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Achieving illumination invariance in the presence of large pose changes remains one of the most chal-
lenging aspects of automatic face recognition from low resolution imagery. In this paper, we propose a
novel recognition methodology for their robust and efficient matching. The framework is based on out-
puts of simple image processing filters that compete with unprocessed greyscale input to yield a single
matching score between two individuals. Specifically, we show how the discrepancy of the illumination
conditions between query input and training (gallery) data set can be estimated implicitly and used to
weight the contributions of the two competing representations. The weighting parameters are represen-
tation-specific (i.e. filter-specific), but not gallery-specific. Thus, the computationally demanding, learn-
ing stage of our algorithm is offline-based and needs to be performed only once, making the added online
overhead minimal. Finally, we describe an extensive empirical evaluation of the proposed method in both
a video and still image-based setup performed on five databases, totalling 333 individuals, over 1660
video sequences and 650 still images, containing extreme variation in illumination, pose and head
motion. On this challenging data set our algorithm consistently demonstrated a dramatic performance
improvement over traditional filtering approaches. We demonstrate a reduction of 50-75% in recognition
error rates, the best performing method-filter combination correctly recognizing 97% of the individuals.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in the problem of accurately rec-
ognizing human faces in the presence of large and unpredictable
illumination changes. Our aim is to do this in a setup realistic for
most practical applications, that is, without overly constraining
the conditions in which data is acquired. Most often, this means
that the amount of available training data is limited and the image
quality (spatial resolution) low.

In conditions such as these, invariance to changing lighting is
perhaps the most significant practical challenge for face recogni-
tion algorithms. The illumination setup in which recognition is
performed is in most cases impractical to control, its physics diffi-
cult to accurately model and recover, with face appearance differ-
ences due to varying illumination often larger in magnitude than
those differences between individuals [1]. Additionally, the nature
of most real-world applications is such that prompt, often real-
time system response is needed, demanding appropriately efficient
as well as robust matching algorithms.

In this paper, we describe a novel framework for rapid recogni-
tion under varying illumination, based on simple image-filtering
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techniques. The proposed methodology is very general and we dem-
onstrate that it offers a dramatic performance improvement when
used with a wide range of filters and different baseline matching
algorithms, without sacrificing their computational efficiency. The
framework is based around two parallel pipelines: one matching
unprocessed input imagery, the other matching filtered data. These
are fused at the decision level, relative contributions of the two repre-
sentations being conditioned on the similarity of illumination condi-
tions between the compared data sets. By formulating the problem
of estimating this similarity in a discriminative manner, the entirety
of online computation is performed in the closed-form, making the
proposed sequence matching extremely efficient.

1.1. Paper organization

The remainder of this paper is organized as follows: in the next
section, we review relevant previous work and emphasize its key
limitations that are addressed by our work; an overview of the
use of image processing filters in face recognition is given in Sec-
tion 2.1. Section 3 describes each of the main components of the
proposed system in detail: the main premise of the paper is intro-
duced in Section 3 and the proposed solution in Sections 3.1 and
3.1.1. Our empirical evaluation methodology, data sets used and
the performance of the proposed algorithm are reported and
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discussed in Section 4. The paper is concluded with a summary and
an outline of promising directions for future research in Section 5.

2. Relevant previous work

[llumination-invariant face recognition is a very active research
area, as witnessed by the diversity in the approaches proposed in
the literature. It is out of scope of this paper to present a detailed re-
view of the whole body of work on this topic. Instead, we focus on a
number of methods that typify the most influential research direc-
tions and, indeed, their main limitations that we seek to improve
on. For recent surveys of the face recognition field, one may start
from [2,3].

Representations in face recognition: The choice of representation,
that is, the model used to describe a person’s face is central to the
problem of automatic face recognition. Consider the components
of a generic face recognition system schematically shown in Fig. 1.

A number of influential approaches in the literature employ
suitably complex, generative facial and scene models that allow
for explicit separation of extrinsic and intrinsic variables which af-
fect the observed appearance. The appeal of these methods is clear:
after intrinsic face parameters are estimated, their classification to
one of the known classes is typically straightforward. On the other
hand, although a rather diverse variety of models has been pro-
posed, in most cases their inherent complexity makes parameter
recovery impossible using a closed-form expression (“Model
parameter recovery” in Fig. 1). Rather, fitting is performed through
an iterative optimization scheme. A large subclass of this group are
3D model-based approaches, epitomized by the 3D Morphable
Model of Blanz and Vetter [4-6]. The shape and texture of a query
face are recovered through gradient descent by minimizing the dis-
crepancy between the observed and predicted appearance. Gradi-
ent descent is also employed in a rather different, sparse
approach of Elastic Bunch Graph Matching [7-9], in which it is the
placements of fiducial features, corresponding to bunch graph
nodes, and the locations of local texture descriptors that are esti-
mated. In contrast, the Generic Shape-Illumination Manifold method
operates on the appearance manifold level, using a genetic algo-
rithm to estimate a manifold-to-manifold mapping that preserves
pose [10]. Another popular group are photometric stereo ap-
proaches [11-16]. While the early applications of the “illumination
cone constraint” [11] on the appearance of a single Lambertian sur-
face were limited by training data requirements, promising results
are reported by the more recent, generalized photometric stereo
methods [13,14,16] which in addition exploit class-specific con-
straints of face shape and albedo.

One of the main limitations of most generative-model group of
methods arises due to the existence of local minima in the model

Model parameter
recovery

Offline training }—»@odel priors>

fitting stage, of which there are usually many [17]. The key prob-
lem is that if the estimated model parameters correspond to a local
minimum, classification is performed not merely on noise-contam-
inated but rather entirely incorrect data. An additional unappealing
feature of these methods is that it is also not possible to determine
if model fitting had failed in such a manner.

The alternative approach is to employ a simple face appearance
model and put greater emphasis on the classification stage where-
by illumination is effectively learnt through a discriminative rather
than generative framework. This general direction has several
advantages which make it attractive from a practical standpoint.
First, model parameter estimation can now be performed as a
closed-form computation, which is not only more efficient, but also
void of the issue of fitting failure such that can happen in an iter-
ative optimization scheme. This allows for more powerful statisti-
cal classification, thus clearly separating well understood and
explicitly modelled stages in the image formation process, from
those that are more easily learnt implicitly from training exem-
plars. This is the methodology followed in this paper.

2.1. Image processing filters

Most relevant to the material presented in this paper are illumi-
nation-normalization methods that can be broadly described as
quasi illumination-invariant image filters. Amongst the most used
ones in the face recognition literature are high-pass [18] and lo-
cally-scaled high-pass filters [19], directional derivatives [1] [20-
22], Laplacian-of-Gaussian filters [1], region-based gamma inten-
sity correction filters [23] [24], edge-maps [1] and various wave-
let-based filters [25-27]. These are most commonly based on
simple image formation models, for example modelling illumina-
tion as a spatially low-frequency band of the Fourier spectrum
and identity-based information as high-frequency [18,28], see
Fig. 2. Methods of this group can be applied in a straightforward
manner to either single or multiple-image face recognition and
are often extremely efficient. However, due to the simplistic nature
of the underlying models, in general they do not perform well in
the presence of extreme illumination changes [1].

While developing faster, more robust and discriminative filters
is still an area of active ongoing research [29], the primary focus of
this paper is different and can be seen as complementary. In es-
sence, the question we are asking is if one can do better with exist-
ing filters by a more careful use of all the available data.

3. Proposed method details

The framework proposed in this paper is motivated by our previ-
ous research and the findings first published in [10]. Four face recog-

Classif@—r Recognition decision

)

S BAE -

Known persons database

Fig. 1. A diagram of the main components of a generic face recognition system. The “Model parameter recovery” and “Classification” stages can be seen as mutually
complementary: (i) a complex model that explicitly separates extrinsic (pose, illumination,...) and intrinsic (shape and albedo) appearance variables places most of the
workload on the former stage, while the classification of the representation becomes straightforward; in contrast, (ii) simplistic models have to resort to more statistically

sophisticated approaches to matching.
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Fig. 2. (a) One of the simplest generative model used for face recognition: images are assumed to consist of the low-frequency band that mainly corresponds to illumination
changes, mid-frequency band which contains most of the discriminative, personal information and white noise. (b) The results of several most popular image filters operating

under the assumption of the frequency model.
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Fig. 3. Performance of the (a) Mutual Subspace Method and the (b) Constrained Mutual Subspace Method using raw greyscale imagery, high-pass (HP)-filtered imagery and
the Self-Quotient Image (QI), evaluated on over 1300 video sequences with extreme illumination, pose and head motion variation (as reported in [10]). Shown are the average

performance and tone standard deviation intervals.

nition algorithms, the Generic Shape-Illumination method [10], the
Constrained Mutual Subspace Method [30], the commercial system Fa-
celt and a Kullback-Leibler Divergence-based matching method, were
evaluated on a large database using (i) raw greyscale imagery, (ii)
high-pass (HP) filtered imagery and (iii) the Self-Quotient Image
(QI) representation [19]. Both the high-pass and even further Self-
Quotient Image representations produced animprovement in recog-
nition for all methods over raw grayscale, as shown in Fig. 3, which is
consistent with previous findings in the literature [1,18,28,19].

Of importance to this work is that it was also examined in
which cases these filters help and how much depending on the

data acquisition conditions. It was found that recognition rates
using greyscale and either the HP or the QI filter negatively corre-
lated (with p ~ —0.7), as illustrated in Fig. 4. This finding was ob-
served consistently across the result of the four algorithms, all of
which employ mutually drastically different underlying models.
This is an interesting result: it means that while on average
both representations increase the recognition rate, they actually
worsen it in “easy” recognition conditions when no normalization
is actually needed. The observed phenomenon is well understood
in the context of energy of intrinsic and extrinsic image differences
and noise (see [31] for a thorough discussion). Higher than average
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Fig. 4. A plot of the performance improvement with HP and QI filters against the
performance of unprocessed, raw imagery across different illumination combina-
tions used in training and test. The tests are shown in the order of increasing raw
data performance for easier visualization.

recognition rates for raw input correspond to small changes in
imaging conditions between training and test, and hence lower
energy of extrinsic variation. In this case, filters cannot increase
signal-to-noise ratio, and generally decrease it, worsening the algo-
rithm performance, see Fig. 5(a). On the other hand, when the
imaging conditions between training and test data are very differ-
ent, normalization of extrinsic variation is the dominant filtering
effect and performance is improved, see Fig. 5(b).

This is an important observation: it suggests that the perfor-
mance of a method that uses either of the representations can be
increased if the extent of change of illumination conditions
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between new data and training data is known. In this paper, we
propose a novel, learning-based framework to do this.

3.1. Adaptive framework

In this section, our goal is to first extract information on the
change in illumination conditions in which data was acquired,
and then use it to optimally exploit raw and filtered imagery in
casting the recognition decision. Explicit recovery of the lighting
setup description is difficult: the space of parameters is generally
very large (illumination sources can vary in number, position,
direction and type) and their interaction with potentially complex
scene surface properties make the problem ill-posed. Instead, we
propose to infer the change, or rather the magnitude of its effects

on the observed appearance, directly from image-based
comparisons.
Let {#1,...,%n} be a database of known individuals, %, the

query input corresponding to one of the gallery classes, and
p(Zo, %) € [0,1] and F(%), respectively, a given similarity function
and a quasi illumination-invariant filter. Note that we make no
assumptions on the nature of training or test data. Each %; can
either be a single image, an image set or a sequence. Equally, we
do not concern ourselves with the form of p(%o,%;) - the aim of
this paper is not to devise a better way of comparing two face
images (say). Rather, given a way to perform such a comparison,
we are interested in optimally combining appearance and filter-
based similarities. However, we do restrict ourselves to consider-
ing only the problem of illumination invariance. As argued previ-
ously (see Section 1) this is a problem causing greater practical
difficulties than varying pose. Thus, we assume that the robustness
to pose is accomplished either by virtue of variability in data itself
(e.g. as in [32]), or through a pose-invariant p(Zo, Z;).
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Fig. 5. A conceptual illustration of the distributions of intrinsic, extrinsic and noise signal energies across frequencies in the cases when training and test data acquisition
conditions are (a) similar and (b) different, before (left) and after (right) band-pass filtering.
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Fig. 6. Our offline algorithm implicitly accounts for the difference in illuminations conditions between the query and a gallery entry. This is done by learning the dependency
of the optimal weighting of decisions based on unfiltered and filtered data, as a function of the confusion margin. Confusion margin, as illustrated, is defined as the matching

confidence difference between the top two gallery matches given a query.

We propose to express the degree of belief (%, %) € [0, 1] that
two face sets 2 and Z; belong to the same person as a weighted
combination of similarities between the corresponding unpro-
cessed and filtered data:

N(&o, Xi) =" p(Zo, Zi) + (1 — ") p(F(Zo), F(Z7)) (1)

In the light of the previous results and discussion, o* ought to be
large (closer to 1.0) when the query and the corresponding gallery
data are acquired in similar illuminations, and small (closer to 0.0)
when in very different ones. Thus, o* is not a constant but rather a
function of the similarity function p, filter F, as well as data. We
show that o* can be effectively learnt as

o= o (p), )

where p is the confusion margin. We define the confusion margin
as the difference between the similarities of the query data 2
and the two gallery individuals 2; most similar to it. Formally,
if r(i) is the index of the ith best match for % using the similar-
ity function p:

U= pZo, Zr1)) — P(Zo, Xr2)), 3)

as illustrated in Fig. 6. Intuitively, given a sensible similarity func-
tion p, the confusion margin quantifies the confidence that the
top ranking match using unprocessed imagery is indeed the correct
one. To see why this is the case, let us consider the two extreme
cases, when query data and the corresponding gallery data are ac-
quired in (i) the same illumination conditions and (ii) extremely dif-
ferent illumination conditions.

(i) Same illumination conditions

In this case, the similarity of the query data and the correspond-
ing gallery data is nearly perfect (close to 1.0) and the correct
match by identity is retrieved first. We can then write
1T —p(Zo, Zr))| < |1 = p(Zo, Zr))| and from the definition (3) it
is clear that the confusion margin is large.

(ii) Extremely different illumination conditions

In this case, intrapersonal appearance changes due to illumina-
tion will be greater than interpersonal variations [1], and conse-
quently neither of the top matches will correspond in identity to
the query data. Thus, both p(Zo, Zr1)) and p(Zo, Zr@2)) will be rel-
atively small. In addition, as they are by definition constrained to
lie in the domain [0, 1], their difference must be small too.

While the values that weighting function o assumes at the ex-
trema of the region on which it is defined are now clear, its behav-
iour between them is not as obvious. We address this issue next.

3.1.1. Learning the a-function

The value of o*(u) can then be interpreted as statistically the
optimal choice of the mixing coefficient « for the confusion margin
p. Formalizing this we can write

o' (p) = argmax p(or|p), (4)
or, equivalently
. p(o, 1)
o = arg max . 5
(k) = argmax = ¢ (5)

Under the assumption of a uniform prior on the confusion mar-
gin, p(u)

p(opt) o< p(ar, ), (6)
and
o' (p) = argmax p(a, ). (7

Thus, the problem of inferring the optimal weighting function
o is in fact reduced to the estimation of a 2D probability density
function.

Proposed methodology: To learn the a-function o* (i) as defined
in (4), we first need an estimate p(«, p) of the joint probability den-
sity p(a, ) as per (7). The main difficulty of this problem is of prac-
tical nature: in order to obtain an accurate estimate using one of
the many off-the-shelf density estimation techniques, a prohibi-
tively large training database would be needed to ensure a well
sampled distribution. Instead, we propose a heuristic alternative
which, we will show, allows us to do this from a small offline train-
ing corpus which comprises individuals imaged in various illumi-
nation conditions. It is important to emphasize that this data is
used only for the purpose of estimating the «-function and has
no relation (or rather, need not have any) to the set of gallery indi-
viduals. This logical separation of training data and the fact that
offline training needs to be performed only once, means on the
one hand (i) that we can collect an offline corpus containing repre-
sentative lighting variation, while on the other (ii) allowing us to
perform recognition with both gallery and query data acquired in
a single arbitrary illumination condition each.

The key idea that makes it possible for us to accurately estimate
p(o, 1) while drastically reducing the amount of offline training
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data, lies in the use of domain specific knowledge of the properties
of p(a, 1), employed to constrain the estimation process. Our algo-
rithm is based on an iterative incremental update of the density,
initialized as a uniform density over a discrete grid on the domain
o, 1 € [0,1], as in Fig. 8. Then, using the offline data corpus, we iter-
atively simulate matching of an “unknown”, query person against a
set of provisional gallery individuals which are randomly drawn
from the offline training database.

An iteration: Specifically, in each iteration we randomly choose
%y, i.e. a particular individual in a specific illumination which
serves as a query, and similarly, a set of individuals {#1,...,%u}
which in the simulation have the role of gallery data. Using the
similarity metric p() and the filter F(), we can compute the similar-
ity between %, and each #;, which also gives us the value of the
confusion margin g, as well as the similarity between F(%,) and
each F(#;). The combined similarity score 17(%,,%;) is then com-
puted for each possible value of o or, remembering that alpha is re-
stricted to a discrete grid o = kAq, for each value of k € [0...1/Aq]:

i =N(%o, %) = kAwp(#o, %) + (1 — kAo) p(F(%o), F(%))) (8)

Since the ground truth identities of all persons in the offline data-
base are known, we can quantify how well a particular value of o per-
formed by considering the resulting similarity #, of %, and the
correct match amongst the {#;}, and the similarity 7, ,, of %, and
the individual actually deemed most similar in (8), #/;,. The greater
the ratio 7. /1,;), the better the choice of o is. Density p(a, 1) is then
incremented proportionally to#, /1, to reflect higher confidence in
the particular value of « for the observed .

The proposed offline learning algorithm is summarized using
pseudo-code in Fig. 7 with a typical evolution of p(«, 1) shown in
Fig. 8. The final stage of the offline learning in our method involves
imposing the monotonicity constraint on o*(x) and smoothing of
the result, see Fig. 9.

On the fusion constraints: As a final theoretical point, we wish to
discuss the space of functions that our fusion is constrained to by
the Eq. (1) and the proposed algorithm for learning the mixing
function o*.

On the surface, (1) appears to be a linear combination of similar-
ities of unprocessed and filtered data, p(Zo, Zi) and p(F(%Z), F(Z))-
However, it is important to recognize that o is not constant but
rather a function of the confusion margin g, which itself is by defi-
nition dependent on p(2o, Z1), - .., P(Z0, Zn). On the one hand, this
observation makes rigourous theoretical analysis very difficult but,
on the other, provides the functional flexibility that is necessary
given that no assumptions are made on the form of p. Put differ-
ently, any monotonically non-decreasing function of p could be
substituted for p, since this transformation would only affect the
the magnitude of the confusion margin, but not the gallery ordering
r(i) in (3). As a consequence, assuming adequate training data and
noting the non-parametric nature of the proposed algorithm for
the estimation of «*, our fusion algorithm would still converge to
the effectively same solution for the fusion #.

4. Empirical evaluation

In the preceding sections we dealt with theoretical aspects of
the proposed framework. To empirically test the main premises
of our work and the effectiveness of the described methodology,
we evaluated its performance on 1662 video sequences of head
motion, as well as 650 still images, collected from five databases
totalling 333 individuals:

Cambridge Face Database (CamFace), with 100 individuals of
varying age and ethnicity, and equally represented genders. For
each person in the database we collected 7 video sequences of
the person in arbitrary motion (significant translation, yaw and

Input: training data D (person, illumination),
ltered data F'(person, illumination),
similarity function p.

Output: estimate p(a, p).

1: Initialization
pla,p) =0

2: Simulated matching iteration

for all illuminations 4, j and persons p

3: Confusion margin

= p(D(p,i), D(r1,j)) — p(D(p, i), D(ra, ))

4: Iteration

forallk =0,...,1/Aq, a = kA«

5: Quantify performance of o

. _ ap(D(p.i),D(p,j))+(1—a)p(F (p,i),F(p.j))
b(kAa) = max,q[ap(D(p,i),D(q,5))+(1—a) p(F(p,i),F(q.))]

6: Update density estimate
p(kAa, p) = p(kAa, p) + 6(kAa)

7: Smooth the output

o, 1) = pla, i) * Go=0.05

8: Normalize to unit integral

plas 1) = il w)/ [, [, o, p)dpda

Fig. 7. A summary of the main part of the proposed offline training algorithm used
to estimate the joint probability density function p(«, ¢t). Note that for the reasons
of clarity and brevity, at places a somewhat different notation is used in the pseudo-
code above from that in the main text; please refer to the algorithm header.

pitch, negligible roll), each in a different multiple light source illu-
mination setting, see Fig. 10 (a) and 11, at 10 fps and 320 x 240-
pixel resolution (face size ~60 pixels).!

Toshiba Face Database (ToshFace), kindly provided to us by Toshi-
ba Corp. This database contains 60 individuals of varying age, mostly
male Japanese, and 10 sequences per person. Each sequence corre-
sponds to a different multiple light source illumination setting, at
10 fps and 320 x 240 pixel resolution (face size ~60 pixels), see
Fig. 10(b).

Face Video Database, freely available from http://syn-
apse.vit.iit.nrc.ca/db/video/faces/cvglab and described in [33].
Briefly, it contains 11 individuals and 2 sequences per person, little
variation in illumination, but extreme and uncontrolled variations
in pose and motion, acquired at 25 fps and 160 x 120-pixel resolu-
tion (face size ~45 pixels), see Fig. 10(c).

Faces96, the most challenging subset of the University of Essex
face database, freely available from http://cswww.essex.ac.uk/
mv/allfaces/faces96.html. It contains 152 individuals, most
18-20years old and a single 20-frame sequence per person in

1 A thorough description of the University of Cambridge face database with
examples of video sequences is available at http://mi.eng.cam.ac.uk/oa214/.
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Fig. 8. The estimate of the joint density p(«, i) through 500 iterations for a band-pass filter used for the evaluation of the proposed framework in Section 4.1.

196 x 196-pixel resolution (face size ~80 pixels). The users were
asked to approach the camera while performing arbitrary head
motion. Although the illumination throughout each sequence,
there is some variation in the manner in which faces were lit due
to the change in the relative position of the user with respect to
the lighting sources, see Fig. 10(d).

Yale Face Database B (YaleDB), freely available from http://
cvc.yale.edu/projects/yalefacesB/yalefacesB.html and described in
[12]. It contains contains 5850 single light source images of 10 sub-
jects, each under 576 viewing conditions (9 poses and 64 illumina-
tion conditions) and an additional ambient light only image per
pose, see Fig. 10(d). Since the focus of this paper is specifically on
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Fig. 9. Typical estimates of the o-function plotted against confusion margin p. The estimate shown was computed using 40 individuals in five illumination conditions for a
Gaussian high-pass filter. As expected, o* assumes low values for small confusion margins and high values for large confusion margins (see (1)).

illumination invariance in recognition, we used only the 650 image
subset of frontal views only.

For CamFace, ToshFace and FaceVideo databases, we trained our
algorithm using a single sequence per person and tested against a
single other query sequence per person, acquired in a different ses-
sion (for CamFace and ToshFace different sessions correspond to
different illumination conditions). Since Faces96 database contains
only a single sequence per person, we used the frames 1-10 of each
for training and frames 11-20 for test. Seeing that each video se-
quence in this database shows a person walking to the camera, this
division maximizes the variation in illumination, scale and pose
between training and test, thus maximizing the recognition chal-
lenge. For tests performed on YaleDB only a single image per sub-
ject was used both for training and querying.

Offline training, that is, the estimation of the «-function (see
Section 3.1.1) was performed using 40 individuals and five illumi-
nations from the CamFace database. We emphasize that these were
not used as test input for the evaluations reported in the following
section.

Data acquisition: The discussion so far focused on recognition
using fixed-scale face images. For all video-based databases we
used a cascaded detector [34] for localization of faces across scale
in cluttered images. The detector was trained using roughly
roughly fronto-parallel views. Detected faces were rescaled to the
unform resolution of 50 x 50 pixels.

Although the cascaded face detector was successful on Ya-
leDB as well, we decided on a different approach to data extrac-

tion. Specifically, we manually localized the centres of eyes and
the mouth, and then affine registered all faces to the same geo-
metric frame (as in e.g. [18]). This was done because unlike in
the other four data sets, in YaleDB pose was strictly controlled
for each subject but not between subjects. Since our face detec-
tor is not rotation invariant, there would have been a possibility
of learning to discriminate between poses, rather than individ-
uals themselves.

Methods and representations. The proposed framework was eval-
uated using the following filters (illustrated in Fig. 12):

e Gaussian high-pass-filtered images [18,28] (HP):
Fi(X) =Xy = X~ (X Gg_15), (9)

e Local intensity-normalized high-pass-filtered images—similar to
the Self-Quotient Image [19] (QI):

F2(X) =X = Xu/X. = Xu/(X — Xu), (10)

the division being elementwise,

e Distance-transformed edge map [10,35] (ED):

F5(X) = Xgp = DistanceTransform [Xg] (11)
= DistanceTransform [Canny(X)], (12)

e Laplacian-of-Gaussian [1] (LG):

F4(X) = X; = X * VGy_3, (13)
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(e) Yale Database

Fig. 10. Representative samples from the five data sets used for evaluation in this paper; (a)-(d) are collections of video sequences and the frames shown for each are from a
single sequence, while for (e) we show a cross section through the illumination variation present in the data set.

where = denotes convolution, and
o directional grey-scale derivatives [1,20] (DX, DY):

0

F5(X) =X, =X+ 5 G, =3 (14)
0

Fo(X) =X, =X 5.Gr, = 3. (15)

Video sequence matching For baseline classification on the video-
based databases, we used two canonical correlations-based [36,37]
methods which have gained considerable attention in recent liter-
ature on face recognition from video. These are:

e Mutual Subspace Method (MSM) of Yamaguchi and Fukui [30],
and

e Constrained MSM (CMSM) [30] used in a state-of-the-art com-
mercial system FacePass® [38].

These were chosen as fitting the main premise of the paper, due
to their efficiency, numerical stability and generalization robust-
ness [39]. We now briefly summarize the procedure in which the
two methods were used for matching.

We represent each face image as a raster-ordered pixel array, and
each sequence of detected faces as a data matrix d € RPN, each
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(b) ToshFace

Fig. 11. An illustration of variation of lighting conditions in our databases. Shown are two faces lit with (a) illuminations 1-7 from database FaceDB100 and (b) illuminations
1-10 from database FaceDB60. It is important to emphasize that the actual appearance effects of the same illumination setup were different between different individuals (or
even between different session of the same individual) due to ad lib chosen body position with respect to the mounted camera.

HP

2

Ql

G

ED

Fig. 12. Examples of the evaluated face representations: raw greyscale input (RW), high-pass-filtered data (HP), the Quotient Image (QI), distance-transformed edge map
(ED), Laplacian-of-Gaussian-filtered data (LG) and the two principal axis derivatives (DX and DY).

column corresponding to a single image. Principal Component Anal-
ysis (PCA) of the cross-correlation matrix € = dd’ is used to extract
the main modes of appearance variation, as the eigenvectors corre-
sponding to the largest eigenvalues. Note that PCA was applied with-
out mean subtraction. We used 6D subspaces, as sufficiently
expressive to on average explain over 90% of data variation within
intrinsically low-dimensional face appearance changes within a set.

In MSM, the similarity between two subspaces (each corre-
sponding to a face motion video sequence d;) is computed as the
mean of the first three principal correlations w;_; between them:

1
p(didj) =5 > o

k=1..3

(16)

If B; and B; are orthonormal basis matrices corresponding to the
subspaces, then writing the Singular Value Decomposition (SVD) of
the matrix B B;:

M =BB; = UzV". (17)

The kth canonical correlation w, is then given by the kth singular
value of M i.e. Xy, and the kth pair of principal vectors u, and v, by,
respectively, B;U and B;V [40], see Fig. 13. In CMSM, the computa-
tion of canonical correlations is preceded with linear projection of
the two subspaces to the Constraint Subspace, see the original pub-
lication for more detail [30]. In our empirical evaluation, we esti-
mate the Constraint Subspace using gallery training data.

Still image matching: Since pose was strictly controlled in this
data set, we compared two still images of faces extracted from Ya-
leDB using a simple matching procedure, analogous to that previ-
ously employed on video. If X; and X; are two images as raster-
ordered pixel arrays, their similarity is computed as the cosine of
the angle between them:

P (X X)) = Xi%; /||| |x] (18)

For brevity, we shall refer to this as the COS distance.

4.1. Results

To establish baseline performance, we performed recognition
on all data sets using raw greyscale data first. A summary is shown
in Table 1. As these results illustrate, CamFace, ToshFace and YaleDB
were found to be very challenging, primarily due to extreme vari-
ations in illumination between training and query data, as well
within sequences in the case of the former two databases. The per-
formance on Face Video and Faces96 databases was significantly
better. This can be explained by noting that the first major source
of appearance variation present in these sets, the scale, is normal-
ized for in the data extraction stage; the remainder of the appear-
ance variation is dominated by pose changes, to which MSM and
CMSM are particularly robust to [32,39]. This confirms the premise
that varying illumination indeed does represent the main difficulty
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Fig. 13. (a) The first pair of principal vectors (top and bottom) corresponding to the sequences (b) and (c) (every 4th detection is shown for compactness), for each of the
seven representations used in the empirical evaluation described in this paper. A higher degree of similarity between the two vectors indicates a greater degree of

illumination invariance of the corresponding filter.

Table 1
Recognition rates (mean/STD, %).

CamFace  ToshFace  FaceVideoDB  Faces96  YaleDB mean
CMSM  73.6/22.5 79.3/18.6 919 100.0 — 87.8
MSM 58.3/243 46.6/283 81.8 90.1 — 72.7
Cos — - — — 66.9/354 —

in achieving robust face recognition when the data acquisition set-
up is unconstrained.

Next we evaluated the two methods with each of the six filter-
based face representations. The recognition results for the Cam-
Face, ToshFace, Faces96 and YaleDB databases are shown in blue
in Fig. 14, while the results on the Face Video data set are separately
shown in Table 2 for the ease of visualization. Confirming the first
premise of this work as well as corroborating previous research
findings, all of the filters, except for the distance transformed edge
map, produced an improvement in average recognition rates when
used with methods which provide little additional illumination
invariance themselves (MSM and the COS distance). The failure
of the distance transformed edge map to provide a consistent
improvement can be attributed to its high sensitivity to cast shad-
ows and effectively a complete loss of any albedo information. The
usefulness of this representation was already argued in the litera-
ture as being better suited to pose, rather than identity discrimina-
tion [10,41,42].

Little interaction between method/filter combinations was
found, the Quotient Image performing the best, with the horizontal
intensity derivative and the Laplacian-of-Gaussian producing com-
parable results and bringing the average recognition errors down
to the region of about 10%.

Finally, in the last set of experiments, we employed each of the
6 filters in the proposed data-adaptive framework. The recognition
results are shown in red in Fig. 14 and in Table 2 for the Face Video
database. The proposed method produced a dramatic performance
improvement in the case of all filters, reducing the average recogni-
tion error rate to only 3% in the case of CMSM/Quotient Image
combination. This is a very high recognition rate for such uncon-
strained conditions (see Fig. 10), small amount of training data
per gallery individual and the degree of illumination variation be-
tween training and query data. An improvement in the robustness
to illumination changes can also be seen in the significantly re-
duced standard deviation of the recognition, as shown in Fig. 14.
Finally, it should be emphasized that the demonstrated improve-
ment is obtained with a negligible increase in the computational
cost as all time-demanding learning is performed offline.

4.2. Failure modes
In the discussion of failure modes of the described framework, it

is necessary to distinguish between errors introduced by a particu-
lar image processing filter used, and the fusion algorithm itself. As
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Fig. 14. Error rate statistics. The proposed framework (-AD suffix) dramatically improved recognition performance on all method/filter combinations, as witnessed by the
reduction in both error rate averages and their standard deviations. The results of CMSM on Faces96 are not shown as it performed perfectly on this data set.

generally recognized across literature (e.g. see [1]), qualitative
inspection of incorrect recognitions using filtered representations
indicates that the main difficulties are posed by those illumination
effects which most significantly deviate from the underlying fre-
quency model (see Section 2.1) such as: cast shadows, specularities

(especially commonly observed for users with glasses) and photo-
sensor saturation.

On the other hand, any failure modes of our fusion framework
were difficult to clearly identify, due to such a low frequency of
erroneous recognition decisions. Even these were in virtually all
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Table 2
FaceVideoDB, mean error (%).

RW HP Ql ED LG DX DY
MSM 0.00 0.00 0.00 0.00 9.09 0.00 0.00
MSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CMSM 0.00 9.09 0.00 0.00 0.00 0.00 0.00

CMSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

of the cases due to overly confident decisions in the filtered pipe-
line. Overall, this makes the methodology proposed in this paper
extremely promising as a robust and efficient way of matching face
appearance image sets, and suggests that future work should con-
centrate on developing appropriately robust image filters that can
deal with more complex illumination effects.

5. Conclusions

In this paper we described a novel framework for automatic
face recognition in the presence of varying illumination, primarily
applicable to matching face sets or sequences. The framework is
based on simple image processing filters that compete with unpro-
cessed greyscale input to yield a single matching score between
individuals. By performing all numerically consuming computation
offline, our method both (i) retains the matching efficiency of sim-
ple image filters, but (ii) with a greatly increased robustness, as all
online processing is performed in closed-form. Evaluated on a
large, real-world data corpus, the proposed framework was shown
to be successful in both video and still image-based recognition
across a wide range of variation in illumination.

As suggested by our experimental results, the main direction
for future work is to develop more robust image processing filters
without a great loss of computational efficiency. Specifically, we
are investigating the use of colour invariants and photometric
camera models with the aim of achieving unified detection and
elimination of specularities, cast shadows and points of photo-sen-
sor saturation.
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