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Abstract

This paper addresses the problem of obtaining completaile@treconstructions of textureless
shiny objects. We present an algorithm which uses silhesetf the object, as well as images
obtained under changing illumination conditions. In castrwith previous photometric stereo
techniques, ours is not limited to a single viewpoint butdumes accurate reconstructions in full
3D. A number of images of the object are obtained from mudtipewpoints, under varying lighting
conditions. Starting from the silhouettes, the algorittenavers camera motion and constructs the
object’s visual hull. This is then used to recover the illoation and initialise a multi-view pho-
tometric stereo scheme to obtain a closed surface recctietiuThere are two main contributions
in this paper: Firstly we describe a robust technique tonest# light directions and intensities
and secondly, we introduce a novel formulation of photoinettereo which combines multiple
viewpoints and hence allows closed surface reconstrigtibhe algorithm has been implemented
as a practical model acquisition system. Here, a quanttatialuation of the algorithm on synthetic
data is presented together with complete reconstructibcisadlenging real objects. Finally, we show
experimentally how even in the case of highly textured digjeihis technique can greatly improve

on correspondence-based multi-view stereo results.

. INTRODUCTION

Digital archiving of 3D objects is a key area of interest irtaral heritage preservation.
While laser range scanning is one of the most popular tecksijqit has a number of
drawbacks, namely the need for specialised, expensiveMaaedand also the requirement
of exclusive access to an object for significant periods et Also, for a large class of
shiny objects such as porcelain or glazed ceramics, 3D stanvith lasers is challenging
[1]. Recovering 3D shape from photographic images is an efficicost effective way to
generate accurate 3D scans of objects.

Several solutions have been proposed for this long studiedigm. When the object is
well textured its shape can be obtained by densely matchied locations across multiple
images and triangulating [2], however the results typycelthibit high frequency noise.

Alternatively, photometric stereo is a well establishechteque which uses the shading
cue and can provide very detailed, but partial 2.5D recaostms [3].

In this paper we propose an elegant and practical methodciguigng a complete and
accurate 3D model from a number of images taken around the object,ucagbtunder
changing light conditions (see Fig. 1). The changing (bheowtise unknown) illumination

conditions uncover the fine geometric detail of the objectase which is obtained by a
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Fig. 1. Our acquisition setup. The object is rotated on a turntable in front of a camera and a point ligilitsoA
sequence of images are captured while the light-source changes pbsitiegen consecutive frames. No knowledge of the

camera or light-source positions is assumed.

generalised photometric stereo scheme.

The object’s reflectance is assumed to follow Lambert’s lagy, points on the surface
keep their appearance constant irrespective of viewpdime. method can however tolerate
isolated specular highlights, typically observed in gthsarfaces such as porcelain. We also
assume that a single, distant light-source illuminatesotbject and that it can be changed
arbitrarily between image captures. Finally, it is assurtied the object can be segmented

from the background and silhouettes extracted automBtical

[I. RELATED WORK

This paper addresses the problem of shape reconstructam ifnages and is therefore
related to a vast body of computer vision research. We drapination from the recent work
of [4] where the authors explore the possibility of using tomeetric stereo with images
from multiple views, when correspondence between viewstgnitially known. Picking an
arbitrary viewpoint as a reference image, a depth-map wespect to that view serves as the
source of approximate correspondences between frames.d€pth-map is initialised from
a Delaunay triangulation of sparse 3D features located erstinface. Using this depth-map,
their algorithm performs a photometric stereo computabbiaining normal directions for
each depth-map location. When these normals are integthtetesulting depth-map is closer
to the true surface than the original. The paper presentsduglity reconstructions and gives
a theoretical argument justifying the convergence of theste. The method however relies
on the existence of distinct features on the object surfduetware tracked to obtain camera

motion and initialise the depth-map. In the class of texes® objects we are considering,
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it may be impossible to locate such surface features andethdeir method has no such
requirement. Also the surface representation is still llepap based and consequently the
models produced are 2.5D.

A similar approach of extending photometric stereo to rpldtiviews and more complex
BRDFs was presented in [5] with the limitation of almost plaB&D reconstructed surfaces.
Our method is based on the same fundamental principle oktvapping photometric stereo
with approximate correspondences, but we use a generahetlic framework which allows
complete 3D reconstructions from multiple views.

Quite related to this idea is the work of [6] and [7] where mmoétric stereo information
is combined with 3D range scan data. In [6] the photomettiorimation is simply used as
a normal map texture for visualisation purposes. In [7], sy\good initial approximation
to the object surface is obtained using range scanning ¢éafpyy which however is shown
to suffer from high-frequency noise. By applying a fully tmbted 2.5D photometric stereo
technique, normal maps are estimated which are then iesbta produce an improved,
almost noiseless surface geometry. Our acquisition tgclenis different from [7] in the
following respects: (1) we only use standard photograpiiages and simple light sources,
(2) our method is fully uncalibrated- all necessary infotiorais extracted from the object’s
contours and (3) we completely avoid the time consuming arad prone process of merging
2.5D range scans.

The use of the silhouette cue is inspired by the work of [8] eleescheme for the recovery
of illumination information, surface reflectance and getignés described. The algorithm
described makes use of frontier points, a geometrical featéi the object obtained by the
silhouettes. Frontier points are points of the visual hiieve two contour generators intersect
and hence are guaranteed to be on the object surface. Fndieethe local surface orientation
is known at these points, which makes them suitable for uarjghotometric computations
such as extraction of reflectance and illumination infoforatOur method generalises the
idea by examining a much richer superset of frontier pointsctv is the set of contour
generator points. We overcome the difficulty of localisimgntour generators by a robust
random sampling strategy. The price we pay is that a coratiesimpler reflectance model
must be used.

Although solving a different type of problem, the work of [8]also highly related mainly
because the class of objects addressed is similar to ourde i energy term defined and

optimised in their paper bears strong similarity to ourgirtheconstruction setup keeps the
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lights fixed with respect to the object so in fact an entirelyedent problem is solved and
hence a performance comparison between the two technigjaif§icult. However the results
presented in [9] at first glance seem to be lacking in detgkeally in concavities, while
our technique considerably improves on the visual hullaBnthere is a growing volume of
work on using specularities for calibrating photometriersb (see [10] for a detailed literature
survey). This is an example of a different cue used for perfiog uncalibrated photometric
stereo on objects of the same class as the one consideredHosvever methods proposed

have so far only been concerned with the fixed view case.

I1l. ALGORITHM

In this paper we reconstruct the complete geometry of 3Dotbjay exploiting the powerful
silhouette and shading cues. We modify classic photometdoeo and cast it in a multi-
view framework where the camera is allowed to circumnaeidghe object and illumination
is allowed to vary. Firstly, the object’s silhouettes arediso recover camera motion using
the technique presented in [11], and via a novel robust estim scheme they allow us to
accurately estimate the light directions and intensitresvery image.

Secondly, the object surface, which is parameterised by shraed initialised from the
visual hull, is evolved until its predicted appearance teascthe captured images. The
advantages of our approach are the following:

« Itis fully uncalibrated: no light or camera pose calibratiabject needs to be present in

the scene. Both camera pose and illumination are estimaiadtfre object’s silhouettes.

« The full 3D geometry of a complex, textureless multi-albedject is accurately recov-

ered, something not previously possible by any other method

« It is practical and efficient as evidenced by our simple agitjan setup.

A. Robust estimation of light-sources from the visual hull

For an image of a lambertian object with varying albedo, wadgngle distant light source,

and assuming no self-occlusion, each surface point psojeca point of intensity given by:
i=M"n, (2)

wherel is a 3D vector directed towards the light-source and scaledhb light-source
intensity, n is the surface unit normal at the object location ands the albedo at that

location. Equation (1) provides a single constraint on tired coordinates of the product

DRAFT



Fig. 2. The visual hull for light estimation. The figure shows a 2D example of an object which is photographed from
two viewpoints. The visual hull (gray quadrilateral) is the largest volunag pinojects inside the silhouettes of the object.
While the surface of the visual hull is generally quite far from the true algerface, there is a set of points where the two
surfaces are tangent and moreover, share the same local orierfthdea points are denoted here with the four dots and
arrows). In the full 3D case, three points with their surface normaés.eapugh to fix an illumination hypothesis, against
which all other points can be tested for agreement. This suggests & rahdem sampling scheme, described in the main

text, via which the correct illumination can be obtained.

ALl Then, given three points,, x1,, x. With an unknown buequal albedo), their normals
(non co-planarn,, ny,, n., and the corresponding three image intensitigs,,i., we can
construct three such equations that can uniquely deterniirzes

lq

M=[nanpn ' | 4, |. (2

le
For multiple images, these same three points can providéghedirections and intensities
in each image up to a global unknown scale factoiThe problem is then how to obtain
three such points.

Our approach is to use the powerful silhouette cue. The wvagsen on which this is
based is the following: when the images have been calibfatechmera motion, the object’s
silhouettes allow the construction of tivesual hull [12], which is defined as the maximal
volume that projects inside the silhouettes (see Fig. 2umdamental property of the visual
hull is that its surface coincides with the real surface @f dvject along a set of 3D curves,

one for each silhouette, known asntour generators [13]. Furthermore, for all points on
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those curves, the surface orientation of the visual hulfaser is equal to the orientation
of the object surface. Therefore if we could detect pointghlavisual hull that belong to
contour generators and have equal albedo, we could usestiméice normal directions and
projected intensities to estimate lighting. Unfortunatebntour generator points with equal
albedo cannot be directly identified within the set of all rgsiof the visual hull. Light
estimation however can be viewed as robust model fitting sltiiee inliers are the contour
generator points of some constant albedo and the outlierthamrest of the visual hull points.
The albedo of the inliers will be thdominant albedo,i.e,, the colour of the majority of the
contour generator points. One can expect that the outl®rsotigenerate consensus in favour
of any particular illumination model while the inliers do sofavour of the correct model.
This observation motivates us to use a rolmrisSNSAC scheme [14] to separate inliers from
outliers and estimate illumination direction and inteyisithe scheme can be summarised as
follows:

1) Pick three points on the visual hull and from their imagemsities and normals

estimate an illumination hypothesis fat.
2) Every point on the visual huk,, will now vote for this hypothesisf its predicted

Image intensity is within a given threshotdof the observed image intensity,, i.e.
A" g, — i | <7, 3)

wherer allows for quantisation errors, image noise, etc.

3) Repeat 1 and 2 a set number of times always keeping the ation hypothesis with

the largest number of votes.

The shape of the actual function being optimized byrhAaisAc scheme described above
was explored graphically for a porcelain object in Fig. 3eThumber of points voting for
a light direction (maximised with respect to light integ¥itvas plotted as a 2D function
of latitude and longitude of the light direction. These dnapl representations, obtained for
six different illuminations, show the lack of local optimacathe presence of clearly defined
maxima.

This simple method can also be extended in the case wherelltin@niation is kept
fixed with respect to the camera féf frames. This corresponds @ illumination vectors
R1l, ..., Rl where R, are3 x 3 rotation matrices that rotate the fixed illumination vector

1 with respect to the object. In that case a point on the visullsh,, with normaln,, will
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Fig. 3. Shape of illumination consensusFor different illumination configurations we have plotted the consensus as
function of light direction. For each direction consensus has been risednwith respect to light intensity. Red values
denote big consensus. The shape of the maxima of this cost functioelaasathe lack of local optima implies a stable
optimisation problem. Top: 6 different illuminations of a single albedo obpottom: 4 different illuminations of a multi-

albedo object. Although the presence of multiple albedos degrades thiy gfidzhe light estimation (the peak is broader),

it is still a clear single optimum.

vote forl if it is visible in the k-th image where its intensity i, , and
AR Dy — G| < T (4)

A point is allowed to vote more than once if it is visible in reathan one image.

Even though in theory the single image case suffices for im@gntly recovering illumi-
nation in each image, in our acquisition setup light can bet keed over more than one
frame. This allows us to use the extended scheme in orderttoefuimprove our estimates.
A performance comparison between the single view and théipteuview case is provided
through simulations with synthetic data in the experimesastion.

An interesting and very useful byproduct of the rob&stNSAC scheme is that any
deviations from our assumptions of a Lambertian surfaceniform albedo are rejected as

outliers. This provides the light estimation algorithmhwé degree of tolerance to sources of
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error such as highlights or local albedo variations. The segtion describes the second part
of the algorithm which uses the estimated illumination cliens and intensities to recover

the object surface.

B. Multi-view photometric stereo

Having estimated the distant light-source directions amenisities for each image our
goal is to find a closed 3D surface that is photometricallysgsient with the images and
the estimated illuminationi.e. its predicted appearance by the lambertian model and the
estimated illumination matches the images captured. Teeaelthis we use an optimisation
approach where a cost function penalising the discrepaetyden images and predicted
appearance is minimised.

Our algorithm optimises a surfacethat is represented as a mesh with vertiges. . x,
triangular facesf = 1... F and corresponding albedq, ..., A\p. We denote byny and Ay
the mesh normal and the surface area at fAcAlso leti;, be the intensity of facg on
imagek and let the seV; be the set of images (subset ff, ..., K'}) from which facef
is visible. The light direction and intensity of theth image will be denoted b.

We use a scheme similar to the ones used in [9], [15] whereutiees introduce a decou-
pling between the mesh normais . . . ng, and the direction vectors used in the Lambertian
model equation. We call these new direction vectoys. . vg photometric normals, and they
are independent of the mesh normals. The minimisation sdstein composed of two terms,

where the first tern¥, links the photometric normals to the observed image intiexssi

F
Ey(vio.pMrixsa) = Y (LA pve — i) ()
f=1keVy

and the second terrh,, brings the mesh normals close to the photometric normatsigfir

the following equation:

Ep (X105 V1.p) = 3 |Ine — vel|* Ay (6)

This decoupled energy function is optimised by iterating fbllowing two steps:
1) Photometric normal optimisation. The vertex locations are kept fixed whilg, is
optimised with respect to the photometric normals and abedhis is achieved by

solving the following independent minimisation problenos éach facef:

: N2
Ve, Ap = argr{}gl]; (L"Av —igr)” st f|v]| = L. (7)
i
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2) \Vertex optimisation.The photometric normals are kept fixed whitg, is optimised

with respect to the vertex locations using gradient descent

These two steps are interleaved until convergence whigstakout 20 steps for the sequences
we experimented with. Typically each integration phasessabout 100 gradient descent
iterations. Note that for the first step described abagegevolving the mesh until the surface
normals converge to some set t@fget orientations, a variety of solutions is possible. A
slightly different solution to the same geometric optiniisa problem has recently been
proposed in [7], where the target orientations are assigoezhch vertex, rather than each
face as we do here. That formulation lends itself to a cldseat solution with respect to
the position of a single vertex. An iteration of these locattex displacements yields the
desired convergence. As both formulations offer similarfggenance, the choice between
them should be made depending on whether the target oi@rgadre given on a per vertex
or per facet basis.

The visibility mapV; is a set of images in which we can measure the intensity of face
f. It excludes images in which facgis occluded using the current surface estimate as the
occluding volume as well as images where fgtdies in shadow. Shadows are detected
by a simple thresholding mechanism, i.e. fgté&s assumed to be in shadow in imakgef
ifk < Tshadow WNEIE Tonea0y 1S @ Sufficiently low intensity threshold. Due to the inclusi
of a significant number of viewpoints M, (normally at least 4) the system is quite robust
to the choice ofr,,.4..,. FOr all the experiments presented here, the valye,., = 5 was
used (for intensities in the range 0-255). As for the hightisg we also define a threshold
Thighlight SUCh as a facg is assumed to be on a highlight in imagef s, > 7higniign:. IN
order to computey,;qnign: NEEd to distinguish between single albedo objects and 4albkido
objects. Single albedo objects are easily handled sincéghiecalibration step gives us the
light intensity. Hence, under the Lambertian assumptienpoint on the surface can produce
an intensity higher than the light intensity, i.@u4n10n = ||A1]]. In the multi-albedo casa
can also vary, and it is likely that the albedo picked by theust light estimation algorithm
is not the brightest one present on the object. As a resulprefer to use a global threshold
to segment the highlights on the images. It is worth notirag this approach works for the
porcelain objects because highlights are very strong acalis®d, so just a simple sensor

saturation test is enough to find them, i8,gniign: = 254.
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Capture images of object.
Extract silhouettes.
Recover camera motion and compute visual hull.
Estimate light directions and intensities in every imagect®n I11-A).
Initialise a mesh with vertices; ...x\; and facesf = 1... F' to the object’s visual hull.
while mesh-not-convergedo

Optimise E, with respect tov; ... vg (5).

Optimise E,,, with respect tax; ...xn (6).

end while

Fig. 4. The multi-view reconstruction algorithm.

V. EXPERIMENTS

The setup used to acquire the 3D model of the object is quitplsi(see Fig. 1). It consists
of a turntable, onto which the object is mounted, a 60W haldgep and a digital camera.
The object rotates on the turntable and 36 imagesd constant angle step of 10 degrees)
of the object are captured by the camera while the positioth@flamp is changed. In our
experiments we have used three different light positionElvimeans that the position of the
lamp was changed after twelve, and again after twenty-famés. The distant light source
assumptions are satisfied if an object of 15cm extent is gl@4ém away from the light.

The algorithm was tested on five challenging shiny objeets, gorcelain figurines shown
in Fig. 5, two fine relief chinese Qing-dynasty porcelainesshown in Fig. 6, and one
textured Jade Buddha figurine in Fig. 7. Thirty-8466 x 2304 images of each of the objects
were captured under three different illuminations. Theeobgilhouettes were extracted by
intensity thresholding and were used to estimate camereomahd construct the visual hull
(second row of Fig. 5). The visual hull was processed by theisblight estimation scheme
of Section IlI-A to recover the distance light-source dir@es and intensities in each image.
The photometric stereo scheme of section IlI-B was theniegpThe results in Fig. 6 show
reconstructions of porcelain vases with very fine reliefe Teconstructed relief (especially
for the vase on the right) is less than a millimetre while thight is approximately 15-20
cm. Figure 7 shows a detailed reconstruction of a Buddha figumade of polished Jade.

This object is actually textured, which implies classicratealgorithms could be applied.
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(a) Input images.

KR

(b) Visual hull reconstruction.

A

(c) Our results.

= N

(d) Close up views of porcelains.

Y

(e) Close up views of reconstructed models.

A
A
A

Fig. 5. Reconstructing porcelain figurines.Two porcelain figurines reconstructed from a sequence of 36 imaags e
(some of the input images are shown in (a)). The object moves in @btlie camera and illumination (a 60W halogen
lamp) changes direction twice during the image capture process. (bsghe results of a visual hull reconstruction while
(c) shows the results of our algorithm. (d) and (e) show detailed viewtheoffigurines and the reconstructed models

respectively.
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Fig. 6. Reconstructing chinese Qing-dynasty porcelain vasé&p: sample of input images. Bottom: proposed method.

The resulting surface captures all the fine details present in the imagasjrethe presence of strong highlights.

Using the camera motion information and the captured imageasate-of-the-art multi-view
stereo algorithm [16] was executed. The results are showhdarnsecond row of Figure 7.
It is evident that, while the low frequency component of theometry of the figurine is
correctly recovered, the high frequency detail obtained 18} is noisy. The reconstructed
model appears bumpy even though the actual object is quitettmOur results do not

exhibit surface noise while capturing very fine details sashsurface cracks.

A. Synthetic object

To quantitatively analyze the performance of the multiawiphotometric stereo scheme
presented here with ground truth, an experiment on a syotee¢éne was performed (Fig.
8). A 3D model of a sculpture (digitised via a different teijue) was rendered from 36
viewpoints with uniform albedo and using the Lambertiane@fince model. The 36 frames
were split into three sets of 12 and within each set the sidigant illumination source was

held constant. Silhouettes were extracted from the imagestee visual hull was constructed.
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Fig. 7. Reconstructing coloured jade.Left: Two input images. Middle: model obtained by multi-view stereo method
from [16]. Right: proposed method. The resulting surface is filterethfnoise while new high frequency geometry is

revealed (note the reconstructed surface cracks in the middle of thenéiguback).

This was then used to estimate the illumination directioth iatensity as described in Section
[1I-A. In 1000 runs of the illumination estimation methodrfthe synthetic scene, the mean
light direction estimate was 0.75 degrees away from the thwection with a standard
deviation of 0.41 degrees. The model obtained by our alyorivas compared to the ground
truth surface by measuring the distance of each point on ageifrom the closest point in
the ground truth model. This distance was found to be ab&m® when the length of the
biggest diagonal of the bounding box volume was defined torbeEven though this result
was obtained from perfect noiseless images it is quite fogmit since it implies that any
loss of accuracy can only be attributed to the violations wf @assumptions rather than the
optimisation methods themselves. Many traditional muikiw stereo methods would not be
able to achieve this due to the strong regularisation that e imposed on the surface. By
contrast our method requires no regularisation when faadd perfect noiseless images.
Finally, we investigated the effect of the number of framesrdy which illumination is held

constant with respect to the camera frame. Our algorithmrctreory obtain the illumination
direction and intensity in every image independently. Haevékeeping the lighting fixed over

two or more frames, and supplying that knowledge to the #@lgorcan significantly improve
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error in degrees

0

2 4 6 8 10 12
Number of frames under constant illumination

Fig. 8. Synthetic evaluation. Left: the accuracy of the algorithm was evaluated using an image sezjsgnthetically
generated from a 3D computer model of a sculpture. This allowed usnpa@ the quality of the reconstructed model
against the original 3D model as well as measure the accuracy of thieeiimation. The figure shows the reconstruction
results obtained, below the images of the synthetic object. The mean distaalég@oints of the reconstructed model from
the ground truth was found to be about 0.5mm if the bounding volumegodal is 1m. Right: The figure shows the effect
of varying the length of the frame subsequences that have constanfTlighangle between the recovered light direction and
ground truth has been measured for 1000 runs ofRtheSAC scheme for each number of frames under constant lighting.
With just a single frame per illumination the algorithm achieves a mean errbr/5@f degrees with a standard deviation of
0.88 degrees. With 12 frames sharing the same illumination the meandeops to 0.75 degrees with a standard deviation

of 0.41 degrees.

estimates. The next experiment was designed to test thiouament by performing a light
estimation overK images where the light has been kept fixed with respect to d@neera.
The results are plotted in Figure 8 right and show the imprem of the accuracy of the
recovered lighting directions a&™ increases from 1 to 12. The metric used was the angle
between the ground truth light direction and the estimaigut ldirection over 1000 runs of
the robust estimation scheme. Hor= 1 the algorithm achieves a mean error of 1.57 degrees
with a standard deviation of 0.88 while féf = 12 it achieves 0.75 degrees with a standard
deviation of 0.41 degrees. The decision for selecting aevBdu X' should be a consideration
of the tradeoff between practicality and maximising thaltaumber of different illuminations

in the sequence which i8//K where M is the total number of frames.

V. CONCLUSION

This paper has presented a novel reconstruction techngjog silhouettes and the shading

cue to reconstruct Lambertian objects in the presence dfliglgs. The main contribution
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of the paper is a robust, fully self-calibrating, efficiertigp for the reconstruction of such
objects, which allows the recovery of a detailed 3D modelaigle from 360 degrees. We
have demonstrated that the powerful silhouette cue, pusljicknown to give camera motion
information, can also be used to extract photometric infdgrom. In particular, we have shown
how the silhouettes of a Lambertian object are sufficienetmver an unknown illumination

direction and intensity in every image. Apart from the ttegimal importance of this fact, it

also has a practical significance for a variety of techniguagh assume a pre-calibrated
light-source and which could use the silhouettes for thigppse, thus eliminating the need

for special calibration objects and the time consuming ra&nalibration process.
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