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Abstract—This paper addresses a spatiotemporal pattern recognition problem. The main purpose of this study is to find a right

representation and matching of action video volumes for categorization. A novel method is proposed to measure video-to-video volume

similarity by extending Canonical Correlation Analysis (CCA), a principled tool to inspect linear relations between two sets of vectors, to

that of two multiway data arrays (or tensors). The proposed method analyzes video volumes as inputs avoiding the difficult problem of

explicit motion estimation required in traditional methods and provides a way of spatiotemporal pattern matching that is robust to

intraclass variations of actions. The proposed matching is demonstrated for action classification by a simple Nearest Neighbor

classifier. We, moreover, propose an automatic action detection method, which performs 3D window search over an input video with

action exemplars. The search is speeded up by dynamic learning of subspaces in the proposed CCA. Experiments on a public action

data set (KTH) and a self-recorded hand gesture data showed that the proposed method is significantly better than various state-of-

the-art methods with respect to accuracy. Our method has low time complexity and does not require any major tuning parameters.

Index Terms—Action categorization, gesture recognition, canonical correlation analysis, tensor, action detection, incremental

subspace learning, spatiotemporal pattern classification.

Ç

1 INTRODUCTION

THE automatic classification and localization of human
actions/gestures is useful for various applications such

as video surveillance, human-computer interfaces, and
object-level video summarization and retrieval. Broadly,
relevant studies have either exploited explicit motion
representation such as tracked trajectories of body parts
[39], [9], [10], [3], [8] or directly analyzed space-time
volumes [1], [7], [5]. Methods using tracked trajectories
interpret actions purely by motion information and have tried
to explicitly tackle main sources of variation in human
motion, e.g., moving cameras, view point, and execution
rate changes. However, obtaining the trajectory of body
parts requires much human supervision for initialization.
Recognition accuracy of this method is highly dependent on
tracking in an unconstrained environment, which is a
currently challenging topic of computer vision research.
Active/passive markers on human bodies have been often
used to reduce the complexity of the problem. A major
problem with methods directly analyzing space-time vo-
lumes, on the other hand, is to find an efficient representation
and matching of action videos, while at the same time
avoiding the difficult problem of explicit motion representa-
tion. These methods, the so-called view-/or exemplar-based
methods, make partial use of both spatial and temporal
information delivering high recognition accuracy for a

limited view. The methods in this category [1], [7], [5]
are more suited to simple motions. Action is often
discriminated from activity [12]: Action is an individual
atomic unit of activity and activity is a series of actions in a
predefined temporal order [44]. Whereas the trajectory-
based approach is better suited to activity recognition by
interpreting temporal transition, volume analysis methods
are better suited to action recognition. This paper focuses on
action (cf. activity) recognition methods that interpret video
volumes without the use of trajectory estimation.

A number of recent works have analyzed human actions
directly in space-time volumes. Video volume matching has
been performed by utilizing dense optical flows [7], [6].
Optical flow estimation for dense, unconstrained, and
nonrigid motion is, however, noisy and unreliable due to
problems caused by smooth surfaces, self-occlusions, and
appearance changes. The comparison of two video volumes
has been achieved either by matching templates called
motion history images [13], [8] or by measuring correlation
of gradients of local space-time patches [1]. Motion history
images as a holistic (cf. local) representation tend to be
sensitive to changes in background and geometrical varia-
tion of actions. The method of local space-time patches [1]
requires the manual setting of positions and scales of the
local patches, whose optimal settings depend on the data.
Silhouette images have been used [2], [4]. Feature vectors
are extracted from silhouette images of action sequences
and Poisson equation and the euclidian distance of the
feature vectors is served as similarity of action sequences in
[2]. As noted in [2], silhouettes are not always available and
insufficient to represent complex spatial information.

One popular approach toward action recognition is
based on spatiotemporal bag-of-words [5], [16], [15], [14].
Space-time interest points are detected in video volumes
and local space-time variations around interest points are
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described by histograms. Histogram representations are
then combined with either Support Vector Machine (SVM)
[16] or a probabilistic generative model [5]. Although they
have yielded good accuracy, mainly due to the high
discrimination power of individual local descriptors, they
exhibit ambiguity by ignoring global space-time shape
information. In spite of recent attempts [20], [19] to
incorporate global information of action classes, there
remains the difficulty of setting parameters of the space-
time interest points as, again, these are application or data
dependent.

Traditional classifiers may be applied to either vector or
tensor representation of video volumes for action recogni-
tion tasks. Once a video volume is converted to a finite
dimensional vector, applying classifiers, e.g., SVM or NN
classifier, is straightforward. Concurrent studies have been
carried out to classify tensors as an original form of imagery
data without requiring vectorization. Ensembles of multi-
linear classifiers have been developed for the tensor data
obtained from a color image [25] and the discriminant
analysis method for the tensor data from a gray image using
filter banks [26]. Corpora of motion capture data (obtained
by infrared light markers) of multiple people and actions
are analyzed as tensors for human motion synthesis and
recognition [41]. There are, however, few previous works
that analyze video volume tensors for action classification,
except where SVM for tensor data has been proposed [43].
Both tensor classifiers [43] and traditional vector classifiers
(aforementioned) directly exploit pixel statistics of holistic
video volumes without useful feature extraction. They are,
therefore, sensitive to spatiotemporal pattern variations of
actions, thus exhibiting poor generalization on novel testing
data under small sample size (see Section 6.1 for accuracy
comparison of those methods).

Canonical correlation analysis (CCA). We have inves-
tigated a more principled and effective way of video
volume matching. CCA, which has been, since Hotelling
(1936), a standard tool for inspecting linear relations
between two random variables (or two sets of vectors)
[29], has more recently received increasing attention in
computer vision literature (e.g., [45], [31], [32], [23], [21]).
CCA has been applied to human gait recognition [3], where
trajectories of joint angles of an articulated body are
modeled by second-order stationary stochastic processes
and CCA is deployed for comparing the models. As noted
above, extraction of trajectories is difficult and the model is
limited to repetitive motions. An image set is collected
either from a video or sparse observations and is repre-
sented by a linear subspace (or hyperplane) [31]. CCA
measures angles between two subspaces (cosine of the
angles are called canonical correlations) for similarity
between two image sets. A probabilistic interpretation of
CCA [23] yields a model that reveals how well two input
variables (i.e., two sets of vectors) are represented by a
common source (latent) variable. Computation of canonical
correlations has been extended into a nonlinear feature
space by a positive definite kernel function [32]. In our
earlier work [21], we proposed a CCA-based image-set
classification with a discriminative transformation and
successfully demonstrated this for various image-set-based

object recognition tasks. Allowing data interpolation of
image sets in CCA facilitates recognition of high-dimen-
sional imagery data under small sample cases (see Sec-
tions 2.1 and 4 for details on CCA). Despite the success of
CCA for image set matching (i.e., a collection of images
without any temporal coherence), CCA is not sufficient to
represent and match action video volumes in which both
temporal and spatial information are important.

Proposed study. In this study (conference version [22]),
we propose an action recognition method by extending
CCA of two sets of vectors into that of two video volume
tensors. The method is a pairwise analysis of aligned and
holistic action volumes. The proposed method is first
applied to classification of aligned actions (see Fig. 1 for
examples of actions in spatiotemporal bounding boxes) and
then to action detection in input videos. The advantages
and disadvantages of the proposed method over existing
works are summarized in Table 1.

The proposed method focuses on the view points seen
from training examples as in previous studies [1], [7], [5]. In
spite of a limited view scope, there remain a number of
other variations to consider such as changes in illumination,
actors, backgrounds (indoor and outdoor), and clothes, as
well as moderate changes in either view or camera
movement, as contained in the experimental data sets (see
Figs. 6, 10, and 14). Rather than explicitly modeling all of the
variations, we take an exemplar-based approach that
exhibits reasonable generalization over new data changes.
With regard to complex motions that involve nonlinear time
warping, these may be tackled in a so-called divide and
conquer manner by a method that works well with simpler
motions. Importantly, many existing works that make
strong assumptions on inputs are not readily applicable to
real-world problems. Our experiments also do not favor
strong assumptions on inputs. The methods of these works
are, moreover, based mainly on motion information,
ignoring the spatial domain of video data, which provides
strong evidence of action.

Harshman [30] has also presented a concept of CCA of
multiway data arrays. Although it was carried out
independently of our work, it has a common concept that
supports the ideas presented in this paper. Our work not
only comprises our new Tensor CCA (TCCA) method but
also describes new applications of TCCA to action
classification and detection.

The remainder of this paper is arranged as follows: CCA
and multilinear algebra are briefly reviewed in Section 2.
The extension of CCA to video volume tensors and its
solution are given in Section 3. We perform action
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Fig. 1. Sample actions bounded in spatiotemporal domain. The
bounding boxes indicate the spatial alignment and the superimposed
images of the initial, intermediate, and the last frames of each action
show the temporal alignment. The alignment can be automatically done
by the proposed detection method.



classification in the Nearest Neighbor (NN) sense with the

canonical correlation features, as explained in Section 4.

Section 5 is devoted to the action detection method. The

experimental results and conclusions are given in Sections 6

and 7, respectively.

2 BACKGROUND

2.1 Review on Canonical Correlation Analysis

Given two random vectors x 2 IRm1 , y 2 IRm2 , a pair of

transformations u;v, called canonical transformations, is

found to maximize the correlation of x0 ¼ uTx and y0 ¼
vTy as

� ¼ max
u;v

ÎE½x0y0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÎE½x02�ÎE½y02�

q ¼ uTCxyvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uTCxxuvTCyyv

p ; ð1Þ

where ÎE½f � denotes empirical expectation of function f and �

is called the canonical correlation. Multiple canonical

correlations �1; . . . ; �d, where d � minðm1;m2Þ, are defined

by the next pairs of u;v, which are orthogonal to the previous

ones. Canonical correlations are affine-invariant to inputs,

i.e., Axþ b, Cyþ d for arbitrary (nonsingular) A 2 IRm1�m1 ,

b 2 IRm1 , C 2 IRm2�m2 , d 2 IRm2 . The proof is straightforward

from (1) as Cxy, Cxx, Cyy are covariance matrices and are

multiplied by canonical transformations u;v.
Given two vector sets as matrices X 2 IRN�m1 and

Y 2 IRN�m2 , Goloub’s SVD solution [34] is given as follows:

If P1;P2 2 IRN�d denote two eigenvector matrices of X;Y,

respectively, where N � m1, m2 � d, canonical correlations

are obtained as singular values of ðP1ÞTP2 by

ðP1ÞTP2 ¼ Q1�QT
2 ; � ¼ diagð�1; . . . �dÞ; ð2Þ

where Q1, Q2 are arbitrary rotating matrices such that

Q1Q
T
1 ¼ Q2Q

T
2 ¼ Id. As d is typically a small number, the

complexity of SVD, Oðd3Þ, is very low.

2.2 Multilinear Algebra and Notations

Following the notations in [24], [28], a video volume is a third-

order tensor, which is denoted by A ¼ ðAÞijk 2 IRI�J�K . The

inner product of any two tensors is defined as

hA;Bi ¼
P

i;j;kðAÞijkðBÞijk. The mode-j vectors are the col-

umn vectors of matrix AðjÞ 2 IRJ�ðIKÞ and the j-mode

product of a tensor A by a matrix U 2 IRN�J is

ðBÞink 2 IRI�N�K ¼ ðA �j UÞink ¼ �jðAÞijkunj: ð3Þ

The j-mode product in terms of j-mode vector matrices is

BðjÞ ¼ UAðjÞ.

3 TENSOR CANONICAL CORRELATION ANALYSIS

We generalize the canonical correlation analysis of two

vector sets into that of two high-order tensors. Previous

studies [31], [32], [21] have made a comparison of

vectorized image sets in a standard way of CCA. If a video

volume is simply taken as a set of vectorized images for

input of CCA, temporal information of action videos would

be lost as CCA is invariant to ordering of image vectors. An

extension is proposed for considering both spatial and

temporal information for action classification.

3.1 Tensor Representation of Standard CCA

Standard CCA is first represented by tensor notations.

Given two vector sets as matrices X 2 IRN�m1 , Y 2 IRN�m2

ðN � m1;m2Þ, CCA is written as

� ¼ max
u;v

x0Ty0; where x0 ¼ Xu;y0 ¼ Yv: ð4Þ

Note that the canonical transformations u;v are hereinafter

defined to be such that XU ¼ P1Q1, YV ¼ P2Q2, where

U;V have u;v in their columns, respectively, and P;Q are

eigenvector and rotating matrices defined in (2), respec-

tively. If we take X;Y as second-order tensors ðXÞij, ðYÞij,
the standard CCA is then represented as
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TABLE 1
Advantages and Disadvantages of the Proposed Method



� ¼ max
u;v
hX �j uT ;Y �j vT i: ð5Þ

CCA has one shared mode (index i) and mode products

by canonical transformations (index j), which is illu-

strated in Fig. 2. The two data matrices, for which P1;P2

are computed, can be written with respect to the j-mode

vector matrices such that X ¼ XT
ðjÞ, Y ¼ YT

ðjÞ. The j-mode

products X �j UT , Y �j VT in terms of j-mode vector

matrices are UTXðjÞ ¼ ðP1Q1ÞT , VTYðjÞ ¼ ðP2Q2ÞT , re-

spectively. The canonical transformations are obtained

by U ¼ ðXðjÞXT
ðjÞÞ
�1XðjÞP1Q1, V ¼ ðYðjÞYT

ðjÞÞ
�1YðjÞP2Q2.

Note that there is no loss of generality in applying

formulation (5) to high-order tensors.

3.2 Joint/Single-Shared-Mode TCCA

A single channel video volume is represented as a third-order

tensor denoted by ðAÞijk that has the three axes of space (X

and Y ) and time ðT Þ. We assume that actions are spatiotem-

porally bounded as shown in Fig. 1 and every bounded video

volume is uniformly resized to be IRI�J�K (Note that this

preserves unique spatiotemporal patterns of video volumes).

Tensor data, therefore, have all three indices ði; j; kÞ in

common. Two different architectures of TCCA are proposed

according to the number of shared modes.
Joint-shared-mode TCCA shares any two axes (i.e., a plane)

and applies canonical transformations to the remaining

single axis of tensor data. It involves three pairs of canonical

transformations for given two tensors X ;Y 2 IRI�J�K as

� ¼ max
�
hX0;Y0i; ð6Þ

where

ðX0Þijk ¼ X �i uTi
� �

jk
� X �j uTj

� �
ik
� X �k uTk
� �

ij
;

ðY0Þijk ¼ Y �i vTi
� �

jk
� Y �j vTj

� �
ik
� Y �k vTk
� �

ij
;

and � ¼ fðui;viÞ; ðuj;vjÞ; ðuk;vkÞg. The resulting two ten-

sors X0, Y0 are called canonical tensors. TCCA is seen as an

aggregation of three different canonical correlation ana-

lyses, each of which is conceptually for two sets of

vectorized IJ planes (involving k-mode product) and two

sets of IK (j-mode product) or JK planes (i-mode product,

see Fig. 3a). Note that the CCA in previous studies [31], [32],

[21] is equivalent to that for two sets of vectorized IJ planes

(i.e., images).

Single-shared-mode TCCA takes any single axis in com-
mon (i.e., a scan line) and applies canonical transformations
to the remaining two axes of tensor data as

� ¼ max
�
hX0;Y0i; ð7Þ

where

ðX0Þijk ¼ X �i uTi �j uTj

� �
k
� X �i uTi �k uTk
� �

j

� X �j uTj �k uTk

� �
i
;

ðY0Þijk ¼ Y �i vTi �j vTj

� �
k
� Y �i vTi �k vTk
� �

j

� Y �j vTj �k vTk

� �
i
;

and � ¼ fðui;viÞ; ðuj;vjÞ; ðuk;vkÞg. Note that the canonical
tensors are given by the outer products of the three vectors.
Similarly, it is an aggregation of three different canonical
correlation analyses, each of which can be conceptually for
sets of I (involving j, k-mode product), J (i; k-mode
product), or K (i; j-mode product) scan lines (see Fig. 3b).

Multiple canonical correlations �1; . . . ; �d are defined for
both joint-shared-mode and single-shared-mode TCCA,
analogously to standard CCA. Compared with the previous
study [30], Harshman only considered a single-shared
mode, while we have proposed a general concept of
multiple-shared modes.

3.3 Alternating Solution

Intuitively, the proposed TCCA process in (6) and (7) involves
three subanalyses, each of which explains canonical correla-
tions in different data domains. We, therefore, propose a
solution that performs a subanalysis independently of the
others. Each independent process is associated with the
respective canonical transformations and yields canonical
correlations as inner products of the respective canonical
tensors. This section is devoted to explaining the solution for
the I single-shared mode for example. This involves two sets
of canonical transformations fðUj;VjÞ; ðUk;VkÞg, which
contain fðuj;vj 2 IRJÞ; ðuk;vk 2 IRKÞg in their columns,
yielding the d canonical correlations ð�1; . . . �dÞ, where d �
minðK; JÞ for given two data tensors, X ;Y 2 IRI�J�K as

max
Uj;Vj;Uk;Vk

X �j UT
j �k UT

k ;Y �j VT
j �k VT

k

D E
: ð8Þ

That is, canonical correlations are defined by the inner
product of two resulting canonical tensors. The solution is
obtained by performing the SVD method (see (5)) alter-
natively until convergence, as detailed in Table 2.

The J and K single-shared-mode TCCAs are performed
in the same alternating fashion while the IJ , IK, JK joint-
shared-mode TCCAs (e.g., IJ joint-shared-mode TCCA
corresponds to the process involving k-mode product in (6))
by performing the SVD method (5) a single time without
iterations.

4 TENSOR CCA FOR ACTION CLASSIFICATION

Multiple canonical correlations computed in all subpro-
cesses yield a total number of 2� 3� d canonical correla-
tion features. (Each joint-shared mode or single-shared
mode has three different CCA processes and each CCA
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Fig. 2. Tensor representation of standard CCA. A pair of canonical

transformations, u and v, are applied to the two data matrices X and Y
to yield maximally correlated vectors (called canonical vectors).



process yields d features.) In general, each feature carries a

different amount of discriminative information for action

classification. We propose the discriminative feature selec-

tion method and NN classification, where the sum of

selected canonical correlations serves as a similarity

measure between action video volumes.

4.1 TCCA Features

4.1.1 Explaining Data Similarity in Different Domains

Intuitively, canonical correlation features explain data

similarity in different data subspaces and dimensions. In

Fig. 4a, we have visualized the first few canonical tensors
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Fig. 3. Representation of Tensor CCA. (a) Joint-shared mode. Each canonical transformation, ui, uj, or uk, applied to the tensor data X yields a
canonical plane. The three canonical planes make up the canonical tensor X0. Likewise, canonical transformations vi, vj, vk are applied to Y for the
canonical tensor Y0. (b) Single-shared mode. Any two canonical transformations (e.g., ui, uk) applied to the tensor X yields a canonical vector. Other
two canonical vectors are similarly obtained and the canonical tensor X0 is obtained by the outer products of the three canonical vectors. The same
process is done for Y.

TABLE 2
Proposed Alternating Algorithm for Tensor Canonical Correlations



computed by the joint-shared-mode TCCA from the two
hand-waving sequences. Canonical tensors of IJ , IK, JK
joint-shared modes are the XY , XT , and Y T planes of the
cubes, respectively. The canonical tensors (XY planes) of
the IJ joint-shared mode show the common spatial
components of the two hand-waving videos. Note that the
canonical transformations applied to the K-axis (temporal
axis) in the IJ joint-shared mode make the mode
independent of temporal information, i.e., temporal order-
ing of video frames, whereas all other modes remain
dependent. Similarly, the canonical tensors of the IK, JK
joint-shared mode reveal the common components of the
two videos in the joint space-time domain. The two modes
are independent of J and I-axes, respectively. Likewise, the
single-shared mode yields canonical correlations of other
data domains.

4.1.2 Linear Data Interpolation

Canonical correlations are of linear combinations (by
canonical transformations) of data vectors of two respective
data sets. That is, CCA does interpolation of vectors to find
maximum correlations and additional data generated by the
interpolation facilitates generalization on new data and
recognition of high-dimensional imagery data that typically
undergoes significant variations. The invariance afforded
by the interpolation is equivalent to the mathematical affine
invariance of CCA in Section 2.1.

In Fig. 4a, we can see that the canonical tensors in each
pair are very much alike. The two input sequences belong to
the same action class, hand waving, but have different
backgrounds, lighting conditions. They are also posed by
different people wearing different clothes. Despite all of the
differences, the canonical tensors, however, capture mutual
information of the two inputs yielding high correlations.
The first pair of canonical tensors corresponds to the most
similar direction of variation of the two data sets and the

next pairs represent other directions of similar variations.

The canonical tensors corresponding to XY planes empha-

size the movements of arms, which define the hand-waving

class, as a common source of information. All other

canonical tensors (XT , Y T planes) are also pairwise similar.

On the other hand, the canonical tensors are significantly

different from the paired ones in Fig. 4b, where the two

input sequences are from two different action classes (one is

hand waving and the other walking). Although these

sequences were captured under the same environment

and posed by the same person, TCCA returns least

correlations.

4.1.3 CCA as Subspace Angles

The proposed method embodies CCA. The geometrical

interpretation of CCA, which is equivalent to the standard

formulation (1), gives another intuitive explanation. Cano-

nical correlations, which are cosines of principal angles 0 �
�1 � � � � � �d � ð�=2Þ between any two d-dimensional linear

subspaces L1 and L2, are uniquely defined as

�i ¼ cos �i ¼ max
ai2L1

max
bi2L2

aTi bi ð9Þ

subject to aTi ai ¼ bTi bi ¼ 1, aTi aj ¼ bTi bj ¼ 0, i 6¼ j. CCA as

subspace-based matching (measuring angles between two

subspaces) effectively places uniform prior on subspaces

and yields invariance to pattern variations subject to the

subspaces. The subspace angle is intuitively a natural

extension of prior subspace-based recognition methods.

When a single vector is given as an input, there is a

standard way to classify it by subspaces: We measure the

distances of the vector to the subspaces and pick the nearest

one. As we now need to classify a subspace instead of a

single vector, the distance is no longer valid, but angles

between subspaces become a reasonable measurement.
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Fig. 4. Examples of pairwise canonical tensors. This visualizes the first few canonical tensors computed for the pair of input sequences of (a) the
same action class and (b) the two different action classes. Canonical tensors of IJ , IK, JK joint-shared modes are the XY , XT , Y T planes of the
cubes, respectively. (a) Note that the canonical tensors in each pair are very much alike, although the two hand-waving sequences are captured
under different environmental conditions and posed by different people wearing different clothes. (b) On the other hand, the canonical tensors are
much dissimilar despite the sequences of the same person in the same environment.



4.2 Joint versus Single-Shared Mode

Generally, the single-shared mode is more flexible and
preserves less original data structures in matching than the
joint-shared mode. The single-shared mode involves two
pairs of canonical transformations, whereas the joint-shared
mode has a single pair. Any ideal feature for classification
should balance the flexibility (for minimizing intraclass
variation) against the data-preserving power (for maximiz-
ing interclass variation). We have observed from our
experiments that the joint-shared-mode TCCA delivers
more discriminative features than the single-shared-mode
TCCA. Note again that the CCA of image sets [21] is
identical to the IJ joint-shared-mode TCCA method. The
proposed single-shared-mode TCCA is, however, impor-
tant: It consolidates the unified TCCA method and
improves the accuracy of the joint-shared mode. Superiority
of one type to the other may be application dependent.

4.3 Feature Selection

A discriminative boosting method is proposed to select
useful tensor canonical correlation features. First, the
intraclass and interclass feature sets (i.e., canonical correla-
tions �i, i ¼ 1; . . . ; 6� d, computed from any pair of videos)
are generated from the training data comprising of several
class examples. We use each TCCA feature to build a simple
weak classifier Mð�iÞ ¼ sign½�i � C� and aggregate the
weak learners using the AdaBoost algorithm [35] (C is a
classifier threshold and optimized in the AdaBoost). In an
iterative update scheme, classifier performance is optimized
on the training data to yield the final strong classifier by

Mð�Þ ¼ sign
XM
i¼1

wLðiÞM �LðiÞ
� �

� 1

2

XM
i¼1

wLðiÞ

" #
; ð10Þ

where w contains the weights and L is the list of selected
features. NN classification by sum of selected canonical
correlations is performed to categorize a new test video.

5 ACTION DETECTION

The proposed TCCA is time efficient provided that actions
are aligned in space-time domain. However, searching
nonaligned actions by TCCA in 3D (X, Y , and T ) input
space is still computationally demanding because every
possible position and scale of the input space needs to be
scanned. By observing that the joint-shared-mode TCCA
does not require iterations of the solutions and delivers
sufficient discriminative power (see Table 3), time-efficient
action detection is proposed by applying joint-shared-mode
TCCA, which may be followed by the TCCA method using
both joint and single-shared modes. For example, the joint-
shared-mode TCCA can effectively filter out the majority of
samples, which are far from a query sample, then the

single-shared-mode TCCA is applied with the joint mode to
only few candidates. In this section, we mainly explain the
method to further speed up the joint-shared-mode TCCA
for action detection by incrementally learning the required
subspaces.

5.1 Incremental PCA

An efficient update scheme of eigensubspaces has been
developed when a new set of vectors is added to an
existing data set [36], [37]. Given two data sets (an
existing and a new set) represented by eigenspace models
f��i;Mi;Pi;�igi¼1;2, where ��i is the mean, Mi is the number
of samples, Pi is the matrix of eigenvectors, and �i is the
eigenvalue matrix of the ith data set, the combined
eigenspace model f��3;M3;P3;�3g is efficiently computed.
The eigenvector matrix P3 can be represented by
P3 ¼ �R ¼ hð½P1;P2; ��1 � ��2�ÞR, where � is the orthonor-
mal column matrix spanning the entire combined data
space, R is a rotation matrix, and h is a vector orthonorma-
lization function. Using this representation, an original
eigenproblem for P3, �3 is converted into a smaller
eigenproblem as

ST;3 ¼ P3�3P
T
3 ) �TST;3� ¼ R�3R; ð11Þ

where ST;3 is the scatter matrix of the combined data. Note
that the matrix �TST;3� has the reduced size dT;1 þ dT;2 þ 1,
where dT;1, dT;2 are the number of eigenvectors in P1 and
P2, respectively. Thus, the eigenanalysis here only takes
OððdT;1 þ dT;2 þ 1Þ3Þ computations, whereas the eigenanaly-
sis in the left-hand side of (11) requires OðminðN;M3Þ3Þ,
where N is the input data dimension and M3 is the total
number of data points. Usually, N;M3 � dT;1 þ dT;2 þ 1.

5.2 Dynamic Subspace Learning for TCCA

The computational complexity of the joint-shared-mode
TCCA in (6) depends on the computation of eigenvector
matrices P1;P2 and the Singular Value Decomposition
(SVD) of ðP1ÞTP2 (see (5) and (2)). The total complexity
trebles this computation for the IJ , IK, and JK joint-
shared modes. If P1;P2 2 IRN�d, where d is the number
of the first few eigenvectors corresponding to the most
data energy (usually a small number), the complexity of
the SVD of ðP1ÞTP2 taking Oðd3Þ is negligible. Time-
efficient detection is achieved by incrementally learning
the three sets of eigenvectors, corresponding to the mode
vector matrices XT

ðkÞ, XT
ðjÞ, XT

ðiÞ, of every possible volume X
(cuboid) of an input video for the IJ , IK, JK joint-shared
modes, respectively. See Fig. 5 for the concept. There are
three separate steps that are carried out in the same fashion,
each of which is to compute one of three eigenvector
matrices of every possible volume of an input video. First,
the subspaces of every cuboid of the initial slices of the
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TABLE 3
Accuracy Comparison of the Joint-Shared-Mode TCCA and Dual-Mode TCCA (Using Both Joint and Single-Shared Modes)



input video are learned, then the subspaces of all remaining

cuboids are incrementally computed while moving the

slices along one of the axes. For the IJ joint-shared-mode

TCCA, as an example, the subspace P of every possible

cuboid, represented by the transposed k-mode vector

matrix XT
ðkÞ, in the initial IJ slice of the input video is

computed. Then, the subspaces of all next cuboids are

dynamically computed, while pushing the cuboids in the

initial slice along the K-axis to the end as follows (for

simplicity, the size of a query video and input video is set to

be IRm�m�m, IRM�M�M , where M � m):

Any cuboid at z on the K-axis, X z is represented by

the k-mode vector matrix XT
ðkÞ ¼ fxz; . . . ;xzþm�1g. The

scatter matrix Sz ¼ ðXT
ðkÞÞðXT

ðkÞÞ
T is written with respect to

the scatter matrix of the previous cuboid at z� 1 as

Sz ¼ Sz�1 þ ðxzþm�1Þðxzþm�1ÞT � ðxz�1Þðxz�1ÞT . This in-

volves both incremental and decremental learning. A

new vector xzþm�1 is added and an existing vector xz�1 is

removed from the ðz� 1Þth cuboid. The sufficient span-

ning set1 of the current scatter matrix can be

� ¼ hð½Pz�1;xzþm�1�Þ, where h is a vector orthogonalization

function and Pz�1 is the eigenvector matrix of the previous

cuboid. The current eigenvector matrix can be the product

of the sufficient spanning set by an arbitrary rotation

matrix R as Pz ¼ �R. Therefore, the original eigenproblem

to solve is reduced to a much smaller eigenproblem as

Sz ¼ Pz�zðPzÞT ) �TSz� ¼ R�zR: ð12Þ

The matrices �z, R are computed as the eigenvalue and

eigenvector matrix of �TSz�. The final eigenvectors are

obtained as Pz ¼ �R after removing the components in R

corresponding to the least eigenvalues in �z, keeping the

dimension of Pz as Rm2�d.

5.2.1 Computational Cost

Similarly, the subspaces for XT
ðjÞ, XT

ðiÞ for the IK; JK joint-

shared-mode TCCAs are computed by moving the all

cuboids of the slices along the I; J-axes, respectively. In this

way, the total complexity of learning the three kinds of the

subspaces of every cuboid is significantly reduced such that

OðM3 �m3Þ�!OðM2 �m3 þM3 � d3Þ; ð13Þ

as M � m� d. Oðm3Þ, Oðd3Þ are the complexity for solving
eigenproblems in a batch (i.e., the left-hand side of (12)) and
the proposed way (the right-hand side of (12)). Efficient
multiscale search, as a future work, may be performed by
merging two or more subspaces of smaller cuboids by the
incremental learning.

6 EXPERIMENTAL RESULTS

6.1 Hand Gesture Recognition

We acquired the Cambridge-Gesture database2 consisting of
900 image sequences of nine hand gesture classes, which are
defined by three primitive hand shapes and three primitive
motions (see Fig. 6). Each class contains 100 image
sequences (5 illuminations � 10 arbitrary motions of two
subjects). Each sequence was recorded in front of a fixed
camera having roughly isolated gestures in space and time.
All training was performed on the data acquired in the
single plain illumination setting (the leftmost part in
Fig. 6b), while testing was done on the data acquired in
the remaining settings. The 20 sequences per class in the
training set were randomly partitioned into 10 sequences
for training and the other 10 sequences for validation.

All video sequences were uniformly resized into 20 � 20
� 20 in our method. The proposed alternating solution in
Section 3.3 was performed to obtain the TCCA features of
every pairwise training sequence. The iterative method
stably converged, as shown in Fig. 7a. Feature selection
was performed for the TCCA features based on the weights
and the feature list learned from the AdaBoost method in
Section 4. NN classification was performed for a new test
sequence by the sum of the selected TCCA features. In
Fig. 7b, it is shown that about the first 60 features contained
most of the discriminatory information. Of the first 60
features, the number of features is shown for the different
TCCA modes in Fig. 7c. The joint-shared-mode
ðIJ; IK; JKÞ contributed more than the single-shared-mode
ðI; J;KÞ, but both still kept many features in the selected
feature set. From Table 3, the best accuracy of the joint-
shared-mode was obtained by 20-60 features. This is easily
reasoned when looking at the weight curve of the joint-shared
mode in Fig. 7, where the weights of more than 20 features are
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Fig. 5. Detection scheme. A query video is searched in a large volume input video. TCCA between the query and every possible volume (cuboids)

of the input video can be speeded up by dynamically learning the three subspaces of cuboids for the IJ, IK, JK joint-shared-mode TCCAs. While

moving the initial slices along one axis, subspaces of cuboids are dynamically computed from those of the initial slices. See Section 5.2 for further

explanation.

1. The sufficient spanning set is an economical set of bases which spans
most data energy. This helps obtain a small eigenproblem to solve [36], [37]. 2. The database is publicly available at http://mi.eng.cam.ac.uk/~tkk22.



nonsignificant. Note that the accuracy monotonically in-
creased delivering the best accuracy at 60 even without
feature selection. The single-shared mode alone gave
relatively poor accuracy, which is yet meaningful compared
with those of other methods in Table 4. The dual-mode TCCA
(using both joint and single-shared modes) improved the
accuracy of the joint-shared mode by 5 percent. Fig. 8 shows
the example of canonical tensors computed from the two
lighting sequences of the same hand gesture class. Only one of
each pair of canonical tensors is shown here as the other looks
similar.

Table 4 shows the recognition rates of the proposed
TCCA method (exploiting both joint and single-shared-
mode features), the simple CCA method [21], Niebles
et al.’s [5] method (the probabilistic Latent Semantic
Analysis (pLSA) with the space-time descriptors, which
exhibited the best action recognition accuracy among the
state of the arts in [5]), Wong et al.’s method (SVM or
Relevance Vector Machine (RVM) with the Motion Gradient
Orientation (MGO) images [18]), NN classifier in the sense
of Euclidean Distance (NN-ED) and Normalized Correla-
tion (NN-NC) of video vectors (all pixels in a video are
concatenated into a column vector), and SVM of the video
vectors. The original codes and the best settings of the
parameters (e.g., the size parameters of the space-time

descriptors and the size of the codebook) were used in the
evaluation for the previous works. The two methods of
SVM or RVM on the MGO images turned far worse. As
observed in [18], using RVM improved the accuracy of SVM
by about 10 percent. However, both methods often failed to
discriminate the gestures, which have the same motion of
the different shapes as the methods are mainly based on
motion information of gestures. The two methods, NN-ED
and NN-NC, which exploit vector distance and vector
correlation, respectively, as a similarity between two
gesture videos, were also far poorer than the proposed
method. The SVM applied to the vector representation
enhanced the accuracy of the NN-ED/NC methods, but is
again much worse than the proposed method. Although the
vector representation of videos encodes space-time shape
information, its high dimension interrupts obtaining good
generalization on novel data under small sample size. The
unsupervised learning method pLSA with the space-time
interest points and the simple CCA method achieved the
second-rank accuracy by either a flexible representation or
matching: The pLSA method is based on distribution of
local patterns and CCA provides the affine invariance in
matching. Note, however, that the accuracy of the pLSA
method is highly compromised with good parameter
setting (of the space-time descriptors), which is difficult in
practice. Both methods do not make use of full video
information: pLSA does not encode global shape informa-
tion, while CCA does not consider temporal information.
The proposed method, TCCA, significantly outperformed
all compared methods. The proposed method improved the
simple CCA method by around 17 percent. By matching
both spatial and temporal information with the affine
invariance, the proposed method is far better in correct
identifications of the sequences of distinct shapes subject to
similar motion as well as the similar shape sequences
having different motions. See Fig. 9 for the confusion matrix
of our method.
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Fig. 6. Hand gesture database. (a) Nine gestures generated by three

primitive shapes and motions. (b) Five illumination conditions in the

database. (c) Three sample sequences of the contraction motion.

Fig. 7. Feature selection. (a) Convergence graph of the alternating

method. (b) The weights of TCCA features learned by boosting. (c) The

number of features chosen for the different TCCA modes.

TABLE 4
Hand Gesture Recognition Accuracy (in Percent) of the Four Illumination Sets



6.2 Action Categorization on KTH Data Set

We followed the experimental protocol of Niebles et al.’s [5]
work on the KTH action data set, which is the largest public
action database [16]. The data set contains six types (boxing,
hand clapping, hand waving, jogging, running, and walk-
ing) of human actions performed by 25 subjects in four
different scenarios. The original input videos contain
actions that are not space-time aligned and are repeated
several times. Leave-one-out cross-validation was per-
formed to test the methods, i.e., for each run the videos of
24 subjects are exploited for training and the videos of the
remaining subject is for testing. Some sample videos are
shown in Fig. 10 with the indication of the action alignment
(or cropping). This space-time alignment of actions was
manually done for accuracy comparison, but can also be
automatically achieved by the proposed detection scheme
as shown below. The defined aligned actions contain unit
atomic motions without repetitions. Most competing meth-
ods are based on the histogram representations with SVM
(ST/SVM) [15], [16] or pLSA [5]. Ke et al. applied the
spatiotemporal volumetric features [17]. Note that all of
these methods do not require action alignment in nature
because they do not consider global space-time shape
information. These methods were, therefore, applied to the
original input videos. For comparison, we quoted the
accuracy of the methods reported in [5] and further
performed the simple CCA method, the pLSA method [5],

and the proposed TCCA method (exploiting both joint and
single-shared-mode features) on the aligned videos. In the
TCCA method, the aligned video sequences were uniformly
resized to 20 � 20 � 20 by NN interpolation (see Table 7 for
the original volume size). See Table 5 for accuracy
comparison of several methods and Fig. 11 for the
confusion matrices of the TCCA method and CCA method.
The pLSA method on the cropped videos dropped the
accuracy of the same method on the original input videos
by about 10 percent, maybe due to insufficient amount of
interest points detected in the cropped videos. Note that the
original sequences contain several repetitions of the actions
giving fluent interest points. The SVM applied to the same
histogram representation as that of the pLSA method [15]
delivered the similar accuracy. While most of the histo-
gram-based methods showed the accuracy around 60 per-
cent to 80 percent, the proposed TCCA method and the
CCA method achieved impressive accuracy at 95 percent
and 89 percent, respectively. From the good accuracy of the
CCA method that does not consider temporal information,
we infer that the six action classes of the KTH data set
discriminate well in spatial domain. The histogram-based
methods lost important information in the global space-
time shapes of actions resulting in ambiguity for spatial
variations of the different action classes. The TCCA method
improved the CCA method by using joint spatial-temporal
information, being particularly better in discrimination
between the jogging and running actions, which is shown
in Fig. 11.

There have been recent attempts to incorporate the global
space-time shape information based on the histogram
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Fig. 8. Example of canonical tensors. Given two lighting sequences of

the same hand gesture class (the left two rows), the first three canonical

tensors of the IJ, IK, JK joint-shared modes are shown in the top,

middle, bottom rows, respectively.

Fig. 9. Confusion matrix of the TCCA method for hand gesture

recognition.

Fig. 10. Example action videos in the KTH data set. The bounding

boxes indicate the spatial alignment and the superimposed images of

the initial, intermediate, and the last frames of each action show the

temporal segmentation of action classes.

TABLE 5
Recognition Accuracy (in Percent) on the KTH Action Data Set

pLSA* denotes the pLSA method applied to the cropped videos.



representation [19], [40]. As shown in the last row of
Table 5, they achieved reasonable improvements over the
previous histogram methods but were still inferior to the
method proposed.

6.2.1 Discussions

We have tried two different regularization methods. Each
image in the videos is Gaussian-smoothed with histogram
equalization or is just Gaussian-smoothed. We achieved
92.00 percent and 95.33 percent recognition accuracies by
Gaussian smoothing with or without histogram equaliza-
tion, respectively.

The volume size of 20 � 20 � 20 gave a good
compromise between the recognition accuracy and compu-
tational resource. We set the volume size as 10 � 10 � 10,
20 � 20 � 20, and 40 � 40 � 20, obtaining 90.67 percent,
95.33 percent, 96.00 percent recognition accuracies,
respectively.

To check the sensitivity of the proposed method on
temporal misalignment, we added Gaussian noise � to both
start and end times of actions, such that t0 ¼ tþ �. The
Gaussian noise had zero mean and 10 percent of the
average volume size in T as standard deviation. For
example, the standard deviation is set to be 3.2 for the
boxing videos that have 32-pixel temporal duration on
average (see Table 7). The TCCA method exhibited reason-
able degradation in performance for temporal misalign-
ment, showing 90 percent accuracy for the noisy data.

We have also performed an experiment for background
change. We used only outdoor samples in training and
indoor samples in testing. Despite the quite different
backgrounds in the indoor and outdoor videos (see
Fig. 10), the TCCA method obtained the same accuracy
(95 percent) as that reported in Table 5. Segmentation or any
better representation method (rather than raw pixels) may

further improve the TCCA method for significant back-

ground changes and clutters.

6.3 Action Detection on KTH Data Set

The action detection was performed by the exemplar set

consisting of the sequences of five people that are not

contained in the testing sequences. Every possible volume

(for both fixed-scale and multiscale search) in an input

video is scanned and is matched with the sample sequences

by TCCA (the joint-shared mode).
For the fixed-scale search, detection results are shown in

Fig. 12 for the continuous hand-clapping video, which is

comprised of the three correct unit clapping actions. The

maximum canonical correlation is shown along time. All

three correct hand-clapping actions are detected at the three

highest peaks, with the three intermediate actions at the

three lower peaks. The three highest peaks correspond to

the video volumes that are synchronized to the query video

in both spatial and temporal domains. When it goes far
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Fig. 11. Confusion matrix of (a) CCA and (b) TCCA methods for the

KTH data set. TCCA improved CCA especially by better discriminating

the jogging from the running actions.

Fig. 12. Action detection result. (a) A sample input video sequence of
continuous hand-clapping actions. (b) The detection result: All three
correct hand-clapping actions are detected at the highest three peaks,
with the three intermediate actions at the three lower peaks. The thin line
(joint-shared-mode TCCA) was smoothed using a five-point moving
average to yield the bold line.

TABLE 6
Action Detection Time (in Seconds) for Fixed-Scale Search by a Single Query Sequence

The detection speed differs for the size of input volume with respect to the size of query volume.



from the peaks, a video volume is less synchronized to the

query, having lower correlations in both spatial and

temporal aspects. However, at a certain point, it starts

recovering correlations in spatial domain by containing

most but permuted frames of the query video, exhibiting

local maxima between any two correct hand-clapping

actions. Note that the IJ joint-shared-mode TCCA is

invariant to permutation of frames.
The detection time of the proposed method (using the

joint-shared-mode TCCA) is reported in Table 6 on a

Pentium 3 GHz PC using nonoptimized Matlab codes. The

proposed incremental subspace learning reduced the

detection time of the batch computation. The detection

time differs for the size of input volume with respect to the

size of query volume. For example, the input and query

volume sizes of the hand-clapping actions are 120 � 160 �

102 and 92 � 64 � 19, respectively. The dimension of the
input video and query video was reduced by the factors 4.6,
3.2, and 1 (for the respective three dimensions). In the
reduced dimension, the size of the query video, m in (13),
was 20. The dimensions of the subspaces, d in (13), were set
to be 5 as the number that reflects most data energy from
the eigenvalue plot (see Fig. 13). When the search area M

and the size of the query video m are larger, the
computational saving by the proposed method over the
batch method would be greater. The obtained speed seems
to be comparable to that of the state of the art [1]. Video
processing techniques such as moving area segmentation
may be conveniently incorporated into the proposed
method for further speedup.

Fig. 14 shows the sample action detection results with
scale variations, which are obtained by three steps in each
axis. We set the three steps as the mean and mean plus/
minus the standard deviation of the scales of video volumes
(see Table 7). The detection results show the best response
space-time region in each input sequence. Despite the small
training samples (of only five people, as mentioned before)
and the coarse three-step scale search, the alignments look
close to the manual settings shown in Fig. 10. Efficient
multiscale search would help obtain more accurate and yet
time-efficient action detection.

7 CONCLUSIONS

We have proposed a novel method called TCCA, which
extracts pairwise flexible and yet descriptive correlation
features of videos in joint space-time domain. The proposed
features combined with NN classifier significantly improved
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Fig. 13. Eigenvalue plot. Averaged eigenvalue plot of the three kinds of

subspaces of action videos.

TABLE 7
Average Volume Size of Action Classes

The mean and the standard deviation along each axis.

Fig. 14. Automatic multiscale action detection result.



the accuracy of state-of-the-art action recognition methods.

The proposed method is also practically appealing as it

does not require any significant tuning parameters. Ad-

ditionally, the proposed detection method for TCCA could

yield time-efficient action detection in large-volume input

videos.
In spite of the proposed detection method, the method

may require further time efficiency for the scenarios that

have a much larger search space and require multiscale

search in real time. One may try a hierarchical approach

that applies simpler but less accurate methods to filter out a

majority of candidates and then to apply our method, which

has the benefit of high accuracy. Efficient multiscale search

by merging the space-time subspaces of TCCA would

constitute useful future work. For further enhancement in

accuracy, the proposed method as a general meta-algorithm

may be combined with other task-specific representations

or segmentation methods. As an example, the raw pixel

representation in the TCCA method has been replaced with

the Scale-Invariant-Feature-Transform (SIFT) vectors in [42].

Although we have exploited a naive NN classifier for the

purpose of demonstrating the power of new features and

matching, the use of a more modern classifier remains as

future work.
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