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Reconstructing relief surfaces
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Abstract

This paper generalizes Markov Random Field (MRF) stereo methods to the generation of surface relief (height) fields rather than
disparity or depth maps. This generalization enables the reconstruction of complete object models using the same algorithms that have
been previously used to compute depth maps in binocular stereo. In contrast to traditional dense stereo where the parametrization is
image based, here we advocate a parametrization by a height field over any base surface. In practice, the base surface is a coarse approx-
imation to the true geometry, e.g., a bounding box, visual hull or triangulation of sparse correspondences, and is assigned or computed
using other means. A dense set of sample points is defined on the base surface, each with a fixed normal direction and unknown height
value. The estimation of heights for the sample points is achieved by a belief propagation technique. Our method provides a viewpoint
independent smoothness constraint, a more compact parametrization and explicit handling of occlusions. We present experimental
results on real scenes as well as a quantitative evaluation on an artificial scene.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Inferring the dense 3D geometry of a scene from a set of
photographic images is a computer vision problem that has
been extensively studied. Work in this area can be roughly
divided into two classes: (1) techniques for computing
depth maps (image-based parameterization), and (2) volu-
metric methods for computing more complete object
models.

In the first class, image based parameterization of shape,
a reference image is selected and a disparity or depth value
is assigned to each of its pixels using a combination of
image correlation and regularization. Scharstein and Szeli-
ski provide an excellent review for image based methods
[21]. These problems are often formulated as minimisations
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of Markov Random Field (MRF) energy functions provid-
ing a clean and computationally-tractable formulation, for
which good approximate solutions exist using Graph cuts
[2,15,20,11] or Loopy Belief Propagation [24]. They can
also be formulated as continuous PDE evolutions on the
depth maps [23]. However, a key limitation of these solu-
tions is that they can only represent depth maps with a
unique disparity per pixel, i.e. depth is a function of image
point. Capturing complete objects in this manner requires
further processing to merge mul tiple depth maps [18], a
complicated and error-prone procedure. A second limita-
tion is that the smoothness term imposed by the MRF is
viewpoint dependent, in that if a different view was chosen
as the reference image the results could be quite different.

The second class of techniques uses a volumetric param-

eterization of shape. In this class are well-known techniques
like Space Carving [16] and level-set stereo [6]. There are
also hybrid approaches that optimize a continuous func-
tional via a discrete quantisation [19]. While these methods
are known to produce high quality reconstructions, run-
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ning on high resolution 3D grids is very computationally
and memory intensive. Furthermore their convergence
properties in the presence of noise are not well understood,
in comparison with MRF techniques, for which strong
convergence results are known. For Space Carving in par-
ticular, there is also no simple way to impose surface
smoothness constraints.

In principle MRF stereo methods could be extended to
multiple views. The problem is that reasoning about
occlusions within the MRF framework is not straightfor-
ward because of global interactions between points in
space (see [15] for an insightful but costly solution for
the case of multi-view depth-map reconstruction). In this
paper, we propose extending MRF techniques to the
multi-view stereo domain by recovering a general relief

surface, instead of a depth map. We assume that a coarse
base surface is given as input. In practice this can be
obtained by hand, by shape-from-silhouette techniques
or triangulating sparse image correspondences. On this
base surface sample points are uniformly and densely
defined, and a belief propagation algorithm is used to
obtain the optimal height above each sample point
through which the relief surface passes. The benefits of
our approach are as follows:

(1) General surfaces and objects can be fully represented
and computed as a single relief surface.

(2) Optimisation is computationally tractable, using
existing MRF solvers.

(3) Occlusions are approximately modelled.
(4) The representation and smoothness constraint is

image and viewpoint independent.
1.1. Related work

Our work is inspired by displaced surface modelling
methods in the computer graphics community, in particu-
lar the recent work of Lee et al. [17], who define a displace-
ment map over subdivision surfaces, and describe a
technique for computing such a representation from an
input mesh. An advantage of this and similar techniques
is that they enable the representation of finely detailed
geometry using a simple base mesh.

We also build on work in the vision community on
plane-plus-parallax [3], model-based stereo [5], and sprites

with depth [22]. All of these techniques provide means for
representing planes in the scene with associated height
fields. Our work can be interpreted as a generalization of
plane-plus-parallax to a surface-plus-height formulation.

Previous mesh-based multi-view stereo techniques oper-
ate by iteratively evolving an initial mesh until it best fits a
set of images [14,26], or depth maps [10]. Representing
finely detailed geometry is difficult for such methods due
to the need to manage large and complex meshes. In con-
trast we assume a fixed base surface and solve only for a
height field providing a much simpler way of representing
surface detail. We also use a more stable estimation prob-
lem with good convergence properties. Ultimately, a hybrid
approach that combines surface evolution and height field
estimation could offer the best of both worlds and is an
interesting topic of future work.

2. Model

The theory of Markov random fields yields an efficient
and powerful framework for specifying complex spatial
interactions between a number of discrete random vari-
ables h1, . . . ,hM, usually called sites. Each site can take
one of a number of values or labels H1, . . . ,HL. The first
ingredient of the model is a labelling cost function Ck(hk)
that measures how much a site is in agreement with being
assigned a particular label. The second ingredient is the
interaction between sites, which, in a pairwise MRF such
as the one considered in this paper, is modelled through
a symmetric neighbourhood relation N as well as a com-
patibility cost term Ckl(hk,hl) defined over neighbouring
sites. This cost term measures how compatible the assign-
ment of any two neighbouring labels is. The cost of cliques
(fully connected subgraphs) with more than two nodes is
set to zero. With these energy functions defined, the joint
probability of the MRF is:

Prðh1; . . . ; hMÞ ¼
1

Z
exp �

XM

k¼1

CkðhkÞ �
X
ðk;lÞ2N

Cklðhk; hlÞ
 !

ð1Þ
where Z is a constant.

To bring multi-view stereo into this framework a set of 3D
sample points X1,X2, . . .XM is defined on a base surface. The
neighbourhood relation N defined between the sample
points can be obtained in a number of ways, some of which
are discussed in the next subsection. At each sample point
Xk, the unit normal to the base surface at that point, nk is
computed. The sites of the MRF correspond to height values
h1, . . . ,hM measured from the sample points X1, X2, . . .XM

along the normals n1, n2, . . . , nM (see Fig. 1 left). The labels
H1, . . . ,HL are a set of possible height values that variables
hk can take. If the kth site is assigned label hk then the relief

surface passes through 3D point Xk + hknk. To deal with
the problem of occlusion, the base surface has to contain

the relief surface for reasons that will be explained in Section
2.2. Hence if the positive normal direction is defined to be
towards the interior of the volume, only positive (inward)
heights need be considered. The labelling cost is related to
the photo-consistency [16] of the 3D point Xk + hknk while
the compatibility cost forces neighboring sites to be labelled
with ‘compatible’ heights. The following sections discuss
how to define the sample point neighbourhood relation, as
well as the two terms of the cost functional in more detail.

2.1. Sample point neighbourhood

The neighbourhood relation between sample points can
in principle be obtained by a simple thresholding of the
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Fig. 1. The 3D MRF model. Left: Sample points Xk (black dots), are defined on a base surface and surface normals nk, are computed at those points. A
neighbourhood relation N (dashed lines) is defined between the sample points. Labels Hi (white dots) are heights above the sample points. In the figure a
set of 3 labels for a sample point are depicted, each of which corresponds to a 3D location in space. The cost of assigning a height to a sample point is
based on the photo-consistency of the corresponding 3D location. Right: The smoothness cost involves terms proportional to distance between
neighbouring relief surface points. The figure shows a 1D MRF where the smoothness cost forces minimum length. In the 2D case, an approximation to
surface area is minimized.
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Euclidean distance between sample points. A slightly more
principled way that is also useful for extracting a surface
from the estimated height field, is to obtain a triangulation
of the sample points and then use the edges present in the
triangulation as neighbour links. This has the advantage
that for a well behaved regular triangulation (i.e. one with
mostly equilateral triangles) the number of neighbours is
usually around 6, while there is no need for any distance
threshold. Such triangulation can usually be obtained from
a coarse mesh using standard mesh subdivision algorithms
such as [13].

After the optimal height has been obtained for every
sample point, this triangulation can be lifted to the height
field points Xk + hknk so that a mesh surface is automati-
cally obtained from the height field.

2.2. Labelling cost

The data are n images of the scene I1, . . . , IN, with known
intrinsic and extrinsic camera parameters. We will be
denoting by Ik(X) the intensity of the pixel onto which
the 3D point X is perspectively projected by the camera
that captured image Ik. As mentioned, labelling a site with
a height value corresponds to a point in space through
which the relief surface passes. Let that point be Xk + hknk

and let the intensities of the pixels to which it projects be
i1(hk) = I1(Xk + hknk), . . . ,iN(hk) = IN(Xk + hknk). If the
point is part of the true scene surface these intensities
should be consistent. Let .{i1,i2, . . . ,in} be some measure
of consistency of the intensities. In experiments presented
here this was set to the standard deviation of the intensities
(which corresponds to the Lambertian reflectance model)
but other measures could be used instead [12,8]. Then

CkðhkÞ ¼ w1. i 1ðhkÞ; . . . ; iN ðhkÞf g ð2Þ

is defined as a measure of the consistency of the assignment
of height hk to sample point Xk for some weight parameter
w1. This however does not take occlusion into account and
will lead to erroneous reconstructions if not all points are
visible from all images. If we also require the base surface
to be outside the true scene surface, as would be the case if
it was obtained through the visual hull [4] for example, then
it can be used as the occluding volume through which vis-
ibility can be inferred. In this case only positive heights
(going into the volume) have to be examined. Such an
occluding volume guarantees that no location in space out-
side or on the boundary of the volume is considered visible
from an image if it is occluded by the true scene surface. On
the other hand there may be visible locations that are erro-
neously considered occluded. For a proof of this claim see
[16].

Note that the volume of the base surface cannot pro-
vide accurate information for the visibility of locations
inside it. It can be used however as an approximation
by assuming that Xk + hknk has the same visibility as
Xk for the small range of heights we are considering.
The base surface is therefore used to define a visibility
map Vn(Xk) that is 1 when Xk is visible from image n
and 0 otherwise. Taking this into account the labelling
cost is set to

CkðhkÞ ¼ w1. inðhkÞ : V nðXkÞ ¼ 1f g: ð3Þ
2.3. Compatibility cost

As mentioned previously, the dense stereo problem is ill
posed and some form of regularization is necessary. In a
3D, non regular MRF, defining the notion of ‘compatible’
neighbouring heights presents a challenge. In the simple
case where base surface normals are parallel (planar
regions) and distances between sample points are constant,
simple choices for the compatibility cost such as ihk � hli
or ihk � hli2 work adequately. These costs also permit a sig-
nificant speed up to the BP algorithm described in [7]. They
are not very meaningful however for curved base surfaces
where the distance between sample points and direction
of surface normals need to be taken into account. The cost
function

Cklðhk; hlÞ ¼ w2dklðhk; hlÞ ð4Þ
with some weight parameter w2 and dkl(hk,hl) = i(Xk +
hknk)�(Xl + hlnl)i, penalizes the Euclidean distance be-
tween neighbouring relief surface points. It favours mini-
mal area surfaces and is meaningful for arbitrary
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configurations of base surface and sample points (Fig. 1
right).

3. Optimisation

The MRF model laid out in the previous section pro-
vides a probability for any possible height labelling and
corresponding relief surface. MRF inference involves
recovering the most probable site labelling which is an
NP-hard optimization problem in its generality [15]. Fortu-
nately a number of efficient approximate algorithms have
been proposed such as graph cuts [1] and belief propaga-
tion [24]. These methods have been shown to give very
good results in a depth-map setting (see [21,25] for a com-
parison). In this work we choose to apply a belief propaga-
tion scheme which we outline in the following section.

3.1. Loopy belief propagation

Belief propagation works by the circulation of messages
across neighbouring sites. Each site sends to each of its
neighbours a message with its belief about the probabilities
of a neighbour being assigned a particular height. The cli-
que potentials

UkðhkÞ ¼ exp �CkðhkÞð Þ ð5Þ

and

Wklðhk; hlÞ ¼ exp �Cklðhk; hlÞð Þ ð6Þ

are precomputed and stored as L · 1 and L · N matrices,
respectively. Now suppose that mij(hj) denotes the message
sent from sample point i to sample point j (this is a vector
indexed by possible heights at j). We chose to implement
the max-product rule according to which, after all messages
have been exchanged, the new message sent from k to l is

emkl ¼ max
hk

UkðhkÞWklðhk; hlÞ
Y

i2NðkÞ�flg
mikðhkÞ: ð7Þ

The update of messages can either be done synchronously
after all messages have been transmitted, or asynchro-
nously with each sample point sending messages using all
the latest messages it has received. We experimented with
both methods and found the latter to give speedier conver-
gence, which was also reported in [25].

3.2. Coarse to fine strategy

One of the limitations of loopy belief propagation is that
it has significant memory requirements, especially as the
size of the set of possible heights is increased. In the near
future bigger and cheaper computer memory will make this
problem irrelevant, but for the system described in this
paper we designed a simple coarse to fine strategy that
allows for effective height resolutions of thousands of pos-
sible heights. This strategy effectively, instead of consider-
ing one BP problem with L different labels, considers
logL/log l problems with l labels where l� L. It therefore
also offers a runtime speedup since it reduces the time
required from O(ML2) to O(logL Ml2/logl).

Initially the label set for all sites corresponds to a coarse
quantization of the allowable height range. After conver-
gence of the Belief Propagation algorithm each site is
assigned a label. In the next iteration a finer quantization
of the heights is used within a range centered at the optimal
label of the previous iteration. The label set is now allowed
to be different for each site. At each phase the number of
possible heights per node is constant but the height resolu-
tion increases.

To make this idea more precise, at this point we replace
height labels with height range labels. A sample point can
now be labelled by a height range in which its true height
should lie. The cost for assigning height interval [Hi,Hi+1]
to the kth site is now defined as:

Ĉk ½H i;Hiþ1�ð Þ ¼ min
h2½Hi;Hiþ1�

CkðhÞ: ð8Þ

In practice this minimum is computed by densely sampling
Ck(h) over the maximum range [Hmin,Hmax] so that the
images are all sampled at a sub-pixel rate. This computa-
tion only has to be performed at the beginning of the algo-
rithm. Similarly the smoothness cost for assigning height
ranges [Hi,Hi+1], [Hj,Hj+1] to two neighbouring sites k

and l is:

Ĉklð½Hi;H iþ1�; ½H j;Hjþ1�Þ ¼ Ckl
H i þ H iþ1

2
;
Hj þ Hjþ1

2

� �
:

ð9Þ
When belief propagation converges, each point is assigned
an interval in which its height is most likely to lie. This
interval will then be subdivided into smaller subintervals
which become the site’s possible labels. The process repeats
until we reach the desired height resolution.

4. Results

In this section, a quantitative analysis using an artificial
scene with ground truth is provided. Results on a challeng-
ing low-relief scene of a Roman sarcophagus, a building
facade and a stone carving are also illustrated. The weight
parameters w1 and w2 of Eqs. 3 and 4 are empirically set
relatively easily after a few trial runs. However, in cases
where the distributions of . and dkl are known (e.g., we
are given ground truth data for a similar scene), the weights
can be set by using the approximation of [9] where the cli-
que potentials are fitted to the distributions of . and dkl.

4.1. Artificial scene

The artificial scene was a unit sphere whose surface was
normally deformed by a random displacement and texture
mapped with a random pattern (see Fig. 2). The object was
rendered from 20 viewpoints around the sphere. Using the
non-deformed sphere as the base surface on which 40,000
sample points were defined, the relief surface MRF was



Fig. 2. Artificial Scene. From left to right: (a) The true scene (a unit sphere whose surface is deformed by a random positive or negative normal
displacement). (b) The deformed sphere is texture mapped with a random pattern. (c) The base surface (a non deformed unit sphere). (d) The relief surface
returned by the algorithm.

Table 1
Artificial Scene

2-View BP Relief Surf.

MSE 1.466 pixels 0.499 pixels
% of correct disparities 75.9% 79.1%

Comparison with 2-view BP. Both metrics show the superior performance
of the relief surface approach. Note that a disparity estimate for a pixel is
assumed correct if it is within one pixel of the true disparity.
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optimized by the method described in this paper (Fig. 2).
Positive and negative heights were considered but the visi-
bility reasoning was still approximately correct because of
the small height range considered. The performance of
the relief surface approach was measured against a two-
view Loopy Belief Propagation algorithm similar to the
one described in [24]. To that end 10 pairs of nearby views
were input to the BP algorithm resulting in 10 disparity
maps. These maps were compared against the depth-maps
of the reconstructed sphere from identical viewpoints.
Table 1 shows the mean square errors of the two algo-
rithms against the known ground truth. It also shows the
percentage of correctly labelled pixels. Both figures demon-
strate the superior performance of the relief surface
approach which allows for simultaneous use of all data
and for a viewpoint independent smoothness cost.
Fig. 3. Roman sarcophagus. Top: the three images used in the reconstruction w
rendering of reconstructed relief surface. Bottom right: without texture mappi
4.2. Real scenes

For the first experiment presented here, three
1600 · 1200 pixel images of a Roman sarcophagus were
used. The image regions of interest that were actually used
for the reconstruction were approximately 600 · 300 pixels.
The base surface was initialized to a rectangular planar
region by manually clicking on four correspondences. A
regular grid of 160,000 sample points was then defined
on this rectangle. The initial height range was subdivided
by a factor of four in each stage of the coarse-to-fine
scheme. The resulting height fields of the first three itera-
tions are shown in Fig. 4 where high intensity denotes posi-
tive height from the surface towards the viewer. Fig. 3
shows textured and un-textured versions of the recon-
structed surface.

The second experiment (Fig. 5) was performed on three
images of a building facade which the shiny or transparent
windows make particularly difficult. The base surface was
again a hand-initialized plane. Finally the third experiment
was performed on three images of a stone carving. To illus-
trate the effect of a more complex but still approximate base
surface, a sparse set of feature matches was Delaunay trian-
gulated to obtain a base surface as a mesh. The relief surface
was then optimized to yield the results shown in Fig. 6.
ith region of interest denoted by a black box. Bottom left: texture mapped
ng. The base surface was a plane.



Fig. 4. Detail of the coarse to fine strategy. This is the output of the first three phases of the algorithm for the first experiment. The resolutions at each
phase are 4, 16 and 64 height ranges shown from left to right.

Fig. 5. Building facade. Top: the images used. Bottom two rows, left and right: texture mapped and un-textured relief surface. The base surface was the
wall plane. The challenge of the scene is the shiny or transparent windows as well as the fine relief at places.

Fig. 6. Stone carving. Top: the images used. Bottom left: the base surface. Bottom middle: the un-textured relief surface. Bottom right: the texture mapped
relief surface.
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Fig. 7. Face (synthetic scene). (a–c) Three images of the synthetic face sequence where a 3-d face model has been rendered from eight viewpoints. (d) The
visual hull generated from silhouettes of the face. (e,f) The result of space carving. (f) The relief surface reconstruction exhibits the ‘seam’ artifacts across
the face caused by self intersection of the mesh.
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5. Limitations

An issue not addressed by the relief surface representa-
tion is the issue of self-intersections of the mesh. The
central assumption behind this approach is that the
approximate surface will be close to the real surface. This
means that, if mesh normals are close to parallel, self-inter-
sections will be avoided. If however the normals are
non-parallel, as would be the case where the base surface
exhibits high curvature, then even small heights will cause
self-intersection. This phenomenon is demonstrated by an
synthetic sequence of eight images of a VRML face model.
Fig. 7 shows some of the face images, the visual hull of the
scene, obtained from the face silhouettes, and the relief
surface reconstruction obtained. The reconstruction exhib-
its the characteristic ‘seam’ artifact caused by self-intersec-
tion of the mesh.

A further limitation is that the topology of the estimated
relief surface can never be different from the topology of
the initial base surface so if the reconstructed scene has a
topological feature (i.e. a hole) not present in the base sur-
face, it can never appear in our results.
6. Conclusion

In this paper we have shown how MRF techniques for
image based stereo can be extended in the volumetric stereo
domain. This is done by defining a set of sample points on
a coarse base surface, establishing an MRF on unknown
displacements of these points normal to the base surface.
By casting the problem in the MRF framework we can
use computationally tractable algorithms like belief propa-
gation to recover the unknown displacements. Addition-
ally, this parameterization of the scene is more general
than a depth map and leads to image and viewpoint inde-
pendent reconstructions. The MRF’s compatibility cost
favours solutions with minimal surface area. Furthermore,
the base surface can be used as the occluding volume
through which the visibility of individual sample points is
inferred. The memory requirements of belief propagation
are reduced through the employment of a novel coarse-
to-fine scheme. Promising results are demonstrated on a
variety of real world scenes.
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