry

modalities. In [48] three different colour channels of a face image are independently

subjected to LDA and then combined.

Recently, several successful attempts have been made to fuse the visual and thermal

infrared modalities to increase the performance of face recognition [13], [18], [28]–[30],

[35], [49], [55], [64], [68]. Visible and thermal sensors are well-matched candidates

for image fusion as limitations of imaging in one spectrum seem to be precisely the

strengths of imaging in the other. Indeed, as the surface of the face and its temperature

have nothing in common, it would be beneficial to extract and fuse cues from both

sensors that are not redundant and yet complementary.

In [30] two types of visible and thermal fusion technique have been proposed. The

first fuses low-level data while the second fuses matching distance scores. Data fusion

was implemented by applying pixel-based weighted averaging of co-registered visual and
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thermal images. Decision fusion was implemented by combining the matching scores of

individual recognition modules.

The fusion at the score level is the most commonly considered approach in the

biometric literature [50]. Cappelli et al. [16] use adouble sigmoid functionfor score

normalization in a multi-biometric system that combines different fingerprint matchers.

Once the match scores output by multiple matchers are transformed into a common

domain they can be combined using simple fusion operators such as the sum of scores,

product of scores or order statistics (e.g., maximum/minimum of scores or median score).

Our proposed method falls into this category of multi-sensor fusion at the score level.

To deal with occlusions caused by eyeglasses in thermal imagery, Heo et al. [30] used a

simple ellipse fitting technique to detect the circle-like eyeglass regions in the IR image

and replaced them with an average eye template. Using a commercial face recognition

system, FaceIt [32], they demonstrated improvements in face recognition accuracy. Our

method differs both in the glasses detection stage, which uses a principled statistical

model of appearance variation, and in the manner it handles detected occlusions. Instead

of using the average eye template, which carries no discriminative information, we

segment out the eye region from the infrared data, effectively placing more weight on

the discriminative power of the same region extracted from the filtered, visual imagery.

III. M ETHOD DETAILS

In the sections that follow we explain our system in detail, the main components of

which are conceptually depicted in Fig. 2.

A. Matching image sets

In this paper we are dealing with face recognition from sets of images, both in

the visual and thermal spectrum. We will demonstrate that illumination invariance and

recognition robustness in the presence of prescription glasses can be achieved using a
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Visual imagery (image set) Thermal imagery (image set)

Features

Facial feature detection & registration

Modality and data fusion

Glasses detection

PreprocessingPreprocessing

Trained classifier

Fig. 2. Our system consists of three main modules performing (i) data preprocessing and registration,
(ii) glasses detection and (iii) fusion of holistic and local face representations using visual and thermal
modalities.

combination of simple data preprocessing (Section III-C), a combination of holistic and

local features (Section III-D) and the fusion of the two modalities (see Section III-E).

These stages normalize for the bulk of appearance changes caused by extrinsic (non

person-specific) factors. Hence, the requirements for our basic set-matching algorithm

are those of (i) some pose generalization and (ii) robustness to noise. We will show that

the two criteria are successfully met by modelling appearance variations within an image

set using a low-dimensional linear subspace and then by comparing two such subspaces

by finding the most similar modes of variation within them.
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The appearance modelling step is a simple application of Principal Component Anal-

ysis (PCA) without mean subtraction. Formally, given a data matrixd ∈ RD×N (each

column representing a rasterized image), the corresponding subspace is spanned by the

eigenvectors of the matrixC = ddT corresponding to the largest eigenvalues. We used

5D subspaces, as sufficiently expressive to on average explain over 90% of data variation

within intrinsically low-dimensional face appearance changes within a set.

B. Principal angles

Principal, or canonical, angles0 ≤ θ1 ≤ . . . ≤ θD ≤ (π/2) between twoD-

dimensional linear subspacesU1 andU2 are recursively uniquely defined as the minimal

angles between any two vectors of the subspaces:

ρi = cos θi = max
ui∈U1

max
vi∈U2

uT
i vi (1)

subject to the orthonormality condition:

uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, j = 1, ..., i− 1 (2)

We will refer to ui and vi as thei-th pair of principal vectors, see Figure 3 (a). The

quantityρi is also known as thei-th canonical correlation [31]. Intuitively, the first pair

of principal vectors corresponds to the most similar modes of variation within two linear

subspaces; every next pair to the most similar modes orthogonal to all previous ones.

We quantify the similarity of subspacesU1 andU2, corresponding to two face sets, by

the cosine of the smallest angle between two vectors confined to them i.e.ρ1.

This interpretation of principal vectors motivates the suitability of canonical correla-

tions as a similarity measure when subspacesU1 andU2 correspond to face images. First,

the empirical observation that face appearance varies smoothly as a function of camera

viewpoint [2], [9] is implicitly exploited: since the computation of the most similar
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Fig. 3. An illustration of the concept of principal angles and principal vectors in the case of two 2D
subspaces embedded in a 3D space. As two such subspaces necessarily intersect, the first pair of principal
vectors is the same (i.e.u1 = u2). However, the second pair is not, and in this case forms the second
principal angle ofcos−1 ρ2 = cos−1(0.8084) ≈ 36◦. The top three pairs of principal vectors, displayed as
images, when the subspaces correspond to image sets of the same and different individuals are displayed
in (b) and (c) (top rows corresponds toui, bottom rows tovi). In (b), the most similar modes of pattern
variation, represented by principal vectors, are very much alikein spite of different illumination conditions
used in data acquisition.

modes of appearance variation between sets can be seen as an efficient“search” over

entire subspaces,generalizationby means of linear pose interpolation and extrapolation

is inherently achieved. This concept is further illustrated in Figure 3 (b,c). Furthermore,

by being dependent on only a single (linear) direction within a subspace, by employing

the proposed similarity measure the bulk of data in each set, deemed not useful in a

specific set-to-set comparison, is thrown away. In this mannerrobustness to missing data

is achieved.

An additional appealing feature of comparing two subspaces in this manner is con-
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tained in its computational efficiency. IfB1 and B2 are orthonormal basis matrices

corresponding toU1 andU2, then writing the Singular Value Decomposition (SVD) of

the matrixBT
1 B2:

M = BT
1 B2 = UΣVT . (3)

The i-th canonical correlationρi is then given by thei-th singular value ofM i.e. Σi,i,

and thei-th pair of principal vectorsui and vi by, respectively,B1U and B2V [11].

Seeing that in our caseM is a 5× 5 matrix and that we only use the largest canonical

correlation,ρ1 can be rapidly computed as the largest eigenvalue ofMMT [44].

C. Data preprocessing & feature extraction

The first stage of our system involves coarse normalization of pose and illumination.

Pose changes are accounted for by in-plane registration of images, which are then passed

through quasi illumination-invariant image filters.

We register all faces, both in the visual and thermal domain, to have the salient facial

features aligned. Specifically, we propose to explicitly align the eyes and the mouth. This

choice of features is motivated by their characteristic appearance in both thermal and

visual spectra, which makes them most reliably detected (e.g. see [6], [8], [21], [24],

[60]). The 3 point correspondences, between the detected and the canonical features’

locations, uniquely define an affine transformation which is applied to the original image.

Finally, faces are then cropped to80× 80 pixels, as shown in Figure 4.

Coarse brightness normalization is performed by band-pass filtering the images [6],

[25]. The aim is to reduce the amount of high-frequency noise as well as extrinsic

appearance variations confined to a low-frequency band containing little discriminating

information. Most obviously, in visual imagery, the latter are caused by illumination

changes, owing to the smoothness of the surface and albedo of faces [1].
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Fig. 4. Shown is the original image in the visual spectrum with detected facial features marked by yellow circles
(left), the result of affine warping the image to the canonical frame (centre) and the final registered and cropped
facial image.

We consider the following type of a spatial-domain band-pass filter:

IF = I ∗Gσ=W1 − I ∗Gσ=W2 , (4)

which has two parameters - the widthsW1 andW2 of isotropic Gaussian kernels. The

optimal values of these are estimated from a small training corpus of individuals in

varying illumination. Figure 5 shows the recognition rate across the corpus as the values

of the two parameters are varied. The optimal values were found to be2.3 and6.2 for

visual data; the optimal filter for thermal data was found to be alow-passfilter with

W2 = 2.8 (i.e. W1 was found to be very large). This is indeed expected, as thermal

imagery is not affected by any predominantly low-frequency extrinsic factors, but can

be seen to contain a rather large amount of high frequency noise.

Examples of optimally filtered, registered and cropped images are shown in Figure 6.

It is important to note from Figure 5 that the recognition rate varied smoothly with

changes in kernel widths, showing that the method is not very sensitive to their exact

values, which is suggestive of good generalization to unseen data.

Finally, we also propose to further scale the result of filtering of visual data by the
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Fig. 5. The optimal combination of the lower and upper band-pass filter thresholds is estimated from a small training
corpus. The plots show the recognition rate using a single modality, (a) visual and (b) thermal, as a function of the
widthsW1 and W2 of the two Gaussian kernels in(4). It is interesting to note that the optimal band-pass filter for
the visual spectrum passes a rather narrow, mid-frequency band, whereas the optimal filter for the thermal spectrum
is in fact a low-passfilter.

smooth version of its original image:

ÎF (x, y) = IF (x, y)./(I ∗Gσ=W2), (5)

where ./ represents element-wise division. The purpose of local scaling is to equalize

edge strengths in dark (weak edges) and bright (strong edges) regions of the face; this

is similar to the Self Quotient Image of Wanget al. [63]. This step further improves the

robustness of the representation to illumination changes, as we demonstrate in Section IV.

D. Single modality-based recognition

We compute the similarity of two individuals using only a single modality (visual or

thermal) by combining the holistic face representation described in Section III-C and a

representation based on local image patches. The idea behind using patches is to gain

further viewpoint robustness. Since smaller surface areas of the face are closer to planar
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(a) Visual (b) Thermal

Fig. 6. Effects of the optimal band-pass filters on registered and cropped faces in (a) visual and (b) thermal spectra.

than the entire face, when affine registered they exhibit a greater degree of appearance

invariance. This is supported by previous empirical accounts in the literature, e.g. see

[12], [53], [66].

As before, we use the eyes and the mouth as the most discriminative regions by

extracting rectangular patches centred at the detections, see Figure 7. We treat holistic

and local patch-based similarities as independent, the overall similarity score thus being

obtained by weighted summation:

ρv/t = ωh · ρh +

Local patches contribution︷ ︸︸ ︷
ωm · ρm + (1− ωh − ωm) · ρe, (6)

whereρm, ρe andρh are the scores of separately matching, respectively, the mouth, the

eyes and the entire face regions, andωh andωm the weighting constants.

The optimal values of the weights were estimated from the offline training corpus. As

expected, eyes were shown to carry a significant amount of discriminative information,

as for the visual spectrum we obtainedωe = 0.3. On the other hand, the mouth region,

highly variable in appearance in the presence of facial expression changes, was found

not to improve recognition (i.e.ωm ≈ 0.0).

The relative magnitudes of the weights were found to be different in the thermal
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Fig. 7. In both the visual and the thermal spectrum our algorithm combines the similarities obtained by matching
the holistic face appearance and the appearance of three salient local features – the eyes and the mouth.

spectrum, both the eye and the mouth region contributing equally to the overall score:

ωm = 0.1, ωh = 0.8. Notice the rather insignificant contribution of individual facial

features. This is most likely due to inherently spatially slowly varying nature of heat

radiated by the human body.

E. Fusing modalities

Until now we have focused on deriving a similarity score between two individuals

given sets of images in either thermal or visual spectrum. A combination of holistic and

local features was employed in the computation of both. However, the greatest power

of our system comes from the fusion of the two modalities.

Given ρv and ρt, the similarity scores corresponding to visual and thermal data, we

compute the joint similarity as:

ρf = ωv(ρv) · ρv +
[
1− ωv(ρv)

] · ρt. (7)

Notice that the weighting factors are no longer constants, butfunctions. The key idea
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is that if the visual spectrum match is very good (i.e.ρv is close to1.0), we can be

confident that illumination difference between the two images sets compared is mild

and well compensated for by the visual spectrum preprocessing of Section III-C. In this

case, visual spectrum should be given relatively more weight than when the match is

bad and the illumination change is likely more drastic. The value ofωv(ρv) can then

be interpreted as statistically the optimal choice of the mixing coefficientωv given the

visual domain similarityρv. Formalizing this we can write

ωv(ρv) = arg max
ω

p(ω|ρv), (8)

or, equivalently

ωv(ρv) = arg max
ω

p(ω, ρv)

p(µ)
. (9)

Under the assumption of a uniform prior on the confusion margin,p(µ)

p(α|µ) ∝ p(α, ρv), (10)

and

ωv(ρv) = arg max
ω

p(ω, ρv). (11)

1) Learning theα-function: The functionωv ≡ ωv(ρv) is estimated in three stages:

first (i) we estimatep(ωv, ρv), then (ii) computeω(ρv) using (11) and finally (iii) make an

analytic fit to the obtained marginal distribution. Step (i) is challenging and we describe

it next.

a) Iterative density estimate:The principal difficulty of estimatingp(ωv, ρv) is of

practical nature: in order to obtain an accurate estimate (i.e. a well-sampled distribution),

a prohibitively large training database is needed. Instead, we employ a heuristic alter-

native. Much like before, the estimation is performed using the offline training corpus.
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Our algorithm is based on an iterative incremental update of the density, initialized

as uniform over the domainωv, ρv ∈ [0, 1]. We iteratively simulate matching of an

unknown person against a set gallery individuals. In each iteration of the algorithm,

these are randomly drawn from the offline training database. Since the ground truth

identities of all persons in the offline database is known, for eachωv = k∆ωv we can

compute (i) the initial visual spectrum similarityρp,p
v of the novel and the corresponding

gallery sequences, and (ii) the resulting separationδ(k∆ωv) i.e. the difference between

the similarities of the test set and the set corresponding to it in identity, and that between

the test set and the most similar set that doesnot correspond to it in identity. This gives

us information about the usefulness of a particular value ofωv for observedρp,p
v . Hence,

the density estimatêp(ωv, ρv) is then updated at(k∆ωv, ρ
p,p), k = 1 . . .. We increment

it proportionally toδ(k∆ωv) after passing through a y-axis shifted sigmoid function:

p̂(k∆ωv, ρ
p,p
v )[n+1] = p̂(k∆ωv, ρ

p,p
v )[n] +

[
sig(C · δ(k∆ωv))− 0.5

]
, (12)

where subscript[n] signifies then-th iteration step and

sig(x) =
1

1 + e−x
, (13)

as shown in Figure 8 (a). The sigmoid function has the effect of reducing the overly

confident weight updates for the values ofωv that result in extremely good or bad

separationsδ(k∆ωv). The purpose of this can be seen by noting that we are using

separation as a proxy for the statistical goodness ofωv, while in fact attempting to

maximize the average recognition rate (i.e. the average number of cases for which

δ(k∆ωv) > 0). This is one of the main differences of the described algorithm to that of

Arandjelovíc and Cipolla proposed in [4].

Figure 9 summarizes the proposed offline learning algorithm. An analytic fit toωv(ρv)

in the form (1 + ea)/(1 + ea/ρv) is shown in Figure 8 (b).
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Fig. 8. The contribution of visual matching, as a function of the similarity of visual imagery. A low similarity score
between image sets in the visual domain is indicative of large illumination changes and consequently our algorithm
leant that more weight should be placed on the illumination-invariant thermal spectrum.

F. Prescription glasses

The appeal of using the thermal spectrum for face recognition stems mainly from

its invariance to illumination changes, in sharp contrast to visual spectrum data. The

exact opposite is true in the case of prescription glasses, which appear as dark patches

in thermal imagery, see Figure 6. The practical importance of achieving recognition

robustness in the presence of corrective eyewear can be seen by noting that in the US

in 2000 roughly 96 million people, or 34% of the total population, wore prescription

glasses [61].

In our system, the otherwise undesired, gross appearance distortion that glasses cause

in thermal imagery is used to help recognition by detecting their presence. If the subject

is not wearing glasses, then both holistic and all local patches-based face representations

can be used in recognition; otherwise the eye regions in thermal images are ignored as

they contain no useful recognition (discriminative) information.
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Input : visual datadv(person, illumination),
thermal datadt(person, illumination).

Output : density estimatêp(ωv, ρv).

1: Initialization
p̂(ωv, ρv) = 0,

2: Iteration
for all illuminations i, j and personsp

3: Iteration
for all k = 0, . . . , 1/∆ωv, ωv = k∆ωv

5: Separation givenω
δ(k∆ωv) = minq 6=p[ωvρ

p,p
v + (1− ωv)ρ

p,p
t

−ωvρ
p,q
v + (1− ωv)ρ

p,q
t ]

6: Update density estimate
p̂(k∆ωv, ρ

p,p
v ) = p̂(k∆ωv, ρ

p,p
v )

+
[
sig(C · δ(k∆ωv))− 0.5

]

7: Smooth the output
p̂(ωv, ρv) = p̂(ωv, ρv) ∗Gσ=0.05

8: Normalize to unit integral
p̂(ωv, ρv) = p̂(ωv, ρv)/

∫
ωv

∫
ρv

p̂(ωv, ρv)dρvdωv

Fig. 9. The proposed fusion learning algorithm, used offline.

b) Glasses detection:We detect the presence of glasses by building representations

for the left eye region (due to the symmetry of faces, a detector for only one side

is needed) with and without glasses, in the thermal spectrum. The foundations of our

classifier are laid out in§III-A. Appearance variations of the eye region with out without
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Glasses
ON

Glasses
OFF

Fig. 10. Shown are examples of glasses-on (top) and glasses-off (bottom) thermal data used to construct the
corresponding appearance models for our glasses detector.

glasses are represented by two 6D linear subspaces estimated from the training data

corpus, see Fig. 10 for examples of training data used for subspace estimations. The linear

subspace corresponding to eye region patches extracted from a set of thermal imagery

of a novel person is then compared with “glasses on” and “glasses off” subspaces using

principal angles. The presence of glasses is deduced when the corresponding subspace

results in a higher similarity score. We obtain close to flawless performance on our data

set (also see§IV for description), as shown in Fig. 11 (a,b). Good discriminative ability

of principal angles in this case is also supported by visual inspection of the “glasses on”

and “glasses off” subspaces; this is illustrated in Fig. 11 (c) which shows the first two

dominant modes of each, embedded in the 3D principal subspace.

The presence of glasses severely limits what can be achieved with thermal imagery,

the occlusion heavily affecting both the holistic face appearance as well as that of the

eye regions. This is the point at which our method heavily relies on decision fusion with

visual data, limiting the contribution of the thermal spectrum to matching using mouth

appearance only i.e. settingωm = 1.0 in (6).
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Fig. 11. (a) Inter- and (b) intra- class (glasses on and off) similarities across our data set. (c) Good discrimination
by principal angles is also motivated qualitatively as the subspaces modelling appearance variations of the eye region
with and without glasses on show very different orientations even when projected to the 3D principal subspace. As
expected, the “glasses off” subspace describes more appearance variation, as illustrated by the larger extent of the
linear patch representing it in the plot.

IV. EMPIRICAL EVALUATION

We evaluated the described system on the“Dataset 02: IRIS Thermal/Visible Face

Database”subset of theObject Tracking and Classification Beyond the Visible Spectrum

(OTCBVS)database1, freely available for download athttp://www.cse.ohio-state.

edu/OTCBVS-BENCH/. this database contains 30 individuals, 11 roughly matching poses

1IEEE OTCBVS WS Series Bench; DOE University Research Program in Robotics under grant DOE-DE-FG02-
86NE37968; DOD/TACOM/NAC/ARC Program under grant R01-1344-18; FAA/NSSA grant R01-1344-48/49; Office
of Naval Research under grant #N000143010022.
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in visual and thermal spectra and large illumination variations (some of these are exem-

plified in Figure 12). Images were acquired using the Raytheon Palm-IR-Pro camera in

the thermal and Panasonic WV-CP234 camera in the visual spectrum, in the resolution

of 240× 320 pixels.

Our algorithm was trained using all images in a single illumination in which all 3

salient facial features could be detected. This typically resulted in 7-8 images in the

visual and 6-7 in the thermal spectrum, see Figure 13, and roughly±45◦ yaw range, as

measured from the frontal face orientation.

The performance of the algorithm was evaluated both in 1-to-N and 1-to-1 matching

scenarios. In the former case, we assumed that test data corresponded to one of people

in the training set and recognition was performed by associating it with the closest

match. Verification (or 1-to-1 matching,“is this the same person?”) performance was

quantified by looking at the true positive admittance rate for a threshold that corresponds

to 1 admitted intruder in 100.

A. Results

A summary of 1-to-N matching results is shown in Table I. Firstly, note the poor

performance achieved using both raw visual as well as raw thermal data. The former is

suggestive of challenging illumination changes present in the OTCBVS data set. This is

further confirmed by significant improvements gained with both band-pass filtering and

the Self-Quotient Image which increased the average recognition rate for, respectively,

35% and 47%. The same is corroborated by the Receiver-Operator Characteristic curves

in Figure 15 and 1-to-1 matching results in Table II.

On the other hand, the reason for low recognition rate of raw thermal imagery is

twofold: it was previously argued that the two main limitations of this modality are the

inherently lower discriminative power and occlusions caused by prescription glasses.
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(a) Visual

(b) Thermal

Fig. 12. Each row corresponds to an example of a single training (or test) set of images used for our algorithm in
(a) the visual and (b) the thermal spectrum. Note the extreme changes in illumination, as well as that in some sets
the user is wearing glasses and in some not.
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Fig. 13. Shown are histograms of the number of images per person used to train our algorithm. Depending on the
exact head poses assumed by the user we typically obtained 7-8 visual spectrum images and typically a slightly lower
number for the thermal spectrum. The range of yaw angles covered is roughly±45◦ measured from the frontal face
orientation.

The addition of the glasses detection module is of little help at this point - some benefit

is gained by steering away from misleadingly good matches between any two people

wearing glasses, but it is limited in extent as a very discriminative region of the face is

lost. Furthermore, the improvement achieved by optimal band-pass filtering in thermal

imagery is much more modest than with visual data, increasing performance respectively

by 35% and 8%. Similar increase was obtained in true admittance rate (42% vs. 8%),

see Table 15.

Neither the eyes or the mouth regions, in either the visual or thermal spectrum, proved

very discriminative when used in isolation, see Figure 14. Only 10-12% true positive

admittance was achieved, as shown in Table III. However, the proposed fusion of holistic

and local appearance offered a consistent and statistically significant improvement. In

1-to-1 matching the true positive admittance rated increased for 4-6%, while the average
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TABLE I

Shown is the average rank-1 recognition rate using different representations across all combinations of

illuminations. Note the performance increase with each of the main features of our system: image filtering,

combination of holistic and local features, modality fusion and prescription glasses detection.

Representation Recognition

Visual

Holistic raw data 0.58

Holistic, band-pass 0.78

Holistic, SQI filtered 0.85

Mouth+eyes+holistic data fusion, SQI filtered 0.87

Thermal

Holistic raw data 0.74

Holistic raw w/ glasses detection 0.77

Holistic, low-pass filtered 0.80

Mouth+eyes+holistic data fusion, low-pass filtered 0.82

Proposed multi-sensory fusion
w/o glasses detection 0.90

w/ glasses detection 0.97

correct 1-to-N matching improved for roughly 2-3%.

The greatest power of the method becomes apparent when the two modalities, visual

and thermal, are fused. In this case the role of the glasses detection module is much

more prominent, drastically decreasing the average error rate from 10% down to 3%, see

Table I. Similarly, the true admission rate increases to 74% when data is fused without

special handling of glasses, and to 80% when glasses are taken into account.

V. SUMMARY AND CONCLUSIONS

In this paper we described a system for personal identification based on a face

biometric that uses cues from visual and thermal imagery. The two modalities are

shown to complement each other, their fusion providing good illumination invariance
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TABLE II

A summary of the comparison of different image processing filters for 1 in 100 intruder acceptance rate. Both the

simple band-pass filter, and even further its locally-scaled variant, greatly improve performance. This is most

significant in the visual spectrum, in which image intensity in the low spatial frequency is most affected by

illumination changes.

Representation Visual Thermal
1% intruder acceptance

Unprocessed/raw 0.2850 0.5803
Band-pass filtered (BP) 0.4933 0.6287
Self-quotient image (SQI) 0.6410 0.6301

TABLE III

A summary of the results for 1 in 100 intruder acceptance rate. Local features in isolation perform very poorly.

Representation Visual (SQI) Thermal (BP)
1% intruder acceptance

Eyes 0.1016 0.2984
Mouth 0.1223 0.3037

TABLE IV

Holistic & local features – a summary of 1-to-1 matching (verification) results.

Representation Visual (SQI) Thermal (BP)
1% intruder acceptance

Holistic+eyes 0.6782 0.6499
Holistic+mouth 0.6410 0.6501
Holistic+eyes+mouth 0.6782 0.6558

TABLE V

Feature and modality fusion – a summary of the 1-to-1 matching (verification) results.

Representation True admission rate
1% intruder acceptance

W/o glasses detection 0.7435
W/ glasses detection 0.8014
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Fig. 14. Isolated local features Receiver-Operator Characteristics (ROC): for visual (blue) and thermal (red) spectra.
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(b) Band-pass filtered
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(c) Self-Quotient Image filtered

Fig. 15. Holistic representations Receiver-Operator Characteristics (ROC) for visual (blue) and thermal (red) spectra.

and discriminative power between individuals. Prescription glasses, a major difficulty in

the thermal spectrum, are reliably detected by our method, restricting the matching to

non-affected face regions. Finally, we examined how different preprocessing methods

affect recognition in the two spectra, as well as holistic and local feature-based face

representations. The proposed method was shown to achieve a high recognition rate

February 15, 2007 DRAFT



THERMAL & REFLECTANCE BASED IDENTIFICATION IN CHALLENGING VARIABLE ILLUMINATIONS 30

(97%) using only a small number of training images (5-7) in the presence of large

illumination changes.

Our results suggest several possible avenues for improvement. We intend to make

further use of the thermal spectrum, by not only detecting the glasses, but also by

segmenting them out. This is challenging across large pose variations, such as those

contained in our test set. Another research direction we would like to pursue is that

of synthetically enriching the training corpus to achieve increased robustness to pose

differences between image sets (c.f. [40] [58]). Finally, we note that empirical evaluation

on a larger data set is needed to clearly identify the limitations and scalability of the

proposed method.
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